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Abstract

Variance-based sensitivity analysis can provide a comprehensive understanding of the input fac-
tors that drive model behavior, complementing more traditional system dynamics methods with
quantitative metrics. This paper presents the methodology of a variance-based sensitivity analy-
sis of the Biomass Scenario Learning Model, a published STELLA model of interactions among
investment, production, and learning in an emerging competitive industry. We document the
methodology requirements, interpretations, and constraints, and compute estimated sensitivity
indices and their uncertainties. We show that application of variance-based sensitivity analysis
to the model allows us to test for non-additivity, identify influential and interactive variables,
and confirm model formulation. To enable use of this type of sensitivity analysis in other system
dynamics models, we provide this study’s R code, annotated to facilitate adaptation to other
studies. A related paper describes application of these techniques to the much larger Biomass
Scenario Model.
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Introduction

The Biomass Scenario Model (BSM) is a system dynamics model of the bio-
mass to biofuels supply chain, written in STELLA (isee systems, 2014).
Together with the U.S. Department of Energy (DOE), the National Renewable
Energy Laboratory (NREL) developed the BSM to explore scenarios for devel-
opment of the biofuels industry. The BSM incorporates thousands of input
values which, due to the presence of myriad feedback dynamics and
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relationships in the model, have the potential to result in complex and non-
linear behaviors (Peterson et al., 2013). Variance in the inputs, coupled with
the potential for interactions among inputs, complicates interpretation of the
model output. Understanding how these complex interactions drive model
behavior is pivotal to interpreting model results, highlighting the need for
comprehensive analysis methods. This paper aims to address that need by
presenting the application of variance-based sensitivity analysis methods to
part of the BSM.

For the purposes of this study, a smaller, simpler extract of the BSM,
called the biomass learning model, was selected for sensitivity analysis
(Vimmerstedt et al. 2015). The Learning Model represents the industrial
learning process for three illustrative biofuel industries and is designed to
elucidate the impact that certain learning inputs have on the overall biofuels
industrial output (i.e. fuel production). By extracting the Learning Model
from the rest of the supply chain in the full BSM, we focus on the industrial
learning process, a key factor in the growth of many new industries, such as
the biofuels industry. Understanding and quantifying influential factors for
total industrial output across a broad range of input conditions necessitates a
statistically rigorous experimental design and analysis.

Sensitivity analysis is the assessment of how uncertainty in a model’s out-
put can be apportioned to uncertainty in the model’s input factors (Saltelli
et al., 2010). For a forward-looking simulation model such as the BSM, most
of the input assumptions about the future cannot be statistically estimated
from historical data, but instead are taken from published literature or pro-
cess knowledge (Lin et al., 2013). Sensitivity analysis methods allow for the
exploration of model behavior across a broad range of conditions. Especially
with large and complex models, exploring the full range of input space
manually can be cumbersome and time prohibitive. Quantitative sensitivity
analysis methods, such as those described in this paper, can complement
traditional methods used in the system dynamics community by providing a
more thorough understanding of model behaviors.

Categories of sensitivity analysis include factor prioritization, factor fixing,
factor mapping, and metamodeling. Saltelli et al. (2004) detail each of these
methods, and Pianosi et al. (2016) provide a comparative review. Sterman
(2000) describes best- and worst-case scenarios, Monte Carlo simulations,
and automated nonlinear tests as methods for sensitivity analysis. These
methods help in understanding the bounds of model behavior (best- and
worst-case scenarios), likely outcomes (Monte Carlo simulations), and the
search for anomalous results (automated nonlinear tests) (Sterman, 2000). In
this study, we employ a factor-fixing approach. Factor-fixing approaches
identify which factors, among all model factors, can be fixed (i.e. assigned
any value within its range) without any appreciable impact on the model’s
output. This is in contrast to factor prioritization approaches, including ele-
mentary effects (Morris 1991), which identify potentially important factors,
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and factor-mapping approaches, such as Monte Carlo filtering (Saltelli et al.,
2008), which are used to find which factors produce model results in a
particular output space.
Various sensitivity analysis approaches have been applied to systems

