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2. EXECUTIVE SUMMARY 

This report presents the project results for the NREL INTEGRATE demonstration project: Active Network 
Management (ANM) Integration. Consistent with the INTEGRATE program’s objective of increasing the 
grid’s clean energy hosting capacity and providing grid services in a holistic manner, the project 
demonstrated the use of ANM to enable very high penetrations of solar PV and wind energy systems. 
Results obtained using a representative North American distribution system showed ANM’s autonomous 
distributed control doubled the interconnected wind and solar systems by managing thermal and voltage 
constraints in real-time. These generators flexibly interconnected to the grid via ANM’s end-to-end control 
architecture, and were managed and coordinated with other smart distributed energy resources (DER; e.g. 
EVs, battery ESS, controllable load) to unlock the grid’s dynamic hosting capacity. As a smart grid 
application to standardize grid integration of diverse renewable generation sources, ANM provides the 
industry with a scalable, cost-effective alternative to traditional transmission and distribution (T&D) 
reinforcements. 

This project considered three use cases of the application of ANM: a Smart Home demonstration of ANM 
control of residential scale devices (PV, EV, and battery ESS); a Smart Campus demonstration of high 
penetration megawatt-scale DER (PV, EVs, battery ESS, and controllable load) behind a single point-of-
common-coupling (PCC), and a Smart Distribution demonstration that combined prior use cases along with 
additional community/utility-scale DER at very high aggregate penetration levels. The Smart Distribution 
use case provided an integrated perspective of ANM across all distribution grid DER device scales 
(incorporating aggregated Smart Homes and the Smart Campus) in order to showcase how these devices 
can support smart grid services to manage DER related constraints in a safe and reliable manner; and 
likewise how ANM integrates with grid modernization initiatives. 

The ANM system was deployed in NREL’s Energy Systems Integration Facility (ESIF), and project industry 
advisors attended an on-site demonstration and a set of workshops in order to review project outcomes 
and evaluate the relevance of ANM for increasing the grid hosting capacity. The outcomes of this effort 
include an assessment of opportunities for field deployment of ANM to address existing interconnection 
challenges, as well as consolidating project advisor suggestions for investment in ANM and potential future 
pilots for more advanced schemes. Some key outcomes include: 

 A need to move from passively managed distribution grids to actively managed distribution 
grids: smart grid investments should enable DER grid services that support rising penetrations of 
solar, wind, and other DER. Yet, single large Distributed Generation (DG) projects (e.g. greater 
than 500 kVA) can have prohibitively high interconnection costs under the passive approach to 
grid integration. 

 The ANM enabled dynamic grid hosting capacity allows for much higher penetrations of solar 
and wind energy: grid edge ANM controls can support variable renewable generation 
interconnection allowing for DG capacity of more than 50% of peak load through flexible 
interconnection agreements.  

 ANM’s real-time grid edge controls enable cost-effective investments by “unlocking” grid 
capacity/assets: under this scenario hosting capacity is set by the market, whereby DER 
developers choose either firm interconnection via traditional T&D reinforcements, or flexible 
interconnection via grid edge autonomous control, whichever presents itself as more economic. 
This ultimately translates to lower cost of energy for the rate payer. 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 9 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

 ANM’s autonomous, deterministic control ensures safety and reliability:  ANM manages DER 
through an end-to-end, mission critical control systems philosophy that is time-bounded, 
predictable and repeatable. As demonstrated through the INTEGRATE use cases, ANM can 
respond to a variety of diverse operating scenarios without the need for forecasting and energy 
storage. Although not required for initial ANM flexible interconnection schemes, given the way 
ANM has been architected, it can incorporate forecasting, energy storage, and demand response, 
contributing to an overall improved business for very high penetration scenarios. 

 Flexible interconnection is relevant today: DER interconnection limits can be breached by 
individual projects, particularly for larger projects. Flexible interconnection curtailment solutions 
are already proven to provide economic solutions for developers by significantly increasing 
hosting capacity. Curtailment risk for a few ten to a hundred hours of the year can be much more 
economic for some developers compared to traditional T&D upgrades for a firm interconnection. 
ANM can be deployed on circuits lacking historical data and without the need for an accurate, 
area-wide distribution models because it is a data-driven application. 

 ANM platforms support grid modernization today: ANM deployments align with grid 
modernization efforts to improving observability and controllability efforts by actively managing 
distribution resources. Moreover, such approaches augment the ongoing work on LMP+D+E and 
transactive grid initiatives, and support efforts for alternative utility revenue for utilities of the 
future. 

Taking these outcomes together, Smarter Grid Solutions’ ANM Integration project successfully 
demonstrated that DER can be integrated to the grid in a safe, reliable, and cost effective manner to 
increase grid hosting capacity well beyond 50% of peak load. 

This report further details the ANM system components, the use cases and testing scenarios, and the 
outcomes and industry relevance assessments. The report concludes with key project takeaways and a 
discussion of the opportunities for field deployments of ANM-enabled flexible DER interconnection in the 
US market. 
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3. INTRODUCTION 

Smarter Grid Solutions’ NREL INTEGRATE project – ANM Integration – provided the opportunity to test 
Active Network Management (ANM) technology approaches for increasing grid hosting capacity for North 
American grid scenarios. ANM arose out of the United Kingdom (UK) in the mid 2000’s to address 
distributed and grid edge control needs for moving from passive to active grid operations. ANM enables 
greater value from existing grid assets by combining the need for cost effective DER grid integration with 
second-to-second time-bounded control for grid constraint scenarios in a safe and reliable manner that is 
extendable and scalable for future DER. Figure 2 below conceptually presents some ANM grid-edge control 
scenarios, such as bi-directional power flow management, active voltage control, demand response, circuit 
reconfigurations, and other real-time grid operations as described by Ofgem – the electricity regulator for 
Great Britain. ANM arose as a product category to fill second-to-second control needs in a distributed 
fashion1 as compared to protection (local & <1s control) and SCADA (centralized & minute+ control) – as 
seen in Figure 2. ANM schemes in the UK have been proven commercially – today managing over 270 MW 
of flexible interconnected generation that otherwise had been cost prohibitive under traditional firm 
interconnection schemes. In the course of this INTEGRATE project, the joint utilities in the UK published 
an ANM best practices guide2 to reflect how ANM schemes and procurement processes have initiated an 
initial technology standardization phase in their development. The NREL INTEGRATE program is the first 
US demonstration of these ANM technologies.  

 

 

Figure 1: Conceptual Representation of Active Network Management (ANM) 

                                                           
1 Note that the most similar product term to ANM in the U.S. is Distributed Energy Resource Management Systems 
(DERMS). It is beyond the scope of this report to detail the functional characteristics of ANM vs DERMS, especially 
given how DERMS functionality has not been standardized similar to how ANM schemes and procurement processes 
in the UK have begun to standardize. See for instance footnote 2 for a UK ANM best practices guide. At the same 
time, Advanced Distribution Management Systems (ADMS) have begun to standardize in the US, and ADMS 
characteristics represent distinct functionality differences compared to ANM – see Section 8.8 for a brief comparison.      

2 http://www.energynetworks.org/assets/files/news/publications/1500205_ENA_ANM_report_AW_online.pdf 

Ofgem 
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Figure 2: Locus of Control of ANM Relative to other Distribution Engineering Control Concepts 

Real-time ANM control enables increased hosting capacity by providing real-time visibility of critical 
constraint locations and can adjust DER output in a predictable, repeatable, and time-bounded fashion in 
response to the real-time dynamic grid hosting capacity. These characteristics then permit operation of 
the grid beyond the “fit and forget” approach of static system planning and DER integration - giving utilities 
a control system that meets DER customer requirements for faster and cheaper interconnection compared 
to traditional grid reinforcements. In so doing, an ANM-enabled distribution feeder transitions from 
passive to active control and increased grid hosting capacity – resulting for instance in doubling 
interconnected solar and wind for the Smart Distribution use case. 

ANM is at the heart of this control concept, and has been deployed in numerous projects in the UK that 
have proven the benefits of this way of thinking, with deployments now taking place in New York and 
California. The architecture of the ANM platform consists of a part-centralized application layer, integrated 
with grid edge controllers at each DER through a communication gateway. This ANM architecture allows 
the smart DER devices to behave as a coordinated and managed resource that is scalable and extendable 
into a larger smart distribution control system. 

3.1. Project Background 

The objective of Smarter Grid Solutions’ NREL INTEGRATE project is to demonstrate an integrated energy 
system incorporating Active Network Management (ANM) technology to deliver increased hosting 
capacity for Distributed Energy Resource (DER) interconnection. The demonstration leverages the power 
hardware in the loop grid simulation capabilities available at the National Renewable Energy Laboratory 
(NREL) using the REDB test network and the real-time grid simulator. 

This document is the final report for the project. It describes the overall project outcomes and suggested 
next steps, as well as summarizing the three ANM Integration use cases. All testing and simulation took 
place at the NREL Energy Systems Integration Facility (ESIF), with the ANM system incorporated into a 
power hardware in the loop (PHIL) scheme with real-time grid simulation. The on-site demonstration 
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included workshops to engage the project industry advisory board members for assessing the technology 
and evaluating near-term deployment opportunities. 

The ANM Integration project included three phases corresponding to the three use cases:  

 The Smart Home use case was designed to demonstrate how ANM’s automation and control can 
be used to enable smart domestic energy devices for real-time grid services. The results of this use 
case were incorporated into the Smart Distribution use case by combining Smart Homes into an 
aggregator services deployment model. The aggregator model reflects short-term ANM 
deployment opportunities to further unlock distribution grid assets without requiring storage or 
other expensive behind the meter resources, while also recognizing that direct ANM integration 
with domestic devices requires further ANM component cost reductions. 

