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Research Objectives

Research Questions

« What is the national-level energy impact
of adopting connected and automated
vehicles and technologies (e.g.,
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« How do different levels of CACC adoption
affect on-road fuel economy for different
vehicle powertrains?

« What changes in vehicle miles traveled
distribution are induced by CACC
adoption and what is the potentially
induced change in demand, primarily on
US freeways and highways?

Source:Sephons ot . 2016).
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Modeling Assumptions & Data Insights

Insights and data from micro-simulation modeling of CACC vehicle use in a freeway
stretch in Sacramento CA, conducted by Lawrence Berkeley National Lab (LBNL)

Induced demand assumptions, using preliminary results of agent-based modeling
simulations conducted by Argonne National Lab (ANL)

Methodology

The methodology proposed accounts for vehicle stock evolution, fuel consumption
changes due to CACC adoption for different vehicle powertrains, and vehicle
miles traveled (VMT) distribution changes as well as impacts of induced demand
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Methodology doscrbed in detll i hen o1 . (2016).

Transporiaon Reseath Part A: Pocy and ractcs

Important modeling inputs:
* Modeling period: 2018-2050

« Existing vehicle stock & new sales of different powertrains, including CACC
capabilities (e.g., AEO projections, ADOPT Scenarios, Shladover & Greenblatt
white paper scenarios)

« CACC impacts on vehicles’ fuel economy across speed bins (e.g., based on
LBNL Aimsun micro-simulation analysis)

« National-level impacts of CACC on VMT across speed bins (e.g., LBNL micro-
simulation) and due to perceived changes in vehicle travel time and induced
travel demand (e.g., ANL/UIC agent based simulations)

Data Inputs

Powertrain Adoption Scenarios

Vehicle sales projected using NREL's ADOPT model, based on AEO 2017 fuel prices and
different technology improvement trends over time:
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CACC VMT share on highways and freeways, 3 scenarios of CACC adoption:
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Impact of CACC Penetration Levels on VMT and Fuel Consumption

LBNL microsimulation data outputs inform fuel consumption & VMT matrices under CACC adoption
(note that VMT & FC correspond to the LBNL freeway network and not to the national level analysis)
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VMT attributed to CACC increase over the years (urban highways example)

n Impacts on Conventional Vehicles

Conventional fuel consumption decreases as CACC % increases (e.g., urban
highways)
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National-Level Fuel Consumption Results

.

Potential for gasoline fuel savings from CACC adoption, particularly when
conventional powertrains dominate

National-level Fuel Consumption Projections
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Future Work

Refine inputs and interactions with other tools
o VMT transferability from ANL/UIC (Chicago — nation)
o Microsimulation data outputs (trajectory data from local CACC
implementation, automated mobility districts microsimulation, etc.)

Sensitivity analysis to explore impact of several input parameters on the
national-level fuel consumption results

Add additional vehicle and CAV technology scenarios:
o Explore national-level fuel consumption impacts of eco-signal
implementation
o Explore national-level fuel consumption impacts of automated mobility
districts and innovative mobility solutions

Collaboration with other SMART Mobility pillars
o e.g., Urban Science, Advanced Fueling Infrastructure, etc.
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