dynamics models. The literature reports on numerical sensitivity analysis of
model parameters, which is considered in this study, in addition to analysis
of the sensitivity of models to graphical functions (Eker et al., 2014) and the
sensitivity of model behavior patterns to changes in model parameters
(Hekimo�glu and Barlas, 2016; Walgrave, 2016). Literature on numerical sen-
sitivity analysis of model parameters includes application and review of sev-
eral statistical methods (Bier, 2011), the use of regression and design of
experiments (Kleijnen, 1995), the use of statistical screening methods (Ford
and Flynn, 2005) for factor prioritization (Taylor et al., 2010), and together
with design of experiments (Jalili and Ford, 2016). This analysis contributes
to the literature by presenting a case study on the application of variance
decomposition-based sensitivity of a system dynamic model. We use non-
parametric methods to analyze the results from this study and demonstrate
the power of this approach to rapidly develop model intuition from system
dynamic models.
For this study, we developed an approach to apply Sobol’s variance-based

sensitivity method (Sobol, 1993) to the BSM. This method has many desir-
able features, such as independence in the estimates of sensitivity indices
(i.e. potential non-additivity in the model does not affect its sensitivity
index), and the ability to assess a very broad range of input settings (Saltelli
et al., 2010). More importantly, this methodology allows for the quantifica-
tion of interaction effects in model behavior, which may be more difficult to
uncover with other methods of model exploration described above. For
variance-based sensitivity analysis, a systematic methodology involves iden-
tifying the factors of interest and their ranges, choosing a sample size and
sampling approach, and deciding on which indices to compute.
The simpler Learning Model is used in this study to develop a clear meth-

odology for variance-based sensitivity analysis of a systems dynamics model
in a context that can be easily understood. The goal of this paper is to docu-
ment the application of Sobol’s method to the biomass learning model,
including the method requirements, interpretations, and constraints. As a
result of the analysis, we compute estimated sensitivity indices and their
uncertainties. Application of the methods developed in this study to the
more complex BSM is the subject of analysis by Inman et al. (2018), which
focuses on the resulting insights into model behavior and their significance
to the biofuels industry.

P. Jadun et al.: Variance-based Sensitivity Analysis of the Biomass Scenario Learning Model 313

Copyright © 2018 Alliance for Sustainable Energy, LLC. System Dynamics Review published by John Wiley & Sons Ltd on
behalf of System Dynamics Society.

DOI: 10.1002/sdr



Biomass learning model

This paper focuses on the biomass learning model, a part of the BSM that is
extracted from the larger model. The Learning Model provides a simpler
context for exploration. Instead of the full set of actual pathways, the Learn-
ing Model includes only three competing biofuel conversion pathways—
generically characterized and named A, B, and C—as they develop through
three stages (pilot, demonstration, and commercial). The biomass learning
model simulates the interplay among technological improvement, invest-
ment, and commercial production in an emerging industry. Vimmerstedt
et al. (2015) document the biomass learning model, which is available at
https://github.com/NREL/bsm-learning.

The primary dynamic feature in the biomass learning model is based on
the concept of the learning curve. In the energy sector, a single-factor learn-
ing curve is often used, in which the percentage decrease in unit costs is a
function of a single factor, the doubling of industrial experience, usually
expressed as cumulative production (Eq. (1)) (Vimmerstedt et al., 2015):

Y = aXb (1)

where Y is the current unit cost, X is the cumulative production, a is the unit
cost of the initial unit, b is the slope of the function when plotted on a log–
log scale, and PR is the progress ratio:

PR=2−b (2)

The literature on learning curves generally estimates a historical progress
ratio (Eq. (2)), which may be used to extrapolate technological improvement
into the future (Vimmerstedt et al., 2015). The progress ratio represents the
relative cost after each doubling of cumulative production; a lower progress
ratio results in faster learning. The sensitivity analysis detailed in this paper
focuses on the influence of progress ratios of the three competing biofuel
conversion pathways on the total industrial output in the biomass learning
model.

A stock–flow diagram that encompasses the major dynamics of the bio-
mass learning model is shown in Figure 1. The top row, with stocks mea-
sured in number of biorefineries, shows Initiating biorefineries flowing into
biorefineries In Development, Going Online, Online, and Retiring. The Indus-
try Facility Investment Logic (detail not shown) is based on relative net pre-
sent value of a given technology and determines what biorefineries are
initiated. The stock of online biorefineries determines what Production
Capacity (units of annual volume of biofuel production potential) is available
for Industry Capacity Utilization (units of percent) for biofuels production.
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The flow in the middle shows process yield (in units of volume of biofuel
per weight of feedstock) contemporaneous with the biorefinery stock,
accounting for process yield improvement with technological change over
time. Process Yield Development and Process Yield Online stocks parallel
biorefinery stocks align the accounting. This enables the appropriate process
yield for Average Plant Production (units of annual volume of biofuel
possible per plant) at any given time to be calculated for use in the Output
Capacity calculation.
The flow at the bottom tracks the stock of Cumulative Experience, mea-