 The Smart Campus use case was designed to test and demonstrate very high penetrations of solar 
PV at a single point of common coupling (PCC). Without ANM this single PCC would have triggered 
cost prohibitive reconductoring. Testing demonstrated that a PV-only scenario controlled by ANM 
is capable of cost effectively integrating the solar PV and managing voltage and thermal 
constraints without the need for storage or other DER devices. Validating this PV-only scenario is 
critical to ensure grid operations remain safe and reliable through ANM control schemes, but 
likewise essential to reflect curtailment risks to DER using ANM enabled flexible interconnection. 
A second test included aggregated EV charging, a battery ESS, and controllable load alongside the 
solar PV in order to demonstrate the real-time coordination and optimization of these resources 
to minimize/negate PV curtailment during the grid constraint periods. The results of this use case 
were incorporated in the Smart Distribution use case to showcase how these DERs can provide 
grid services, and demonstrate how they can be included in future ANM schemes with even higher 
solar and wind deployments. 

 The Smart Distribution use case was designed to demonstrate how ANM’s real-time and 
autonomous distributed control can be used to manage multiple DERs and multiple constraints 
associated with very high DER penetrations on a distribution grid. As a result of constraint 
mitigation, it was shown that dynamic DER control can allow for higher penetrations of PV, wind 
and other smart DER devices than would otherwise be permitted using traditional static grid 
planning and operations processes. For the purposes of the overall project objective of 
demonstrating increased grid hosting capacity for clean energy, the Smart Distribution use case 
was designed to demonstrate how ANM’s real-time monitoring, automation and control can be 
used to manage multiple DER and multiple constraints associated with high penetrations of DER 
on a distribution grid. As a result of constraint mitigation, it is shown that dynamic DER control can 
allow for higher penetrations of PV, wind and other smart DER devices than would otherwise be 
permitted using traditional static grid planning and operations processes. 

3.2. Industry Context 

When interconnecting DERs on a distribution grid, it is the utility’s responsibility to ensure that the grid 
operates in a safe and reliable way, maintaining power flows and voltages within equipment ratings and 
in compliance with regulations. Connection of DER to the grid may result in power flow or voltage limits 
being breached – a situation that happens today when a DER developer seeks to interconnect large DG 
(e.g. 0.5MW+) too far from a substation or to long/rural feeders. Commonly, when DER interconnection is 
planned, the distribution utility is entitled to pass on the cost of any necessary infrastructure upgrades to 
the developer. ANM flexible interconnection can be used as an alternative to traditional infrastructure 
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upgrades as it manages power flows and voltages on the grid in real-time to ensure that they are 
maintained within safe operating limits. For constrained grid scenarios, ANM has the advantage of 
providing quicker and cheaper grid connections to DER customers while also increasing grid hosting 
capacity. 

Currently both planning and operation of the grid have an impact on the interconnection process and the 
capacity made available to DERs. In certain states capacity planning screens use conservative 
methodologies based on historical precedents that in many cases are no longer appropriate for many 
inverter and non-inverter connected DERs. Static planning limits are overly conservative for a number of 
reasons, including their failure to take into account the additional capacity that exists because of N-1/N-2 
contingency planning redundancy, the variable nature of renewable generation export, and the variability 
of demand load beyond recorded maximums and minimums. In reality it is the average of real-time 
capacity (i.e. power exported/imported) over a period, which is the useful capacity to DERs. Static planning 
limits based on infrequent and worst case engineering scenarios poorly utilize existing utility assets and 
do not meet the requirements of DER developers under high penetration scenarios.  

For a DER developer who is primarily concerned with total project economics, a lower cost ANM-enabled 
flexible interconnection that results in generation curtailment risk may be more attractive than a firm 
interconnection with high associated grid upgrade costs. At the time of an interconnection request, 
allowing the DER developer to choose the most economical of firm versus flexible interconnection shifts 
grid hosting capacity from utility defined static limits for passive grid operations to market defined active 
grid operations. Under the flexible interconnection arrangement, ANM offers the functionality and 
characteristics required to manage constrained grid DER interconnections without impacting demand 
consumers or utility reliability targets. 

3.3. Conceptualizing Grid Hosting Capacity 

Distribution utilities assess a generation project’s interconnection application by applying a series of 
defined screens based upon the proposed capacity. These screens are derived from various sources, some 
of which include the Federal Energy Regulatory Commission’s (FERC) Small Generator Interconnection 
Procedures (SGIP), or a state’s particular Standardized Interconnection Requirements (SIR). If a given 
screen’s permissible capacity threshold is breached, traditional reinforcement measures are triggered in 
order to raise this capacity threshold. Typical screens include maximum generation and minimum load, 
equipment thermal ratings, fault current and protection equipment ratings, step voltage changes, and so 
forth.   

The cost of these reinforcements can vary widely from a few thousand dollars for simple reconductoring 
to millions for entire substation rebuilds. The traditional hosting capacity of a given circuit can be viewed 
as the maximum capacity permissible through a given set of static snapshot utility interconnection screens 
before reinforcement costs render the generation project uneconomical. This cost barrier is relative to the 
size of the generation project, making the hosting capacity a function of interconnection capacity. It should 
also be noted that this assumes the generation is connecting to what can be interpreted as a single point 
on the circuit. Connecting multiple generators distributed across a circuit could also affect the hosting 
capacity. 

In terms of grid modernization for increasing grid hosting capacity, it is important to clarify capacity 
increase in terms of ‘static’ versus ‘dynamic’ hosting capacity. Grid modernization investments via 
traditional T&D reinforcement follow a static or passive approach by resolving grid constraints via grid 
equipment upgrades (cables, transformers, etc.) that do not require changes to grid operations. This can 
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be compared to smart grid investments which use software and changes in behavior to dynamically resolve 
grid constraints via active DER control approaches. In many scenarios the active approach is more cost 
effective compared to the very expensive T&D hardware reinforcements. 

Static hosting capacity is a function of: (1) location, (2) existing feeder equipment sizing/arrangement/etc., 
and is (3) time-varying due to current and future real-time load demand. For defining hosting capacity, 
traditionally the industry has used the static capacity approach, for instance:  

“The concept of hosting capacity is used to study how much PV can be placed on a feeder before negative 
effects on normal distribution system operation and power quality occur. Hosting capacity is typically 
expressed as the megawatt value of PV spread across any locations on the feeder that causes the first 
violation of operating constraints.” NREL/Sandia/MIT/SunShot (2016). “On the Path to SunShot: Emerging 
Issues and Challenges in Integrating Solar with the Distribution System”, pg 20. 

“Hosting capacity is defined as the amount of DER that can be accommodated without adversely impacting 
power quality or reliability under existing control configurations and without requiring infrastructure 
upgrades.” EPRI (2016). “Defining a Roadmap for Successful Implementation of a Hosting Capacity Method 
for New York State”, pg 2. 

The essential characteristics of these definitions is that they presume no operational changes to the grid 
and from a DER grid integration perspective the utility does not monitor or control these devices. Hence 
this approach aligns with a ‘static’ snapshot of grid capacity: worst case planning and no operational 
changes given the utility applies a ‘fit & forget’ approach to interconnect DER. 

Based upon a proposed DER’s location on the circuit, generation would be traditionally limited by applying 
the appropriate FERC screens, the most typical of which include: 

 Limiting generation to 15% of peak load to prevent possible islanding conditions; 

 Limiting a generator’s contribution to the circuit’s maximum fault current at the point on the 

high-voltage (primary) level nearest the point of common coupling to less than 10%; 

 Limiting generation to 90% of short circuit interrupting capability of sub breakers, fuse 

cutouts, line reclosers, as well as any other protective equipment; 

 Voltage at any point on the circuit must remain within the requirements of ANSI C84.1 Range 

A (126-114V on a 120 V basis); 

 Limiting generation so that it does not cause utility equipment to exceed 20% of its rating3. 

 Ensuring that voltage flicker does not breach the IEEE guidelines as a result of generation 

interconnection. 

Applying these screens and extracting capacity limits provides the static benchmark to which the increased 
dynamic hosting capacity can be measured. Given that these screens reflect static and infrequent worst 
case scenario conditions, ANM schemes can connect additional large distributed generation to manage 
against dynamic, or real-time, constraints that together reflect a higher grid hosting capacity for clean 
energy. 

                                                           
3 SGS has advised utilities and regulators that this is very conservative, and in one instance the utility changed its 
standards to allow 75% loading (without ANM). ANM enabled circuits have in the UK, and can for US utilities allow 
loading much closer to the design limit and even exceed it at times due to seasonal variations (e.g. summer thermal 
limits lower than winter) 
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For the INTEGRATE project objective of evaluating the increase in grid hosting capacity, the Smart 
Distribution test circuit traditional hosting capacity was estimated by applying the typical FERC screens 
and determining the related maximum generation capacity (MW). Relative to this static hosting capacity 
definition, these generators have a ‘firm’ interconnection and their integration with the grid does not 
require grid operations changes for these variable renewable energy resources. Generators who 
interconnect beyond these static grid limits require in many instances expensive T&D reinforcements that 
are cost prohibitive, thus ANM smart grid techniques allow these generators to connect via flexible 
interconnection and management of the grid constraints in real-time. The particular economics of a given 
project depend upon a wide number of factors that are beyond the scope of this project. It is moreover 
important to state that ANM schemes for flexible interconnection are not incompatible with firm 
interconnections: the critical relationship is that when submitting an interconnection request, DER 
developers can choose the most cost effective solution for the given site. ANM-enabled dynamic hosting 
capacity corresponds to the flexible interconnection generation capacity (MW) beyond the static limits.  

3.3.1. Hosting Capacity of an ANM-Enabled Circuit 

Adding real-time control capability on the circuit through Active Network Management (ANM) constraint 
management can significantly increase grid hosting capacity. ANM manages the DER and grid constraints 
in real-time, thus enabling the dynamic hosting capacity.  

