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• Hawaii has more distributed PV (as percentage of load) than any other U.S. 
state.  
o Oahu: ~400 MW of distributed PV on a ~1000 MW system
o No connections to neighboring systems
o Instantaneous penetration of non-synchronous generation can exceed 70%
o Grid operators have no visibility or control of distributed PV

• State RPS goal: 100% renewables by 2045
• Current levels of PV result in both steady-state and dynamic voltage and 

frequency issues
• Communication to DERs typically non-existent or proprietary
• Near-term solution: autonomous inverter-based grid support

o E.g. ride-through, volt-var, volt-watt, frequency-watt (droop)

Motivation
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Example: DER frequency 
support on inertial time-scale:
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• Validate grid support settings of 
hardware inverters in an 
environment that mimics the 
relevant dynamics of the Oahu 
power system

• Include both distribution 
system and bulk grid dynamics

• Identify challenges and risks 
associated with DER grid 
support
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Island-wide real-time hybrid model for PHIL:

• Real-time Oahu frequency 
dynamic model simulates 
contingency events; tuned to 
match PSSE simulations 
performed by Sandia team

• Bulk system model drives 
frequency of voltage 
waveforms in distribution 
system simulation

• Hardware inverter is 
connected to AC supply 
driven by simulated PCC 
voltage

• Many more inverters 
simulated with various 
controls, both on 
distribution feeder and in 
bulk system model

• Approximation of feeder bus 
voltage changes during 
frequency events

Real-time simulation (OPAL-RT)
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Bulk system governor-only model overview

Examples of governor models
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Real-time simulation (OPAL-RT)
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Transmission-distribution interface Real-time simulation (OPAL-RT)
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• Frequency and voltage magnitude from bulk system model converted to 
individual phase voltages at feeder head (46 kV level).

• Frequency is integrated to produce voltage phase angle, θ
• Phase voltage balance assumed. (Not entirely accurate)
• Feeder model includes source impedance
• Voltage magnitude at feeder source constant except during transients
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Distribution feeder reduced-order EMT model

Proprietary data and preliminary results.  Please do not distribute.
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Real-time simulation (OPAL-RT)
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Commercially available PV inverter overfrequency response
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• Shown: Mild undershoot 
(~second-order response)

• Other inverters tested had ~first-
order response

• All three inverters tested in this 
project had fast (sub-second) 
response times

• Quantifying exact response time is 
challenging as the frequency 
measurement instrument itself 
has a finite time response

• Response on frequency recovery 
varies between inverters

• Responses will likely become 
more uniform in response to IEEE 
1547-2018



NREL    |    10

PV inverter model overview
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• Four types of inverters modeled:
o Legacy Enphase
o Advanced Enphase
o Legacy Fronius
o Advanced Fronius

• f-W response tuned to match hardware tests
• Ride-through capability matches field inverters
• Each connected on bulk system and at 8 

locations on distribution system

Real-time simulation (OPAL-RT)
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PHIL test: Worst case 2019 overfrequency event

• Event run multiple 
times with varying 
droop slope.  Each 
color represents one 
test.

• Dotted lines are 
modeled inverters, 
solid lines are 
hardware.

• “2nd order” hardware 
inverter response 
shown
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PHIL test: Worst case 2019 overfrequency event

• Same event, varying time response (speed) of 1st order inverters in PHIL model
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Test result: Inverters ride through remote and local events

• Worst case PSSE voltage profile 
input to PHIL models (loss of AES)

• Verified that:
• Grid simulator could replicate 

voltage profile
• Inverters ride through voltage 

event
• Additional voltage transient occurs 

during legacy PV trip event 
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Conclusions

• Inverter-coupled generation can provide very fast primary reserve, which is advantageous in low-inertia power 
systems. 

• The response can also be slowed down for larger power systems if desired
• Several variables are critical: 

• Amount of PV responding
• Speed of response
• Droop curve (slope and deadband)
• Inverter dynamic response

• Some challenges and points of caution: 
• Fast response could cause undesired interactions (SSTI, frequency oscillations, or others
• Knowing how much DPV is online at any time is difficult (little/no communications)
• Dynamics of individual inverters (and load) vary.  Models must make many simplifications and assumptions.
• Each power system is different.  This work has focused on Oahu.  Smaller islands may need faster response.

• Many distributed-scale battery inverters don’t yet include upward response capability (but capability will be 
required as 1547-2018 is rolled out)

• To build up a base of f-W enabled inverters and avoid stability issues, it is necessary to start soon.  Initially the 
function will have little/no impact until many MW of DPV are installed.
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Impacts

• Developed first island-wide PHIL platform including bulk grid and distribution dynamics.

• Hawaii PUC approved system-wide activation of f-W following the curve recommended by the project team

• HECO’s UL 1741 SA Source Requirements Document (SRD) calls for f-W; the spec is in line with IEEE 1547-
2018.  

• All distributed inverters are now required to provide f-W droop (downward response only)

• California PUC expected to approve f-W soon as well

• Newly published IEEE 1547-2018 allows for fast (sub-second) f-W response based on technical 
recommendations from the project team

• Initially, the 1547 Working Group was hesitant to allow sub-second responses

• Must be coordinated with the “regional reliability coordinator” (e.g. ISO or RTO)
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Simple generic real-time hybrid model for PHIL:

• This model shows a very simple 
power hardware-in-the-loop system 
capturing:

o Bulk-system frequency dynamics 
o Distribution system EMT dynamics

• Intended for time-scales from sub-
cycle to several seconds

• A similar but more detailed model 
was developed for the Oahu power 
system 

A. Hoke, S. Chakraborty, T. Basso, “A Power Hardware-
in-the-loop Framework for Advanced Grid-interactive 
Inverter Testing”, 2015 IEEE Innovative Smart Grid 
Technologies Conference (ISGT), Washington, DC
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Full system PHIL tests

• Two hardware inverters connected to neighboring points on distribution 
secondary

• Primarily tested underfrequency events
• 2019 Light Spring case
• Worst-case loss-of-load contingency: 63 MW load loss due to breaker failure

Real-time simulation (OPAL-RT)
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PHIL test: Worst case 2019 overfrequency event
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PHIL test: Worst case 2019 overfrequency event

• Same event, varying proportion of 2nd order to 1st order inverters in PHIL model
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PHIL test: Worst case 2019 underfrequency event

• Loss of AES (190 MW); heavy summer load case
• Assumes PV operating with reserve, capable of autonomous upward response
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• Linking of bulk grid and distribution grid simulations
• PHIL stability
• How to account for HIL phase delay when:

o Frequency and DUT power are not constant 
o Non-fundamental frequency components are present

• Validation and debugging of complex model
• Balance between model fidelity vs. computation time

Challenges:
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