sured for the commercial scale in units of volume of biofuel production over
all time. This is based on Production Capacity and Industry Capacity Utiliza-
tion Logic (detail not shown), which includes price–demand feedback.
Cumulative industrial experience determines Maturity, which determines
the Production, Investment, and Utilization Attributes. The Production,
Investment, and Utilization Attributes include capital cost, risk premium,
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Fig. 1. Partial stock and flow diagram of the biomass learning model, showing biorefinery facility chain and coincident flow
of process yield and key feedbacks to investment, production, and utilization
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access to debt financing, feedstock throughput, process yield, and feedstock
throughput capacity. These feed back to the Industry Facility Investment
Logic, Process Yield Stock, Average Plant Production, and Industry Capacity
Utilization Logic to complete the reinforcing loop based on the learning
curve concept.

A key dynamic in the biomass learning model is the market competition
among different technology pathways. A causal loop diagram (Figure 2) sum-
marizes the reinforcing feedback shown in Figure 1, for the competition
between two biorefinery technologies. This reinforcing feedback tends to
lead toward market dominance of a single technology pathway in the model
results, exhibiting path dependence in the system. A technology may out-
compete others—due to superior mature techno-economics, higher learning
rates, greater initial maturity, or all of these—entering a reinforcing feedback
that culminates in market dominance. A technology that attracts more initial
investment in biorefineries will then have more fuel production, with associ-
ated learning advances. This increase in maturity, and the associated
improvements in cost and performance, raises the attractiveness of future
investment, for which pathways are assumed to compete. Accordingly, the
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Fig. 2. Causal loop
diagram summarizing the
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of the reinforcing learning
feedback loop in the
biomass learning model.
Source: Vimmerstedt
et al. (2015)
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reinforcing feedback can lead to complete or partial market dominance: all
pathways tend not to succeed equally apart from carefully tuned scenarios.
Baseline model behavior captures competition between three different

technology pathways. In the baseline conditions, the technologies are set up
as shown in Table 1. The situation in the baseline conditions is such that
one technology (Technology C) is close to commercialization, but expensive
and with poor process yields. Technology A, on the other hand, is very early
in development but has extremely favorable nth (mature) plant capital cost
and yield characteristics. Technology B is well into pre-commercial develop-
ment, with favorable nth plant capital costs and process yields that are lower
than Technology A, but better than Technology C. Without incentives, none
of the technologies represented are able to generate a positive net present
value (NPV) under baseline conditions. Incentives, in the form of capital cost
subsidies, loan guarantees, and point of production product subsidies, are
available to each technology pathway. “Startup” subsidies are set to expire
after the first billion gallons of cumulative output for the industry, and
“background” subsidies for loan guarantees and capital cost subsidies expire
in the year 2022.
Baseline model results are shown in Figure 3. These results show a phased

build-out of the different technologies, with Technology A eventually
exerting market dominance. Spikes in NPV reflect expiration of startup and
background incentives.
The sensitivity analysis in this study assesses the influence of progress

ratios values, which contribute to technology maturity, of the three compet-
ing pathways in the biomass learning model. The resulting sensitivity analy-
sis will aid in understating how progress ratios, in the context of the
learning mechanism in the model, affect the relative competitiveness of tech-
nology pathways.

Table 1. Baseline
conditions for three
technology pathways Attribute

Technology

A B C

Initial pilot-scale maturity (0–1 scale) 0.1 0.5 0.85
Pilot-scale operations planned Yes Yes No
Initial demo-scale maturity (0–1 scale) 0 0.5 0.75
Demo-scale operations planned Yes Yes No
nth plant process yield (gal/short ton) 100 90 66
nth plant capital cost (million USD) 30 30 40
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Methods

The application of Sobol’s method to the biomass learning model involved
selecting and defining the model factors of interest, output metrics, sampling
method, sensitivity indices, uncertainty estimation method, and output func-
tion. This section describes the factors of interest in the Learning Model,
explains Sobol sensitivity indices, and details the methods used to apply
Sobol’s method to the biomass learning model.