The dynamic hosting capacity is a function of: (A) all the same static hosting capacity variables 1-3, plus (B) 
smart grid technologies and DER market solutions that are mutually acceptable to the DER developer and 
the Utility in terms of both financial impact and grid safety & reliability. ANM systems have proven to be 
effective grid edge smart grid investments to unlock grid assets for supporting the real-time dynamic grid 
hosting capacity for DER. The dynamic hosting capacity can be defined as:  

 “The active management of DER and grid equipment to resolve thermal and voltage constraints that arise 
due to the interconnection of those DER. The DER interconnect to the grid at a level where they contribute 
to thermal and voltage violations. Without traditional reinforcement, managing these constraints requires 
active real-time and autonomous smart grid management techniques. These DER are flexibly 
interconnected to the grid via distributed smart grid controls to resolve the thermal and voltage violations 
in real-time, and therefore subject to the financial impacts of curtailment risk. The dynamic hosting 
capacity therefore implies operational integration of the DER through Active Network Management 
distributed control technologies – a smart grid investment to unlock grid assets for additional DER hosting 
capacity.” 4 

DER that are managed via ANM are said to be ‘flexibly’ interconnected to the grid: the DER are controlled 
in order to resolve the grid constraints and can be regulated down or disconnected from the grid if 
necessary – hence the financial risk of curtailment and generator tripping. In assessing their 

                                                           
4 It is important to note that recent smart inverter efforts align with another hosting capacity definition, referred to 
as the quasi-dynamic hosting capacity. Autonomous smart inverter functionality to address voltage rise and other 
power quality factors at the PCC does increase solar and other inverter-based site hosting capacity. Distributed 
control systems like ANM further increase dynamic hosting capacity through field communication to coordinate and 
manage multiple sites with each other and likewise grid equipment. In so doing, ANM allows additional DER 
interconnection by enabling operation closer to grid equipment margins with higher action thresholds. Quasi-
dynamic hosting capacity is therefore enabled via inverter power electronics functionality, and additional dynamic 
hosting capacity is enabled through integrated distributed controls and communications to managed multiple DER 
and multiple constraints in real-time. 
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interconnection options, ANM therefore allows DER developers a choice of ‘firm’ versus ‘flexible’ 
interconnection – with DER developers choosing the most economic option for their given site. When 
Utilities allow DER developers this firm versus flexible interconnection choice – this causes hosting capacity 
to shift from utility defined (i.e. static limits that do not consider operational integration of DER) to market 
defined (i.e. DER developers deciding on the most economic option when ANM enabled DER are 
operationally integrated for grid services to resolve constraints).  

Both static and dynamic limits apply to any circuit, and are relative for a given location on a circuit and 
vary over time due to changing generation and load profiles. A visual representation of this concept as it 
applies generally to any given circuit is presented in Figure 3 and Figure 4 below. 

 

Figure 3: Real-time Active Network Hosting Capacity 

 

Figure 4: Static and Dynamic Grid Constraints 
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3.3.2. Conditions to Enable Dynamic Hosting Capacity 

ANM constraint management is able to increase grid hosting capacity by monitoring the constraint(s) 
associated with the breached utility limits and controlling the DER so that the utility’s operating limits are 
respected at all times. Three conditions must be satisfied for deploying ANM and enabling the dynamic 
grid hosting capacity:  

 The cost of implementing a new or updating an existing ANM scheme must be less than the 

traditional upgrades being triggered by the interconnection screens; 

 The cost of implementing or being adopted within an existing ANM scheme must be economical 

to the generation developer; 

 The amount of energy lost due to generator curtailment in response to ANM constraint 

management must not render the generation project uneconomical. 

In relation to the third bullet, a curtailment analysis is applied that provides an estimation of the amount 
of curtailment a given amount of generation capacity is likely to incur over the course of a year. Applying 
a full annual analysis allows the diurnal effects to be captured as well as the seasonal effects.  

Capturing the effects of all seasons, DG developers and financiers of DG projects can then use the 
curtailment analysis to predict revenue streams and assess whether the cost items associated with the 
first two bullets are indeed cost effective for a given project. For purposes of this project, it was assumed 
that any curtailment analysis identifying curtailment exceeding 10%5 of the uncontrolled DG production 
will be deemed unacceptable to DG developers. When incorporating energy storage and other smart DERs 
that are actively managed concurrently,5  this curtailment is significantly reduced. 

For each constraint that has multiple DER resources associated with it, a priority stack is established based 
upon principles of access that determine the order in which the resources are accessed in order to relieve 
a constraint breach. For example, to avoid curtailment an available ESS might be charged first, or to adhere 
to the respective generators’ right to export as per a ‘last in first out’ (LIFO) approach – referred to as the 
Principles of Access (POA) framework6. 

A POA priority stack is also established for all of the constraints themselves, which determines the order 
in which the constraints are solved. This is representative of how the ANM system operates in the field. 
Factors that influence the order of constraints include adhering to generator power export rights, as per 
the element priority stack, as well as minimizing curtailment by first targeting those constraints that have 
the greatest benefit for the circuit as a whole.  

                                                           
5 The 10% maximum annual curtailment is based on Smarter Grid Solutions’ U.K. experience advising utilities and DG 
developers that have successfully interconnected up to this level. Financial viability will vary for every project, thus 
curtailment risk factors must be mutually evaluated by the DG developer and utility. For the Phase 2 Smart Campus 
demonstration, SGS demonstrated that the 10% curtailment is significantly reduced when incorporating energy 
storage. Additional context can be found in the Smart Campus reports. 

6 See POA report from UKPN’s FPP project: http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-
2-projects/Flexible-Plug-and-Play-(FPP)/Project-Documents/FPP_Principles_of_Access_report_final.pdf, and also 
Kane, L. and Ault, G. (2014). “A review and analysis of renewable energy curtailment schemes and Principles of 
Access: Transitioning towards business as usual.” Energy Policy 72, p67–77.   
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The principles of access approach within an ANM scheme can also have a significant effect on curtailment 
results. In general, any commercial agreement should limit the factors that have the potential to affect 
curtailment results in the project’s lifetime. This is in order to provide the required security of investment 
to all interested parties. 

3.4. Document Structure and Smart Distribution Use Case 

The remainder of this document is structured as follows: 

- Section 4 ANM Architecture: ANM technology architecture and relationship to utility operational 
technologies 

- Section 5 ANM System Components and Applications: describes the control functionality to 
increase grid hosting capacity and the roles of each component. 

- Section 6 Use Cases: the testing and analysis during each of the smart home, smart campus, and 
smart distribution use cases. Includes outcomes from stakeholder workshops during the smart 
distribution on-site demonstration. 

- Section 7 Summary of Overall Project Outcomes: main project outcomes, impact and suggestions 
for next steps in terms of testing and deployment 

- Section 8 Appendix: background information on curtailment assessments, description of managed 
DER interconnections, and the distinction between ANM and advanced distribution management 
systems (DMS) 

3.5. References 

This document references the following external sources of information: 

[1]  200285 01A NREL INTEGRATE RCS-4-42326; 

[2]  200285 05A NREL INTEGRATE Overall Project Test Plan; 

[3]  200285 06A Overall Project Requirements Specification; 

[4]  200285 07A Overall Project Interoperability Plan; 

[5]  200285 24B Smart Home Final Report; 

[6]  200285 33A Smart Campus Final Report; 

[7]  200285 34A Smart Distribution Requirements Specification; 

[8]  200285 36A Smart Distribution ANM Modeling and Simulation Report; 

[9]  200285 37A Cyber Security Report; 

[10]  200285 39A Smart Distribution Acceptance Test Specification & Final Test Plan; 

[11]  200285 43B Smart Distribution Final Report. 

3.6. Terminology  

Table 1 describes the terminology used within this document. 

  

file://///LONCORFS01/Projects/200285%20-%20NREL%20INTEGRATE/3.%20Delivery/2.%20Production/1.%20Requirements%20&%20Design/8.%20Smart%20Home%20Functional%20Design%20Spec/200318-04A%20Requirements%20Specification.docx
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Table 1: Terminology 

Term Definition 

ANM  Active Network Management 

DER Distributed Energy Resource 

DG Distributed Generator (Note: Unless stated otherwise, use of the word 
‘generator’ refers to a generator subject to ANM control) 

ESS Energy Storage System 

ESIF Energy Systems Integration Facility 

EV Electric Vehicle 

MP Measurement Point 

PLC Programmable Logic Controller 

PCC Point of Common Coupling 

PHIL Power Hardware in The Loop 

POA Principles Of Access 

p.u.  Per Unit (i.e. normalized per unit voltage for a circuit) 

PV Photovoltaic  

REDB Research Electrical Distribution Bus 

RTU Remote Terminal Unit 

SGS Smarter Grid Solutions 

SP Set Point 

NREL National Renewable Energy Laboratory 
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4. ANM ARCHITECTURE 

ANM 100 is the SGS end-to-end control system software product designed to provide Distribution Utilities 
with a robust and reliable approach to a number of Distribution Control Use Cases for the integration of 
DERs on increasingly congested MV and HV networks. SGS technology exhibits the following 
characteristics:  

 Real-time: Modern grids need to handle fast-changing volumes of data. That is why our control 

platform uses critical systems industrial controls technology. 

 Autonomous: The need to respond rapidly to large volumes of data make operator-in-the-loop 

control impractical. 

 Deterministic: Control decisions must be predictable, reliable, safe, secure and repeatable. 

We use this technology to create our Active Network Management (ANM) products that: 

 Monitor: critical grid locations, communications status and the operating status of Distributed 

Energy Resources (DERs) are monitored in real-time. 

 Action: When measurements from critical locations exceed thresholds, communications fail or 

DERs breach defined schedules, ANM operate autonomously in a pre-determined, repeatable and 

time-bounded manner to issue setpoints and signals to DERs. 

 Deliver: ANM guarantees an end-to-end control response from DERs and other grid devices to 

balance electricity flows, maximize power system hosting capacity and deliver grid reliability 

improvements. 

The ANM system comprises a real-time control and dispatch platform with constraint management and 
DER coordination applications. ANM 100 uses SGS’ real-time control and dispatch platform in a dual-
redundant configuration to provide hot standby failover in an instance of device failure.  

For the Smart Distribution use case, the ANM 100 is deployed across 4 HP DL380 servers split into dual 
redundant sgs core and sgs comms hub. 