Biomass learning model factors

Sensitivity analysis enables systematic exploration of the relative importance
of various factors in controlling the dynamics of the reinforcing learning
feedback loop in the biomass learning model. The term “factors” is used to
describe the inputs that were varied in the sensitivity analysis. The biomass
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learning model analysis evaluates nine factors, each a combination of the
progress ratio for a technology pathway (A, B, and C) and an industrial stage
(pilot, demonstration, and commercial). For example, the progress ratio for
pathway A in the demonstration phase is one factor in the analysis, named
Demo.A. The progress ratios (Argote, 1999) represent the expectation that
costs will decrease as the industry grows and matures and are expressed as a
percentage decrease in cost. Values in the range of 0.65–0.90 are used based
on historical analogs to the development of the cellulosic biofuels industry
(McCurdy et al., 2009).
The biomass learning model produces several output measures that could

be used as output metrics for sensitivity analysis, such as estimated costs to
the government budget of the available incentives, technological maturity
level, and biofuel production. The model output used in this analysis is the
total biofuel production (in gallons per year) from all three pathways, as it
represents the production of the biofuels system as a whole. Production out-
put for the year 2030 is used. This metric could be useful in assessing the
potential for meeting volumetric biofuel policy goals, such as the Renewable
Fuel Standard (U.S. Congress, 2005).

Sobol’s method

The goal of sensitivity analyses is to quantify the relative importance of
input factors in determining a model’s output (Saltelli, 2002). In particular,
variance-based methods aim to quantify how variance in model inputs can
explain variance in model outputs.
Variance-based methods result in calculated sensitivity indices, including

first-order, second-order, and total effects indices. In this analysis, we use
“order” in the mathematical sense to indicate the number of variables, and
not to refer to the order of a delay. The first-order index represents the con-
tribution of a single input factor to the variance in the model output (Saltelli
et al., 2008). The second-order index explains the interaction effect of two
factors on the model output that cannot be expressed as the sum of their
first-order effects. For example, under a certain combination of input values
a model may exhibit unique behavior that cannot be explained solely by
first-order effects (Saltelli et al., 2008). A model is said to be “non-additive”
in the presence of interaction effects, meaning the sum of all first-order
effects does not fully capture the variance in model output. Lastly, the total
effects index quantifies the total contribution of an input factor to output
variance, including the first- and all higher-order effects. Sensitivity indices
are represented as a number between 0 and 1.
For this analysis, we implement Sobol’s method (Sobol, 1990) to calculate

the first-order, second-order, and total effects indices for the progress ratio
inputs in the biomass learning model. This paper refers to the key equations
used in Sobol’s method; readers may refer to Saltelli et al. (2008, 2010) for a
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more comprehensive derivation of the resulting equations. Eq. (3) shows the
calculation for the first-order sensitivity index for a factor i, where V(Y)
represents the unconditional variance of the model output, and Vi represents
the conditional variance due to factor i. The conditional variance is
expressed as V [E(Y |Xi)], where E(Y |Xi) is the expected value of the output
Y keeping Xi fixed, averaged over all possible values of non-Xi factors. The
variance of E(Y |Xi) is then calculated across all values of Xi (Saltelli et al.,
2008). The sensitivity index Si, then, represents the fractional contribution
of the conditional variance due to factor i to the unconditional variance of
the model. Similarly, Eq. (4) shows the calculation for the second-order
sensitivity index for the interaction of factors i and j:

Si =
Vi

V Yð Þ (3)

Sij =
Vij

V Yð Þ (4)

The sum of all partial variances equals the unconditional variance
(Eq. (5)), leading to the relationship of sensitivity indices shown in Eq. (6),
which states that all first- and higher-order indices should sum to one. For a
purely additive model (i.e. one with no interactions), all higher-order indices
equal zero and the sum of only the first-order indices equals one:

X
i

Vi +
X
i

X
j > i

Vij +…V12…k =V Yð Þ (5)

X
i

Si +
X
i

X
j > i

Sij +…S12…k =1 (6)

In addition to the first- and second-order indices, Sobol’s method also esti-
mates the total effects index. The total effects index is implicit in Sobol’s
method, but was formally introduced in Homma and Saltelli (1996). The
total effects index, STi, represents the total contribution to model variance of
a factor, including the first-order effect and higher-order interactions. Eq. (7)
gives an example of the summation of terms for the total effects index of fac-
tor X1 for a three-factor model (Saltelli et al., 2008). For a model with
k factors, 2k − 1 terms would have be calculated to compute STi by adding all
first- and higher-order terms. The Sobol method provides an alternative
calculation for the total effects index at the same computational cost as first-
order indices. Eq. (8) shows the formulation of the total effects index, where
E(Y |X�i) is the expected value of Y fixing all factors except Xi, averaged
over all values of Xi:

STi =S1 +S12 +S13 +S123 (7)
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STi =1−
V E Y jX�ið Þ½ �

V Yð Þ (8)

The total effects index reveals non-additivity in a model when the index
value is greater than the first-order sensitivity index for a given factor, signal-
ing the existence of non-zero higher-order indices. The total effects index
can also be used to determine an influential, or non-influential, factor. A
total effects index of zero means that a factor can take on any value without
significantly affecting the model output.