Illustrated in Figure 5, the ANM Platform consists of centralized and decentralized components. This 
enables the autonomous coordination of highly variable resources across a geographic area, while 
accommodating the variability of communications performance. 
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Figure 5: ANM Servers and Interconnections 

 

The central components of the ANM platform are made up of a communications gateway (sgs comms hub) 
connected to an application host (sgs core) via a real time data cluster. The data cluster is based on the 
open standard Data Distribution Standard (DDS) for real-time systems. Physically, these can be located to 
meet the needs of the individual grid operator, e.g., at electricity substation level, or at a regional level, 
such as a control room or a data center. 

The decentralized component of the ANM platform (sgs connect) is located at each DER under active 
management, and performs a number of local control and fail-to-safe functions. As a modular solution, 
the ANM platform can be scaled to the needs of individual customers and projects, while remaining tightly 
aligned with the smart grid applications.  

As a distributed control architecture, ANM components interface in an end-to-end fashion reflecting the 
emerging systems of systems approach to grid modernization. Figure 6 conceptualizes this approach for 
the latest ANM Strata Distributed Energy Resource Management Systems (DERMS) architecture.  
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Figure 6: Systems Integration of ANM Strata to Field Devices and Utility Back-office Operational and 
Informational Technologies 
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5. ANM SYSTEM COMPONENTS AND APPLICATIONS 

ANM provides real-time deterministic control at constraint locations in the electricity network. Figure 7 
shows the high-level functionality overview of the ANM Application. 

 

 

Figure 7: ANM Application, High-level Functionality Overview 

 

Field inputs are monitored by measurement point state machines (in blue), which trigger a request for 
regulating actions based on breaches of thresholds. Additionally, measurement points issue releasing 
actions to allow devices to move back towards their preferred setpoints when the measured value returns 
to a safe operating region. Each of the control actions requested by measurement points are placed into 
a request queue, making them available to algorithms. 

Multiple control algorithms can be hosted, each of which can choose to monitor control requests from all 
measurement points, or from a subset. For example, one algorithm may respond only to voltage control 
requests while another may respond only to real power control requests. Algorithm implementations 
consist of the following components:  

 a calculation engine that, given a request from a measurement point, produces a set of requests 

to be issued to devices; and  

 an arbiter that, given multiple requests for the same device, picks the highest priority request to 

be issued to the device. 

The Device Manager provides algorithms with the ability to discover the devices available for control and 
to issue control requests to them. 

5.1. Measurement Points 

The measurement points (MPs) are responsible for monitoring current, voltage and power measurements 
and issuing control requests to either resolve a breach of a defined threshold or allow devices to release 
back to their preferred setpoints after resolving a breach. 

5.1.1. Hierarchical State Machine 

The measurement points are implemented as a hierarchy of multiple state machines. As Figure 8 
illustrates, each threshold configured within the measurement point is represented by its own state 
machine. These state machines independently monitor an individual threshold and issue control requests 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 24 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

(i.e. a target reduction/increase in amps, volts or power; or trip request) when there is a requirement to 
regulate the measured value.  

A separate Threshold Set state machine receives the requests from all the Thresholds configured for the 
MP and is responsible for two functions: 

 selecting the control request from the highest priority threshold of the MP; and 

 passing it onto the MP state machine and performing the release process. 

The Threshold Set state machine passes its control requests (whether from a release operation or relayed 
from a Threshold state machine) on to the MP state machine, which is responsible for three functions: 

 relaying control actions from the Threshold Set when the MP is online; 

 issuing failsafe control actions when the MP is offline; and 

 performing the process of re-configuring the MP. 

 

 

Figure 8: MP Hierarchical State Machines 

5.2. SGS Core 

sgs core hosts the real-time ANM applications. It uses software to represent the various critical constraint 
locations and controlled devices within the scope of the ANM system, using them to identify control 
actions needed to maintain the grid within safe operating limits. 

For the demonstration activities at NREL, sgs core is configured to run either the sgs power flow application 
to control grid power flow for the reverse power flow demonstration, or the sgs voltage application to 
control the voltage for the voltage rise demonstration.  

5.2.1. SGS Power Flow 

The sgs power flow application monitors thermal constraint locations on the circuit and controls the power 
produced by multiple generators in order to maintain power flows within static, seasonal or dynamic 
thermal limits.   

The sgs power flow software application is deployed on the sgs core platform and uses sgs comms hub to: 

Threshold Threshold Threshold Threshold

Threshold Set

Measurement Point

[Control request from 
highest priority threshold]

[MP control actions] 
If Measurement Point State is ONLINE

Control Requests to Algorithm

[MP failsafes] 
If Measurement Point State is OFFLINE
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 Monitor specific field measurements including current or power flow at critical grid constraint 

locations; 

 Monitor controlled device parameters (e.g. how much power is being exported by a generator); 

 Monitor status indications (e.g. circuit breaker status); and 

 Deliver control instructions to controlled devices. 

To allow control of power flow at constraint locations sgs power flow uses a series of escalating control 
actions to ensure that circuit power flows remain within safe limits.  These control actions are triggered 
by constraint location power flows breaching limits known as thresholds.  A typical sgs power flow 
deployment has four main and two secondary threshold sets for each constraint location as shown in 
Figure 9.  

 

Figure 9:  sgs power flow Thresholds 

The threshold levels are set such that the maximum power flow of the circuit concerned is not breached.  

The main thresholds are as follows: 

Reset This is the safe value the ANM system will attempt to bring the current to following a breach of 
higher thresholds. 

Trim If this threshold is breached the ANM system issues curtailment to associated DERs in order to reduce 
the power flow at the constraint location to below the Reset threshold. 

Sequential Trip If this threshold is breached the ANM system trips associated generators in turn until the 
current has fallen below the Sequential Trip threshold, which initiates the normal actions for a 
breach of the Trim threshold. 

Global Trip If this threshold is breached the ANM trips all associated generators. 

The secondary thresholds are as follows: 
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Reset Less Margin (RLM) This threshold is used by the ANM as the target for power flow on the circuit 
during a trim event. It is used to ensure that the curtailment is sufficient to ensure the power flow 
at the constraint location falls below the Reset threshold.  

Trim Less Margin (TLM) This threshold is used by the ANM as the target for power flow on the circuit 
during a release event. It is used to ensure that the release of a DER does not cause the power 
flow at the constraint location to breach the Trim threshold. 

5.2.2. SGS Voltage  

The sgs voltage application monitors voltage constraint locations on the circuit and controls the real and 
reactive power produced by multiple generators in order to maintain voltage within acceptable limits. 

To allow control of voltage at constraint locations sgs voltage uses a series of escalating control actions to 
ensure that circuit voltage remains within limits.  These control actions are triggered by constraint location 
voltage breaching thresholds.  A typical sgs voltage deployment has two main and two secondary threshold 
sets for each constraint location as shown in Figure 10.  

 

 

Figure 10: sgs voltage Thresholds 

 

The threshold levels are set such that the maximum allowable voltage not be breached.  
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The main thresholds are as follows: 

Target Value This is the safe value the ANM system will attempt to bring the voltage to following a breach 
of higher thresholds. 

Upper Threshold 1 If this threshold is breached the ANM system issues updated real and/or reactive power 
set-points associated DERs in order to reduce the voltage at the constraint location to below the 
target value. 

The secondary thresholds are as follows: 

Target Overshoot This threshold is used by sgs voltage as the target for voltage during an Upper Threshold 
1 breach event. It is used to ensure that the curtailment is sufficient to bring the voltage at the 
constraint location below the Target Value threshold.  

Release Upper This threshold is used by the ANM as the target for a voltage release event. It is used to 
ensure that the release of a DER does not cause the power flow at the constraint location to breach 
the Upper Threshold 1. 

5.2.3. Dynamic thresholds 

The threshold values can be altered. Thermal constraints for instance can consider seasonal ratings or use 
a rating value supplied by a real-time thermal ratings system, also sometimes known as dynamic line rating 
(DLR). Sudden changes in threshold values could cause unnecessary escalation of control actions, such as 
a trip request. To avoid this, the threshold values are updated through a state-driven approach. 

When re-configuring the settings of a measurement point, the Safe Zone, identified by its upper and lower 
limits in Figure 11 and Figure 12, is the zone that the measured value must be within before the 
configuration can be changed. Figure 13 illustrates this principle using a live measurement point; when the 
measured variable calls below the safe line this initiates a change to the new set of thresholds. When this 
threshold set changes, the Safe Zone can change, but does not need to. On the day of demonstration, the 
Safe Zone was not changed because it was pre-defined at a level that did not cause any threshold breaches 
even with the lower Trim threshold. The measurement point issues control requests in an attempt to drive 
the measured value to within the safe zone before applying a new configuration.  

The new configuration is validated before being applied and can be rejected if it is incorrect. New 
configurations can only be applied when measured value is below a pre-defined safe threshold, ensuring 
that no threshold breach occurs during the transition. Figure 11 and Figure 12 illustrate this for threshold 
increase and decrease respectively. 

 

 

Figure 11: Dynamic Threshold Increase 
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Figure 12: Dynamic Threshold Decrease 

 

 

Figure 13: Threshold Decrease with Constant Safe Line Defined by the New Reset Threshold 

 

5.3. SGS Comms Hub 

sgs comms hub handles and processes all data for sgs core and interfaces with external grid management 
systems, field measurements and the controllable devices on the grid. 

It interacts with different sources of data e.g. voltage and current transformers, device controllers and 
with other systems, to present all data to sgs core. This enables integration of sgs core and associated 
applications with the grid operator's existing grid management systems. 

For the NREL Demonstrations, sgs comms hub is configured with the following data interfaces: 

- DNP Master – For communication to sgs connect 

- Modbus Master – For communication to Opal RT.  

5.4. SGS Connect  

sgs connect devices are installed at each ANM controlled DER site and are responsible for managing data 
communications to sgs comms hub, issuing set-points, collating measured DER data and implementing 
failsafe responses. 
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The sgs connect application executes on an IEC 61131 compatible PLC or RTU – for this use case at NREL a 
Brodersen RTU32 was used. sgs connect supports interfaces to the DER control system, a local HMI display 
and to sgs comms hub. Figure 14 presents a typical hardware configuration. 

  

Figure 14: Example sgs connect Schematic Diagram 
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6. USE CASE RESULTS 

6.1. Smart Home Use Case Outcomes 

The following sub-sections present results and outcomes from the Smart Home use case. See [5] for the 
complete set of outcomes and final report. 