Sampling method

To compute the estimates of the sensitivity indices, two independent sample
matrices of model input values are required (Saltelli, 2002) that cover the
input parameter space. The matrices, referred to as A and B, are each of size
N × k, where N is the base sample size and k is the number of factors. Input
factors are assumed to be independent of one another and, as recommended
by Saltelli et al. (2008), quasi-random sequences are used to generate the
input values for the sample matrices (we do not assume probability distribu-
tions for the input values). Quasi-random sequences have fewer clusters and
gaps in sample values compared to purely random sequences, which results
in a better spread of input values. R Statistical Programming Language was
used to design the sampling process (see Supporting Information). Each row
in the matrices represents the factor values for a single model run. For this
study, the factor values represent the progress ratios for the three technology
pathways in each stage of industrial development. Figure 4 shows example
matrices for an analysis with three factors and a sample size of four.
Using matrices A and B, k additional matrices are formed by taking every

column from A except the ith column, which has been substituted from B.

We refer to this matrix as A ið Þ
B . Similarly, an additional set of k matrices,

referred to as B ið Þ
A , is formed by taking every column of B except the ith,

which has been substituted from A. These matrices are used to produce
model output values where all factor values have changed, except those of
the ith factor, allowing the computation of variance attributed to single

factors. Example sets of A ið Þ
B and B ið Þ

A matrices are represented in Figure 5.

Fig. 4. Independent
matrices, A and B, where
a and b represent values
from quasi-random
sequences
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The method calls for N(2k+2) model runs to compute the full set of first-
order, second-order, and total effects sensitivity indices.

The resulting 2k+2 vectors of model outputs corresponding to the input
values in each matrix row are used to compute the sensitivity indices
described in the next section. For the subsequent sections, let f(A)j be the jth
value in the output vector of size N, corresponding to the model inputs from
matrix A, with similar notation for the remaining matrices. Readers may
refer to the R code provided in the Supporting Information to review how
the sampling matrices were implemented in this analysis.

Fig. 5. The set of A ið Þ
B

matrices (left), and the set

of B ið Þ
A matrices (right)

Table 2. Sensitivity
estimate calculations
analyzed from various
sources

Method 1
Sobol (1990), Homma and Saltelli

(1996)

Method 2
Homma and Saltelli

(1996)

Method 3
Saltelli et al.

(2010)

f 20 1
N

PN
j =1f Að Þj

� �2 1
N

PN
j =1f Að Þj f Bð Þj (Same as Method 2)

Si 1
N

PN

j =1
f Að Þj f B ið Þ

Að Þj − f 20
V Yð Þ

1
N

PN

j =1
f Að Þj f B ið Þ

Að Þj − f 20
V Yð Þ

1
N

PN

j =1
f Bð Þj f A ið Þ

Bð Þj −f Að Þj
� �
V Yð Þ

STi
1−

1
N −1

PN

j = 1
f Bð Þj f B ið Þ

Að Þj − f 20
V Yð Þ

(Same as Method 1) 1
2N

PN

j =1
f Að Þj − f A ið Þ

Bð Þj
� �2

V Yð Þ
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Sensitivity index estimates

Various methods have been proposed to calculate the first-order and total
effects sensitivity indices described above, which aim to improve upon the
formulations presented in Sobol (1990) (Saltelli (2002), and Saltelli et al.
(2008, 2010)). We analyzed three different methods based on recent literature
to understand the advantages and restrictions of each; the three methods
exhibit a progression in method improvement and are summarized in Table 2.
The initial sensitivity index computations explored in this analysis,

referred to as Method 1, were proposed in Saltelli et al. (2008); the calcula-
tions are based on the original formulations presented in Sobol (1990), with
the addition of the total effects calculation introduced in Homma and Saltelli
(1996). The second method analyzed, Method 2, incorporates improvements
proposed by Homma and Saltelli (1996). The new calculation for f 20 in
Method 2 aims to increase the accuracy of the first-order estimates by using
output from both the A and B matrices. Finally, Method 3 represents the cal-
culations suggested in Saltelli et al. (2010), which includes an adjustment to
the calculation for Vi from previous improvements based on Saltelli (2002),
Sobol et al. (2007), and Jansen (1999).
To assess methods, we analyzed differences in estimate accuracy and esti-