Summary:  

 The Smart Home use case is designed to demonstrate how ANM’s real-time monitoring, 
automation and control can be used to manage constraints associated with high penetrations of 
DER at the domestic level. As a result of constraint mitigation, it is shown that DER control can 
allow for higher penetrations of PV interconnection or controllable load at the home level than 
would otherwise be permitted.  

 Prevailing hardware costs associated with the DER device controller (sgs connect) currently restrict 
its application for domestic scale devices. The inclusion of smart homes within the Smart 
Distribution use case demonstrates how using aggregator services is a practical and cost effective 
way to incorporate domestic sized devices in ANM schemes. The Smart Home control system 
architecture is a simple standalone SGS CONNECT+ home controller that integrates these 
functions and all local DER assets and monitoring points, which are either local or can be provided 
as remote constraint points from the utility’s system. This then allows the smart devices to behave 
as a resource that is more diverse than a single DER and could ultimately be brought into a larger 
hierarchical control system, as was considered in subsequent use cases. 

 Under restricted solar PV export, the following figure shows for instance the net power flow results 
of the smart home with solar PV, EV charging, and a battery ESS. For this scenario the power export 
control threshold is 0kW – all positive (export) values are above the permitted operational grid 
limits. Although a situation like this is unlikely with a single home it is common in areas with high 
PV penetration where the collective impact of many homes causes issues, as is seen in some states 
already. Moreover, this example is directly applicable to larger industrial, commercial and campus 
facilities where a single facility can cause thermal and reverse power flow constraints. Additional 
context and information is located in the report. 

 

Figure 15: Net Power Flow at PCC for a Home Load with Controlled DER including EV, ESS and PV. 
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 The three simulation test runs demonstrated scenarios which, although not common for 

residential constraints on grids at present, are highly likely to occur in the future as DER 

penetration increases:   

o The constrained reverse power flow test demonstrated that it is possible to utilize 

controllable EV and ESS to allow PV generation to be connected to a grid that is unable to 

support additional generation export. 

o The voltage rise constraint simulation test demonstrated how controllable EV and ESS can 

be used to maximize PV generation on a grid which is subject to voltage rise constraints.  

o The import constraint simulation test demonstrated how DER’s within the home can be 

utilized to provide demand response from a smart home. 

6.1.1. Smart Home Principles of Access 

The order by which curtailment is allocated to DERs is determined by the configurable Principles of Access 
(POA) priority stack. The priority stack employed for each test scenario is shown in Figure 16. The DER at 
the top of the priority stack are first to gain access to available network capacity. The DER at the bottom 
of the priority stack are last to gain access to available network capacity.  

ESS

EV

PV

Top Priority

Bottom Priority

2

3

4

Load 1

 

Figure 16: ANM Priority Stack of DERs for the Smart Home 

 

The load is at the top of the priority stack. This is the uncontrolled domestic load and is at the top of the 
priority stack as it is not used by ANM for demand response. The DER at the bottom of the priority stack, 
the ESS, is the first device to be curtailed during a trim event and the last device to be released following 
a release event. The highest controllable DER in the priority stack, the PV, is the last DER to be curtailed 
during a trim event and the first device to be released following a release event. 

6.1.2. Smart Home Test Setup 

Figure 17 shows the configuration of the Smart Home use case devices connected within the Smart Power 
Lab (SPL) and the ANM control system.  
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Figure 17: Smart Home Use Case Overview 

The Smart home use case uses the following Devices: 

 Simulated ESS: Simulated data model for home scale 3kW, 3.4kWh ESS. Control signals are 

transferred via TCP/IP. 

 PV Panel Simulator and inverter: Fronius 3kW PV Inverter and TerraSAS PV Simulator – a PV panel 

Simulator and PV Inverter. Control signals are transferred via a Modbus RTU link. 

 Load profile and simulated EV: Simplex Powerstar 50 Load Bank – A load bank used to represent 

uncontrolled home load and EV. Control signals are transferred via TCP/IP. 

Each device is individually metered and measured real power values were sent to the ANM using 0-10VDC 
signals. Measurements for each DER were collected from the SPL National Instruments DAQ unit and 
communicated to the SGS CONNECT+. 

6.1.3. Smart Home Simulation Test Runs 

Three Smart Home simulation test runs were conducted to test three different grid constraint scenarios. 
These are: 

1) A Reverse Power Flow Constraint where wider grid constraints mean that the Smart home is not 

permitted to export power to the local grid. ANM coordinates the energy consumption and/or 

production of the PV inverter, battery ESS and EV charging to prevent power export from the 

home.  
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2) A Voltage Rise Constraint where power export from the home can cause the grid voltage to exceed 

limits. The ANM system coordinates the energy consumption and/or production of the PV inverter, 

battery ESS and EV charging to prevent over voltage on the grid. 

3) An Import Constraint where the smart home is part of a wider demand side management system, 

which can instruct the home to limit import power when required to resolve grid issues. The ANM 

system coordinates the energy consumption of the battery ESS and EV charging to maintain 

demand within limits. 

Please note the power flow sign convention for all tests: negative power (-kW) indicates loads are 
consuming power from the grid, positive power (+kW) represents excess generation exported to the grid, 
and zero power (0kW) represents zero real power flow (e.g. all generation consumed and matches 
instantaneous load). 

For brevity of this report, only the results of the constrained reverse power flow testing are shown below. 
See [5] for the full set of test results. 

6.1.4. Constrained Reverse Power flow 

6.1.4.1. Scenario & Industry Context 

In the reverse power flow simulation test runs, ANM thresholds are configured to prohibit power export 
by the Smart Home to the grid. Thresholds are configured as real power limits that if breached initiate a 
control action - either curtailment or tripping of DER outputs. SGS CONNECT+ receives real-time 
measurement of power flows and calculates the necessary action. SGS CONNECT+ then assesses DER 
availability and using a priority stack assigns curtailment to DERs, bringing power flows below a target 
threshold value. 

In this scenario, grid conditions mean that the home is unable to export power to the grid. In order to 
allow the home to utilize a PV installation, an ANM system along with a controllable EV battery and ESS is 
used to ensure that reverse power flow does not occur. 

6.1.4.2. Data Profiles 

The data used in this simulation run contains a selection from Pecan Street’s domestic home data sets 
acquired for the project. 

1) Domestic Load – the uncontrolled load profile used in the simulation run is taken directly from 1 
minute resolution 2015 data of a real home in Boulder, Colorado. 

2) Solar PV – the solar PV output is taken from 1 minute generation data from an example home within 
Pecan Street’s database; the solar generation power output is scaled to a percentage of peak inverter 
power and then multiplied by the peak irradiance of 1100 W/m2 to get the irradiance profile required 
for the TerraSAS solar PV simulator. 

3) Electric Vehicle (EV) Charging - the EV does not follow a recorded profile. The EV load demand is 
instead generated by an EV charging simulator. The EV simulator is configured to allow the driver to 
select a time to be fully charged, and delays charging as long as possible to ensure it is available for 
ANM for the greatest amount of time. 

4) Energy Storage System (ESS) - The ESS selected to be used for the use case was not available for testing 
at the time and instead an ESS simulator was used. The ESS simulator in this use case will target 
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minimum state of charge and export power whenever capacity is available. This ensures the ESS is 
available to consume power and avoid PV curtailment for the greatest amount of time. 

6.1.4.3. Operational Results without ANM 

As a baseline without ANM, Figure 18 shows the net power flow of a home installed with 3kW of 
uncontrolled solar PV. It demonstrates how the home is perceived as both a generator and a load 
depending on the collective instantaneous load demand and PV output. For the reverse power flow 
scenario where the power export threshold is 0kW, all positive values are above the permitted operational 
grid limit. Operational limits are used by utilities in planning studies to determine the interconnection 
capacity. In this case, using static hosting capacity under traditional planning, the deployment of PV would 
be prevented or grid asset upgrades would be required to ensure operational limits are not breached. 
Although a situation like this is unlikely with a single home it is common in areas with high PV penetration 
where the collective impact of many homes cause issues, as is seen in some states already. Additionally, 
as will be seen later in this project, this example is directly applicable to larger industrial, commercial and 
campus facilities where a single facility can cause thermal and reverse power flow constraints. 

 

Figure 18: Smart Home Net Power at PCC without ANM 

 

6.1.4.4.  Operational Results with ANM 

Figure 19 shows how ANM maintains the net power flow of the home below 0kW. This is in comparison to 
Figure 18 where the net power flow frequently exceeds 0kW between the time of 13:00:00 and 17:00:00. 
Short duration excursions above 0kW in Figure 19 are caused by step increases in the uncontrolled load. 
These are quickly addressed by the ANM system, which reduces power flow to below 0kW within 2 seconds 
on each occasion.  
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Figure 19: Net Power Flow at PCC for a Home Load with Controlled DER including EV, ESS and PV 

The priority stack of DER is configured within ANM such that solar PV curtailment is minimized. Utilizing 
the storage capacity of the ESS battery is prioritized as a method to provide the necessary curtailment. 
Subsequently, if the ESS battery is unable to resolve the constraint issue, time shifting EV charging for a 
given state of charge and charge completion time can be used. This ensures the PV owner receives the 
maximum return on investment from the PV system and maximizes clean energy generation.  

Figure 20 shows the uncontrolled PV output versus controlled PV output. Point 1 shows an example of a 
curtailment event where the controlled PV output is reduced by a set amount and then released back up 
to a value where the net power flow is still below 0kW. The other spikes on the Controlled PV trace are 
short duration reduction of PV output, lasting around 1 second. These reductions were not requested by 
ANM and the cause was not determined during testing at NREL. It is assumed that the spikes indicate a 
control logic and/or power electronics issue internal to the solar PV inverter7 or PV simulator. The solar PV 
output was the only power hardware device subject to the spikes, which took place independent of ANM 
curtailment control action. While the team did not have sufficient time to further troubleshoot this issue, 
the need to do so is consistent with the on-going advancement of industry smart inverter functionality for 
controllable power as well as supporting grid power quality. 

The highly variable nature of the uncontrolled load at approximately 1500hrs is caused by the clothes drier 
within the home. Fast acting control such as that provided by ANM is essential to be able to work in 
conjunction with variable load devices and maintain power flows within limits. 

                                                           
7 After testing was complete and while analyzing the results, NREL’s ESIF team mentioned that they have noticed this 
on other Fronius inverters. This is potentially caused by the inverter disconnecting from the PV panel periodically to 
perform an isolation test, as mentioned in the user manual. 
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Figure 20: Smart Home Uncontrolled PV and Controlled PV 

ANM control of each DER is shown in the upper graph in Figure 21. At the start of the test, high PV export 
caused the ANM to instruct the ESS to charge in order to prevent reverse power flow, and when it neared 
full capacity excess generation began charging the EV at 13:40. At 13:54, the ESS became fully charged and 
stops charging. The EV is then instructed to charge in order to maintain the power flow below 0kW as per 
the constrained reverse power flow scenario. Beginning at 14:30, the EV begins maximum charging in 
order to ensure full charge by the driver requested time of 15:00 hours. EV charging was supplied by ESS 
discharging as well as by excess PV when available (hence the non-uniform changes in ESS discharge rate). 
At 15:00 the EV was fully charged and excess PV (beyond the uncontrolled home load) charged the battery 
for a short time before the large uncontrolled home electric dryer load turned on. The battery and PV then 
supplied as much of that cycling electric load as possible within the second-to-second control of the SGS 
CONNECT+. After 16:12, the ESS was discharged to its minimum SOC level and remained in that state until 
the end of the test because there was not any excess PV generation. The overall combined effect of the 
DER are shown on the lower graph in Figure 21. The combined controlled DER response is shown, and for 
further clarity, the whole home net power is shown (as per Figure 19 above), reflecting the net controlled 
home at the PCC.   
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Figure 21: Smart Home DER Import / Export and Combined DER 

Figure 22 shows the state of charge of the ESS and EV batteries. At point 1 in Figure 22 the ESS begins 
charging to consume the output of the PV system that would otherwise be curtailed due to restricted 
export. The ESS maximum state of charge is 90%, representing the manufacturer’s charging instructions 
for battery longevity. When the ESS reached 90% state of charge at point 3 it was no longer available to 
the ANM system. At point 2, the EV began charging because the ESS was unable to accept the total 
curtailment value required by ANM. At point 3, when the ESS was full, the EV received an even larger 
curtailment value required to avoid curtailing the PV. Note that when not being used by the ANM system 
the EV began charging at full power as late as possible to be fully charged by a configured time. This phase 
of EV charging began at point 4 until it completed charge at point 5. When the ESS was not being used by 
ANM it was configured to discharge when capacity existed to export power. This functionality ensured that 
the ESS was available as much as possible for PV curtailment avoidance and can be seen between points 
4 and 6. Between points 4 and 5 the ESS was supporting charging the EV, and between points 5 and 6 the 
ESS charged for approximately 10 minutes to negate PV curtailment and then discharged to its minimum 
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state of charge to support uncontrolled load, thereby maximizing availability for ANM control under this 
constrained home export use case. 

 

 

Figure 22: Smart Home ESS & EV State of Charge Over Time; used as ANM Resources 

 

6.1.4.5. Failsafe Response 

The ANM system manages DERs to maintain constraint locations within design limits. This requires a real-
time measurement of constraints and control of DERs. ANM monitors all the communication links required 
to provide this control and monitoring, and implements a failsafe response in the event of a link failure. 
The example below shows the ANM system response to a loss of communications link to the measurement 
point. The configuration of the ANM system will determine how sensitive the smart home is to a loss of 
communications, based on a timer set by the operator. The significance of this functionality will only 
increase as DER penetration increases. 

 

Figure 23: Smart Home Export at PCC during MP Communications Error 
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At Point 1 in Figure 23 the loss of communications is detected by the ANM system. As the measurement 
is not available, the ANM must assume that there is no capacity for PV export and it instructs the DERs to 
their minimum set-points and awaits the restoration of the communications link. At Point 2 in Figure 23 
the communication link is restored and the ANM system manages the controlled release of DER devices 
to use the available capacity. After point 2, the step change in the data reflects the corresponding 
controlled release of the PV as per its configurable ramp settings. 

6.1.4.6. Findings 

It is evident from Figure 20 that the ESS and EV are able to consume much of the curtailment that would 
otherwise be given to the PV system. In terms of hosting capacity of the circuit, this degree of DER 
monitoring and real-time control would enable continued PV interconnection on circuits with constrained 
capacity. This ANM enabled Smart Home could therefore interconnect on circuits where for instance the 
total sum of whole circuit generation output is approaching/higher than circuit minimum load – a common 
worst case traditional static circuit planning criteria that restricts further generation interconnection (due 
to the prohibitively high circuit reinforcement cost burden for new interconnecting DER). This Smart Home 
use case focused on demonstrating ANM technology for residential scale DER and thus simulated network 
conditions upstream from the PCC. Future use cases will aggregate such ANM enabled Smart Homes 
control responses in order to include their control within whole circuit testing, thus will quantify how for 
a small amount of curtailment additional PV systems would be permitted to interconnect. 

6.2. Smart Campus Use Case Outcomes  

The following sub-sections present results and outcomes from the Smart Campus use case. See [6] for the 
complete set of outcomes and final report. 

Summary: 

 The Smart Campus use case is designed to demonstrate how ANM’s real-time monitoring, 
automation and control can be used to manage constraints associated with high penetrations of 
DER at a single point of common coupling on a radial distribution circuit. As a result of constraint 
mitigation, it is shown that dynamic DER control can allow for higher penetrations of PV than 
would otherwise be permitted using traditional static grid planning and operations processes. 
ANM is demonstrated to safely and reliably manage the PV system only, and then manage the 
coordination of PV, battery ESS, aggregated EV charging, and controllable load for optimized 
behind the meter energy resources. 

 For the megawatt (MW) scale DER flexibly interconnected to the Smart Campus, ANM has been 
proven in the past to be a cost effective alternative compared to traditional T&D reinforcement.  

 The Smart Campus control system architecture is an ANM 100 system with a central controller 
(incorporating sgs core and sgs comms hub) and DER device controllers (sgs connect) along with 
monitoring points at constraint locations. This ANM architecture then allows the smart DER 
devices to behave as a coordinated and managed resource that is scalable and extendable into a 
larger smart distribution control system, as will be considered in the subsequent smart distribution 
INTEGRATE use case. 

 As seen in the following table, the results of the Smart Campus testing showcase the ANM control 
approach can safely and reliably integrate campus DER to increase grid hosting capacity and 
minimize clean energy curtailment.  



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 40 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

Table 2: Smart Campus Static vs Dynamic Grid Summary 

Constraint 
Type 

Location Static Design 
Factor 

Static 
Generation 
Capacity Limit 

ANM Dynamic 
Design Factor 

ANM Dynamic 
Generation 
Capacity Limit 

% Difference 

Thermal 
Export 

SC service 
conductor 

75% of thermal 
rating (185 kVA) 
+ Min Coincident 
Load (28 kVA) 

213 kVA  90% of thermal 
rating: 222kVA, 
actively managed 

500 kVA 135% 

Over-
Voltage 

SC PCC 1.05 p.u. voltage; 
worst case 
scenario 

295 KVA  1.05 p.u. voltage; 
actively managed 

500 kVA 69% 

 

 There were four elements to the Smart Campus demonstration. The first three focused on the use 

of ANM to allow the installation of a solar PV generator on a smart campus connected to a 

distribution grid with a reverse power flow constraint at the point of common coupling (PCC). The 

last focused on voltage rise management at the smart campus interface to the distribution grid. 

The demonstration was as follows:  

o Annual offline assessment of flexible interconnection: An analysis of the flexible 

management of PV generators by the ANM system, along with the estimated annual 

curtailment levels. 

o PHIL testing of worst-case grid operation scenario - reverse power flow of PV only: a 3-

hour duration demonstration of the PV system managed by the ANM system using a 

physical PV inverter for a PHIL simulation run in the ESIF at NREL. This testing showcased 

ANM's functionality and basic value to the grid at its most fundamental level: 

demonstrating a massive deployment of clean energy that is actively managed by ANM 

that otherwise would have been uneconomic8 for the PV developer to deploy at that scale.  

o PHIL testing of coordinated DER for maximum clean energy: a 5-hour duration 

demonstration showing how additional DERs (ESS, EV and controllable load) can be used 

by ANM to coordinate and manage all DER in real-time to maximize clean energy 

generation, thereby reducing curtailment levels experienced by the PV in the previous 

demonstration. This testing showcased ANM's innovative ability to manage multiple DER 

in real-time to ensure the grid is operated in a secure and dependable manner under 

massive clean energy deployment levels.  

o PHIL testing of coordinated DER for resolving a voltage constraint: a 5-hour 

demonstration run showing the campus with a voltage rise constraint at the PCC caused 

by generation export. 

                                                           
8 “Insufficient capacity” due to how traditional static grid limits would have required the PV customer to pay for 
uneconomic distribution equipment upgrades (e.g. reconductoring cables that would make the solar PV deployment 
uneconomic). ANM enabled distribution circuits allows DER developers to choose the most economic 
interconnection by comparing firm “fit and forget” interconnection versus flexible “managed” interconnection. 
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For brevity of this report, the following subsections below present the results of the PHIL testing of 
coordinated DER for maximum clean energy. See [6] for the complete set of outcomes and final report. 

6.2.1. Coordinated DER Demonstration 

The Smart Campus Coordinated DER Demonstration shows that ANM can be used to control multiple DER 
types in order to minimize constraints and maximize the use of renewable energy sources. For this test, 
various controllable devices within the campus: 

 Physical EV and charger,  

 Simulated aggregated EV charging load, 

 A load bank representing a controllable load within the campus,  

 Battery energy storage system (ESS). 

6.2.1.1. Circuit Characterization and Static Grid Capacity Limits 

A modified IEEE 13-Node test feeder was used as the grid simulation Test Circuit for evaluating the ANM 
technology at NREL. Adaptations to this circuit were necessary in order to meet the requirements of this 
study and moreover utilize a realistic circuit model. 