mate values for Si and STi. Figure 6 shows the comparison of Methods 1 and
2, which confirms the increased accuracy of first-order estimates in Method
2. As seen in the upper left chart, the 95 percent bootstrap confidence inter-
val (BCI) (see “Uncertainty of sensitivity estimates”) for Si is lower for
Method 2 than for Method 1, with no significant effect on the values of the
estimates (shown in the upper right chart). The accuracy and estimate values
for the total effects indices are consistent across these methods, as they
employ the same equation to calculate total effects.
The comparison of accuracy and estimated values for Methods 2 and 3 is

shown in Figure 7. These results indicate the improvement in total effects
estimate accuracy obtained from Method 3, with no appreciable effect on the
estimate values. The analysis of methods resulted in the final equations used
in this study to calculate sensitivity index estimates, which are from Method
3 and summarized in Table 3.
Sobol suggests that the accuracy of the estimates described above can

decrease with large values of f0 (Sobol, 1990). Because the output analyzed
in the biomass learning model is of the order of billions of gallons, numerical
errors may lead to inaccurate estimate calculations. To improve the numeric
round-off accuracy, Sobol proposes to center the model output using an
approximate estimate of the mean, c0, and substitute f(x) with f(x) − c0
(Sobol, 1990). We confirmed that this approach improved estimate accuracy
and centered all output in this analysis; the Appendix includes a compari-
son of centered and non-centered output for Method 1.
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As previously described, Sobol’s method can also be implemented for the
estimation of higher-order sensitivity indices. The sampling method used in
this research allows for the estimation of second-order indices (Saltelli,
2002); Eq. (9) shows the estimate calculation used in this analysis:

Sij =

1
N

PN
w =1

f A ið Þ
B

� �
w
f B jð Þ

A

� �
w
−Vi−Vj

V Yð Þ (9)

The summation term in Eq. (9) represents Vc
ij , which is the closed partial

variance for factors i and j. The closed index includes the first-order effects
of the two factors and the interaction term: for example, Vc

12 =V1 +V2 +V12.
In order to obtain the interaction effect estimate, the first-order effects are
subtracted from the closed index (Saltelli, 2002).

Uncertainty of sensitivity indices

A major goal of this research is to understand the uncertainty of the sensitiv-
ity index estimates. In this section we compare two methods: bootstrapping
and a numeric calculation presented in Saltelli et al. (2008).

The calculation included in Saltelli et al. (2008), shown in Eq. (10),
computes the error of Vi and was modified for this analysis for the estimate
calculations used in Table 3. The modified equations are included in the
Appendix:
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Bootstrap resampling was also used to calculate the confidence intervals
for the first-order, second-order, and total effects sensitivity indices (Efron
and Tibshirani, 1998). We resampled the N(2k+2) model evaluations 1000

Table 3. Estimate
calculations used for
biomass learning model
sensitivity analysis

Estimate Estimate equation

f 20 1
N

PN
j =1f Að Þj f Bð Þj

V (Y) PN
j =1f Að Þ2j − f 20

Si 1
N

PN

j = 1
f Bð Þj f A ið Þ

Bð Þj − f Að Þj
� �
V Yð Þ

STi 1
2N

PN

j = 1
f Að Þj −f A ið Þ

Bð Þj
� �2

V Yð Þ
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times with replacement, calculating the sensitivity indices with each
resample. The 1000 resamples yield a bootstrap estimate of the sampling
distribution for each sensitivity index. We then used the percentile method
(Archer et al., 1997; Efron and Tibshirani, 1998) to establish the 95 percent
BCI from the 2.5 to the 97.5 percentiles of the bootstrap distribution. The
bootstrap is a resampling method that relies on random sampling with
replacement. Resampling means selecting new samples that are subsets of
results. “With replacement” means that each sample draws from the same
set of results, rather than having results that are part of one sample become
unavailable to subsequent samples. Bootstrapping may be applied to pro-
duce estimates of statistical properties of interest such as the mean and var-
iance by sampling from an approximate distribution, such as the empirical
distribution function of the observed data (Efron and Tibshirani, 1998).
Because the distribution is taken from the observed data, hypothesis tests
that are based on bootstrapped estimators are nonparametric, meaning that
we are not making assumptions about the statistical distribution of the
observations.
We compared the uncertainty estimates obtained from our results for both

methods. For the first-order index, the BCI and numeric calculation produce
congruent uncertainty estimates. In contrast, the numeric calculation yields
higher uncertainty for the total effects index, especially when the factors
have high index estimates. Even with the inconsistency in the total effects
uncertainty, these results give us confidence that the numeric calculation
approach can be used as a guide for sample size selection in order to obtain
a desired accuracy, instead of using bootstrap resampling.

Results

We calculated the sensitivity index estimates for the biomass learning
model, using the calculations described under “Sensitivity index estimates”,

Table 4. First-order
sensitivity indices and
95% BCIs

Factor i Si estimate Bootstrap average 95% BCI

Demo.A 0.305 0.305 0.265 0.344
Commercial.B 0.179 0.179 0.145 0.213
Commercial.A 0.075 0.075 0.047 0.101
Demo.B 0.054 0.054 0.035 0.075
Pilot.A 0.036 0.035 0.015 0.055
Commercial.C 0.013 0.014 −0.009 0.035
Pilot.B 0.005 0.005 −0.005 0.016
Pilot.C 0.000 0.000 −0.001 0.001
Demo.C 0.000 0.000 0.000 0.000
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above. The analysis consisted of a sample size of N = 2000, requiring 40,000
runs (or N(2k+2)).

Estimates

The calculated first-order and total effects indices for the biomass learning
model factors are displayed in Tables 4 and 5, respectively. Referring to the
results in those tables, Demonstration A (Demo.A) is shown to be the most
influential factor in the model. From the interpretation of Si given in
“Sobol’s method”, we could reduce the model output variation by a factor of
0.305, on average, by fixing the input values for the Demo.A factor. In con-
trast, the variable Demonstration C (Demo.C) is the least influential. This
result is validated from the biomass learning model, which does not include
any plants at the demonstration scale for technology pathway C; this factor
is not influential under our model conditions. The results in Table 5 show
that Pilot C is also non-influential, with a lower BCI bound for STi equal to
zero. As previously mentioned, the total effects index can be used to identify
a non-influential variable since the estimate also includes interaction effects,
which are not apparent when looking only at Si.

We can also gain insight into the impact of the various industrial stages by
examining the total effect index estimates. Besides the factor Demo.A, the
three factors with the highest STi estimates are the commercial progress
ratios. For the biomass learning model, the learning rates of the commercial
stage have greater influence on total biofuel production than pilot and dem-
onstration stage learning rates.

Table 5. Total effects
indices and 95% BCIs Factor i STi estimate Bootstrap average 95% BCI

Demo.A 0.523 0.523 0.478 0.571
Commercial.B 0.346 0.346 0.312 0.381
Commercial.A 0.200 0.201 0.178 0.226
Commercial.C 0.140 0.140 0.126 0.155
Pilot.A 0.117 0.118 0.103 0.134
Demo.B 0.113 0.114 0.101 0.129
Pilot.B 0.026 0.026 0.022 0.030
Pilot.C 0.000 0.000 0.000 0.000
Demo.C 0.000 0.000 0.000 0.000

Table 6. Second-order
indices and 95% BCIs Parameter i–j Sij estimate Bootstrap average 95% BCI

D.A–C.A 0.075 0.076 0.035 0.119
C.B–C.C 0.048 0.048 0.017 0.083
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Table 6 lists the significant interaction effects of factor pairs from the anal-
ysis, Demonstration A–Commercial A (D.A–C.A) and Commercial B–
Commercial C (C.B–C.C). The most influential effect, D.A–C.A, can be attrib-
uted to the tendency for technology A to dominate the market. The
interaction term indicates that if both Demonstration and Commercial pro-
gress ratios for pathway A are low (i.e. fast learning rates), the technology
will yield higher production outputs than would be explained by the
increase in output from the two factors independently. The other significant
second-order effect, C.B–C.C, highlights the competition in the market. If
both Commercial B and Commercial C experience fast learning, this acts as a
balance for pathway A, which will then be less likely to yield high output.
Note that in Table 4 Commercial C does not have a significant first-order
effect, while the total effects estimate is significant; only in combination with
Commercial B, or other factors, will the variance of Commercial C signifi-
cantly affect model output. This C.B–C.C interaction effect further illustrates
the greater influence of the commercial scale over pilot and demonstration.
The presence of significant interaction effects, in combination with further

observation of the estimates in Tables 4 and 5, clearly reveals that our model
is non-additive, as was to be expected. The sum of Si and STi should both
equal one in an additive model, which is not true of our calculated esti-
mates. The addition of the second-order interaction terms accounts for
further model variance, but the results suggest the model has possible
higher-order interactions. As referenced in Eq. (6), the sum of all first-order
effects and higher-order interactions of a model should equal one. For our
model, the sum of all first-order effects is 0.667.