 

Figure 24: Modified IEEE 13-Node Test Feeder Including the Smart Campus 

6.2.1.2. Smart Campus Static Constrained Grid Definition 

Using the test circuit and employing the conceptual static versus dynamic hosting capacity framework, the 
sub-sections below define the static grid interconnection capacity of the Smart Campus. These were 
compared to and tested against the ANM enabled dynamic hosting capacity limits. 
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6.2.1.3. Circuit Power Export Thermal Capacity for Unmanaged DG 

In order to assess the limits of the static grid thermal capacity when adding unmanaged DG to a distribution 
circuit, a limit of 75% of the thermal capacity3 of utility assets is utilized. For the modified circuit this 
equates to a 75% thermal capacity limit of 185 kVA. 

For this phase of the project, there was no other generation on the circuit and there are no other 
conductors in the model with a thermal capacity less than that of the Smart Campus service conductor, 
therefore the only possibility for a thermal constraint is within the Smart Campus service conductor. The 
minimum coincident load therefore also only relates to the Smart Campus load profile. 

Consistent with static grid limits, the worst case scenario is evaluated against the peak output of the 
generator in conjunction with a coincident minimum load condition. For typical PV in much of North 
America, this coincident minimum load condition can be generalized as the minimum load experienced 
between 11:00 and 15:00 between April and September. If interval metered data is available at the circuit 
substation, this can provide the minimum load condition directly. Otherwise, local utility engineers are 
consulted in order to provide a reasonable conservative estimate of the minimum daytime load relative 
to the peak load of the circuit. 

The minimum coincident load demand of the Smart Campus with the PV system was found to be 28 kVA 
occurring May 14 at 14:00. Adding the minimum coincident load of the Smart Campus to the 75% design 
rating threshold of the service conductor produces a static grid interconnection limit of 213 kVA relative 
to power export thermal capacity for the Smart Campus distributed generation. 

For ANM managed DER interconnection, the grid can be operated closer to its engineering limits due to 
the real-time deterministic, autonomous, and failsafe ANM control characteristics. Therefore, the 
threshold for ANM managed thermal export is increased to the 90% design rating, resulting in a dynamic 
grid thermal export limit of 222 kVA.  

6.2.1.4. Summary of Key Static Grid Smart Campus Constraints 

The summary of the Smart Campus static grid thermal and voltage constraints are shown in the table 
below. At 213 kVA, thermal export is the limiting constraint for DER interconnection. It is assumed that 
sizing generation beyond the limits below would incur uneconomic distribution reinforcement costs. The 
sections below assess how an ANM enabled grid can manage DER interconnection beyond these limits – 
with on-site testing data to demonstrate these results. 

To compare against the static grid limits presented here as well as to test the ANM control system, the 
sections below present the annual power flow curtailment results of the uncontrolled and then ANM-
controlled DER for the high penetration ANM-enabled dynamic grid. Gathered DER data was collected and 
presented below for managing DER under reverse power flow thermal export as well as voltage rise 
constraints. 
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Table 3: Smart Campus Static Grid Constraint Summary 

Constraint Type Location Design Factor Generation Capacity 
Limit 

Thermal Export SC service 
conductor 

75% of thermal rating (185 kVA) + Min 
Coincident Load (28 kVA) 

213 kVA (Generator) 

Over-Voltage SC PCC 1.05 p.u. voltage 295 KVA (Generator) 

 

6.2.1.5. Smart Campus Test Setup  

The Smart Campus Coordinated DER Demonstration includes grid simulation with ANM & PHIL, as shown 
in Figure 25. 

 

 

Figure 25: Smart Campus Test Setup9 

 

                                                           
9 Note that the diesel generator was unavailable during the on-site activities. Its contribution is therefore not included 
in the use case curtailment analysis and likewise testing scenarios. 
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The additional DER devices are used in this demonstration to provide a controllable demand, which is used 
to consume the PV generation locally to maintain the export to the grid below the reverse power flow 
limit. 

The ANM system is configured to control the DERs according to a Principles of Access (POA) framework. 
The POA governs which order the DERs are used to resolve the constraints and which DERs are permitted 
access to grid capacity as it becomes available. The Coordinated DER Demonstration uses the POA order 
shown in the following figure. 

 

Figure 26: Smart Campus POA Order for Coordinated DER Demonstration 

Within the POA framework solar PV is at the top of the priority stack. This means that it is the last device 
to get used by the ANM for managing grid constraints (i.e. minimizing curtailment) and the first device to 
have excess grid capacity released to it.  

Due to the physical size of the ESS relative to the circuit and grid simulation scaling, the ESS is configured 
with a limited storage capacity of 125 kWh. Under POA when that storage capacity is exhausted and an 
additional curtailment is required, the ANM system automatically allocates curtailment to additional DER 
higher up the POA priority stack until the constraint is resolved. 

6.2.1.6. Annual Load and PV Generator Profiles with ANM 

The hourly Smart Campus load profile and the uncontrolled output of the 500 kW PV generator are 
presented in the following two figures respectively. The peak of the Smart Campus load is 150 kW with a 
total consumption of 582.5 MWh. The peak output of the PV generator is 500 kW with a total uncontrolled 
generation of 820.4 MWh. 

ESS

EV

Controlled 
Load

Top Priority

Bottom Priority

2

3

4

PV 1
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Figure 27: Annual Smart Campus Load Profile (note scale shading) 

 

Figure 28: Smart Campus Annual Uncontrolled PV Generation Profile 

6.2.1.7. Curtailment Analysis Results and Discussion 

The ANM managed curtailment profile of the PV generator – to respect the service conductor’s 90% 
thermal design limit of 222 kVA under ANM management, is presented below in Figure 29. The total annual 
generation post-curtailment represented in this figure is 732.5 MWh, which corresponds to 10.7% 
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curtailment. Please note that this is the estimated generation of the 500 kW PV system alone – thus 
representing a conservative assumed curtailment level for an actively managed DER on the circuit. For 
additional information and background, see the static vs dynamic grid conceptual framework and 
curtailment assessment assumptions, and see also [6]. 

As generally seen in the uncontrolled PV generation, the decreased production related to power output 
correlates to generation greater than 350 kW. Given the predominance of the campus load demand to be 
in the 75 to 125 kW range, this is in alignment with the ANM managed net power export being limited to 
222 kVA.  

As described previously, it is assumed that curtailment levels much greater than 10% would render a given 
generator interconnection unprofitable. Thus for the smart campus historical load, its location on the 
distribution circuit, and considering the historical loading on the circuit, this curtailment estimate 
correlates to the conservative worst case curtailment scenario. A PV-only evaluation therefore 
demonstrates ANM’s fundamental value proposition – maximizing grid connected clean energy that can 
be safely and reliably operated had massive deployment levels in a cost effective manner. Compared to 
the static grid thermal export limits, the hosting capacity increased 135%. The subsections below showcase 
the incorporation of battery energy storage and EV charging with the PV in order to demonstrate their 
coordinated real-time control to minimize curtailment and maximize ANM integration of clean energy.   

 

Figure 29: Smart Campus Annual Post-Curtailment PV Generation Profile 

6.2.1.8. Coordinated DER Testing Results 

The graphs below show the results of the demonstration. The data shown is an extract from the historian 
database with runs on the sgs comms hub server and logs all ANM activity. 

The first figure below shows the campus PCC current being actively managed against the thermal export 
constraint limit, and the second figure shows the individual DER coordinated according to the POA 
framework. Compared to the PV Only Demonstration, the PV export under the Coordinated DER 
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Demonstration is not issued with any curtailment and so is allowed to produce 100% of its potential output 
during the demonstration period. This is achieved using the various DERs to produce demand to offset the 
PV export.  

 

Figure 30: Smart Campus Full DER – Measured Current at the PCC 

 

Figure 31: Smart Campus Full DER – DER Export and Set-points 

Relative to the export thermal constraint, Figure 30 shows export gradually increasing as the PV output 
increases. At 11:22am, the export current breaches the trim threshold. ANM then calculates the reduction 
in real power required to bring the export current below the reset threshold. In this case, the ANM system 
calculated that a 32 kW reduction was required and this was allocated to the ESS, being the lowest active 
DER on the POA priority stack. This resulted in the ESS being issued with a 32 kW import set-point. This is 
reduced to a 13 kW import set-point when the reset threshold is breached and the ANM maximizes export.  



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 48 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

As the PV export continues to increase, successive trim events cause the ESS import set-point to increase 
to 174 kW import.  

At 13:30 the ESS becomes fully charged and is no longer able to consume any power. This results in the 
load dropping from 174 kW to 0 kW. This causes an increase in the current at the campus PCC to 53.6 A. 
Although this breaches the sequential trip and global trip thresholds, the observation timers which trigger 
the event are set such that the trim operation will occur before either of the trip events.  

As the ANM system was no longer able to use the ESS to reduce the campus export it moved up the priority 
stack and issued constraint management requests to the next DER, in this case, the aggregated EV charging 
load. The ANM instructed the EVs to start charging at their maximum charge rate of 30 kW. As additional 
curtailment was still required to bring the measured current below the reset threshold, the ANM system 
also requested that the load bank provide a load of 166 kW. The load of these two DERs caused the export 
current to fall below the reset threshold within 5 seconds. 

For the remainder of the demonstration, the PV export did not increase further and the campus 
uncontrolled load did not vary such that further constraint management actions were necessary.  

The use of the additional DER’s in this demonstration had the advantage over the PV-Only demonstration 
of reducing PV curtailment to zero – showcasing the coordinated control of the systems to increase grid 
hosting capacity and minimize clean energy curtailment. The ANM system is configured such that the 
energy stored in the ESS would be discharged to support campus load and/or grid export when there is 
sufficient grid capacity to do so, e.g. overnight. This therefore demonstrates that ESS, co-located with a 
renewable generator can be used to reduce curtailment on a constrained circuit with the use of ANM. 