Conclusion

This study illustrates the application of a statistically rigorous sensitivity
analysis to a system dynamics model. Although this study focused on an
extract of the much larger BSM, the approach presented is applicable to the
sensitivity analysis of much larger models. The upper limit of model factors
to analyze is dependent on computing resources available. Using Sobol’s
method, we are able to characterize the behavior of the biomass learning
model across the factors’ ranges as well as identify the most influential factors
and interactions among factors. The ability to quantitatively identify interac-
tion effects distinguishes this methodology from those described in the Intro-
duction. This approach is particularly well suited for gaining insights from
system dynamic models such as the biomass learning model, where the
model is non-additive, has a number of potential interactions, and is too com-
plex to readily assess all combinations of factors across their ranges.
Our approach generates N(2k+2) distinct model runs, which requires con-

siderable computational resources. The width of the bootstrapped

P. Jadun et al.: Variance-based Sensitivity Analysis of the Biomass Scenario Learning Model 329

Copyright © 2018 Alliance for Sustainable Energy, LLC. System Dynamics Review published by John Wiley & Sons Ltd on
behalf of System Dynamics Society.

DOI: 10.1002/sdr



confidence intervals for both Si and STi follows an exponential decay func-
tion when plotted against N, for N = 0–4000. The slope of this function
reaches approximately one at N = 2000, which suggests that a sample size of
N = 2000 has adequate statistical power for both the total and the first-order
effects. Application of this method to other models should include similar
analysis of confidence intervals at varying sample sizes, and the maximum
sample size may be constrained by the available computational resources.

A combination of calculation methods from recent literature resulted in
the best accuracy. Saltelli et al.’s (2010) proposed method to estimate total
effects and Saltelli et al.’s (2008) proposed method to estimate first-order
effects produced the most accurate results. Although we anticipate that this
finding is generalizable, analysts applying this method to their own models
may wish to perform bootstrapped uncertainty analysis to confirm method
accuracy.

The analysis presented here identifies the most influential and interactive
progress ratios. These are consistent with the model formulation and previ-
ous analysis using traditional system dynamics approaches, but this analysis
provides quantitative confirmation of those qualitative findings—
confirmation that may be particularly helpful when working with large sys-
tem dynamics models.

We provide annotated R code in the online supplement (Supporting Infor-
mation Appendix S1) and access to the full STELLA file for the biomass
learning model (https://github.com/NREL/bsm-learning) to facilitate applica-
tion of the method to other models. This method is recommended for an
analysis involving 20 or fewer factors, due to its computational intensity
(Saltelli and Saisana, 2007). A total effects analysis may be possible within
this limit for small models, but for larger numbers of factors an elementary
effects analysis may be used to screen out factors before performing a total
effects analysis (Morris, 1991; Alam et al., 2004).

By applying variance-based sensitivity analysis techniques to a moderate-
sized published STELLA model, we establish methods that are applied to
the full BSM in related work (Inman et al., 2018) and illustrate that the
method provides insights that would be more difficult to obtain using tradi-
tional systems analysis techniques.
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Appendix

Estimate uncertainty

Saltelli et al. (2010) presented a numerical calculation for the error of Vi. We
modified the equation for the sensitivity index estimate calculations
described under “Sensitivity index estimates” in the main text. Eqs. (A.1)
and (A.2) show the modified numerical uncertainty equations used for the
first-order and total effects estimates, respectively:
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Centered output

Figure A1 shows a comparison of using the original and centered output for
Method 3 when calculating the first-order and total effects indices. The left
plots in Figure A1 show the length of the 95 percent BCI and represent the
method accuracy. The centered output clearly produces more accurate esti-
mates, but the actual index estimates are similar, as seen in the right-hand
figures. The same trends can be seen for the first-order and total effects indi-
ces. The results for Methods 1 and 2 exhibit similar behavior. These results
indicate that centering the output increases the accuracy of the estimates,
but does not significantly change the estimated values.
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Fig. A1. Comparison of original and centered model output for Method 3; original output is on the x-axis, centered is on the
y-axis: (a) 95 percent BCI width for Si; (b) Si estimates; (c) 95 percent BCI width for STi ; (d) STi estimates. [Color figure can be
viewed at wileyonlinelibrary.com]
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Supporting information

Additional supporting information may be found online in the Supporting
Information section at the end of the article.

Appendix S1 Model documentation and annotated R code.
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