Compared to the annual curtailment analysis, these Coordinated DER results highlight that DER developers 
with too much curtailment have an ANM enabled smart grid extension available by incorporating energy 
storage or synchronizing RE curtailment with controllable load. If for instance the DER developer wanted 
to limit PV curtailment to 5%, a battery ESS with 260 kWh of storage capacity and a 60 kW power rating 
would be required.   

6.3. Smart Distribution Use Case 

6.3.1. Circuit Characterization and Static Grid Capacity 

The Smart Distribution use case provided an integrative perspective of ANM across all distribution grid 
DER device scales (incorporating aggregated Smart Homes and the Smart Campus) in order to showcase 
how these devices can support smart grid services to manage DER penetration constraints in a safe and 
reliable manner, and likewise also extend and scale for future grid modernization schemes. See [1], [2], 
[5], and [6] for more information.  

A modified IEEE 13-Node test feeder was used as the grid simulation Test Circuit for evaluating SGS’ ANM 
technology at NREL. Adaptations to this circuit were necessary in order to meet the requirements of this 
study. Each change is documented below. An overview of this circuit that includes the addition of the 
Smart Distribution DER is presented in Figure 32 below. Pre-existing firm interconnection generation are 
shown in black, ANM enabled flexible interconnection PHIL generation are shown in red, and simulated10 
ANM enabled flexible interconnection generation are shown in purple. 

                                                           
10 Note: SGS assumed that small generators like the Smart Home PV systems would be interconnected through 
aggregator control schemes – as such they are not included in the increased grid hosting capacity calculations.  
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Figure 32: Smart Distribution Test Feeder  

 

Grid simulation of the test feeder was performed by hosting the circuit model in OPAL-RT, with the DER 
and the Amatek Grid Simulators connected to the Research Electrical Distribution Bus (REDB). Figure 33 
displays the PHIL setup. The REDB network is a balanced 3 phase network, with a line to line voltage of 
480V. The grid simulator acted as a sink and source to the network. 
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Figure 33 REDB Configuration for Smart Distribution 

6.3.2. Creating a Realistic Circuit Model  

For the offline annual power flow analysis, the circuit was modeled using OpenDSS. Standard distribution 
engineering assumptions have been followed for specifying the circuit model and correlating the OpenDSS 
version with the Simulink/OPAL-RT version. These modifications were done to ensure a realistic 
representation of a medium voltage distribution circuit that moreover could be simulated using NREL’s 
ESIF equipment. The circuit was modified as follows: 

 Conversion to a balanced symmetrical model: the IEEE 13-Node feeder was originally designed to 

test the limits of 3-phase control and load-flow solvers through severe phase imbalance. Control 

systems to address a high degree of phase imbalance are not currently a short-term utility request 

for ANM, as such they were outside the scope of this project. An equivalent balanced 3-phase 

circuit model was used instead, as is typical for circuits targeted for high clean energy deployment. 

This conversion is based on the standard procedure of averaging the self and mutual complex 

impedance11 of the three phases. The zero sequence and positive sequence impedances are then 

calculated based on the following formula: 

Z0 = Zself,avg + 2*Zmutual,avg 

Z1 = Zself,avg – Zmutual,avg 

 Circuit transformers have been removed to simplify the real-time simulation model. As such, bus 

650, which acts as the source bus, is assigned a voltage of 1.025 per unit and is linked directly to 

bus 632. Also, the load on bus 634 was moved to bus 633 and the pre-existing transformer 

between these nodes was removed. 

                                                           
11 I.e. resistance is the real component and reactance is the imaginary component. 

Wind Emulator 

Opal-RT 
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 The switch located between nodes 671 and 692 was removed and the loads on each of these 

nodes was combined. 

 The shunt capacitors originally positioned at Bus 611 and Bus 675 have been removed. These 

components add additional grid simulation complexity that is not required for this project. 

 Line and switch addition: in order to satisfy the Smart Distribution use case requirements (“200285 

34A Smart Distribution Requirement Specification”), which include alternate topologies, an 

additional line was added between Bus 633 and Bus 675 that included a switch. A switch was also 

added to the line between Bus 670 and Bus 671 in order to provide the alternate topology 

functionality. 

 Simplified line specifications12: a variety of line types and associated properties were specified in 

the original model. To simplify the testing configuration, only two types of line specifications were 

used in the OpenDSS circuit model and the NREL simulation environment. The original 

specification for the overhead line feeder from the substation, the ACSR ‘Dove’ conductor that has 

a 725 amp rating, was used on the same line segments13 as well as line segments 632 to 633 and 

633 to 675. The remaining line segments were assigned the ACSR ‘Raven’ conductor that has a 240 

amp rating. The line segments assigned the ‘Dove’ conductor have been highlighted green in 

Figure 32 and all of the line segments assigned the ‘Raven’ conductor are black. The amp ratings 

correspond to a thermal rating of 5.2 MVA and 1.7 MVA at the 4.2 kV voltage level of the Test 

Circuit for the ‘Dove’ and ‘Raven’ conductor, respectively. 

 As per Figure 32, a number of DER devices have been added to the circuit. Conceptual static grid 

hosting capacity considerations were included in the design, such that:  

o Prior DER deployment takes place without triggering ANM (i.e. firm interconnections due 

to existing circuit headroom capacity). Therefore existing DG on the circuit that is within 

static hosting capacity limits, and thus outside the ANM control scheme, have been placed 

at Bus 670 and 675 in the form of a biodigester and at Bus 646, 670 and 675 in the form 

of a PV system. 

o The Smart Homes have been added as a portion of the load on Bus 652 and Bus 611 – as 

a percentage of total residential homes. There will be no PHIL elements associated with 

the Smart Homes, but instead all DER at each location will be treated as aggregate 

prosumers integrated via an aggregator. Integration with the ANM scheme is with the sgs 

connect element to the aggregator. Given the simulated DER, the sgs connect will interact 

with the net data profile of the controllable aggregated smart homes. The amount of 

management allowed will be dictated by the number of Smart Homes included in these 

load profiles as well as the available resources assumed to be associated with the Smart 

Homes.  

                                                           
12 Line configuration data for the IEEE 13-node test feeder is available on the IEEE website 
(http://ewh.ieee.org/soc/pes/dsacom/testfeeders/). 

13 This includes the line segment between Bus 671 and Bus 680, which acts as the Smart Campus service conductor 
and was assigned the ACSR ‘Raven’ conductor in the Smart Campus use case. 
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o The DG added to Bus 680 within the Smart Campus boundaries corresponds to later DER 

deployment that is beyond static grid limits and would trigger the ANM deployment. 

Similar to the simulated Smart Homes, there will be no PHIL elements, but instead all DER 

within its boundary will be treated as a whole with the sgs connect element interacting 

with the net data profile of the Smart Campus.  

o Power hardware in the loop (PHIL) elements for the demonstration, ‘PHIL GEN1’ and ‘PHIL 

GEN2’, have been added to Bus 670 and Bus 633. These will be a PV and wind generator, 

respectively, with the inverters being the PHIL interface. 

In keeping with traditional distribution planning, with these modifications it was ensured that voltages and 
power flows across the circuit were within operational limits considering load alone (loss of all generation) 
prior to deployment of DG. Similar precautions were taken when adding the pre-existing DG to the circuit 
as well as the Smart Home PV systems. This is elaborated further in Section 6.3.4. 

6.3.3. Circuit Load Characterization 

The circuit load characteristics are presented in Table 4. The peak value was specified first based upon the 
pre-defined load values in the IEEE 13-Node Test Feeder model and according to the static capacity limits 
associated with the circuit when load needed to be added. The annual consumption and minimum load 
was then derived using a number of characteristic load profiles. These profiles were derived using high 
resolution Pecan Street datasets and from public data sources14 as necessary. The annual offline modeling 
and simulation of flexible interconnection used the same load and DER profiles as the data profiles used 
in the real-time PHIL simulation testing environment to provide direct correlation between the curtailment 
analysis and the results of the real-time testing. 

The load profiles included a number of homes aggregated together to represent a community: a quick 
service restaurant, a secondary school, an office building, a warehouse, an outpatient medical office, a 
small hotel, and a strip mall. At each node the particular composition of profiles were aggregated, 
normalized and multiplied to match the peak demand. A power factor was then assigned where it was 
assumed that a pure industrial customer would have a power factor of 0.92 and a strictly residential load 
a power factor of 0.98. 

These high resolution data sets are averaged to hourly profiles for the purposes of the curtailment analysis. 
Hourly profiles have been chosen because this is quite often the resolution of data provided by utilities 
from circuit metering. 

  

                                                           
14 EERE Commercial Reference Building profiles were used (http://energy.gov/eere/buildings/commercial-reference-
buildings) and modeled via EnergyPlus (http://apps1.eere.energy.gov/buildings/energyplus/). 
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Table 4: Circuit Load Characteristics 

Load Bus Peak Load 
[kW] 

Minimum Load 
[kW] 

Annual Consumption 
[MWh] 

Power Factor 

645 163 26 486 0.97 

646 222 56 715 0.96 

633 389 45 1161 0.95 

670 191 36 617 0.97 

671 1111 137 3807 0.93 

652 123 17 345 0.98 

611 164 31 495 0.97 

675 824 137 2895 0.96 

680 230 48 988 0.96 

 

6.3.4. Static Constrained Grid Definition 

As mentioned in Section 6.3.2, a series of changes were applied to the IEEE 13-Node Test Feeder in order 
to accommodate the requirements of the study. Using this modified IEEE 13-node feeder, the sub-sections 
below define the static grid hosting capacity of the Smart Distribution use case. These will be compared to 
and tested against the ANM enabled dynamic hosting capacity limits described in Section 8.3. 

6.3.5. Circuit Capacity for Load 

In order to ensure that the concept model circuit used within the testing correlated with typical 
distribution planning and was a sufficient representation of reality, it was ensured that voltages and power 
flows across the circuit were within operational limits considering load alone. This means adhering to a 
voltage range of 0.95 to 1.05 p.u. and respecting the thermal capacity of all assets. The peak load 
conditions presented in Table 4 sum to load demand of 3595 kVA. The substation transformer capacity of 
5000 kVA as specified in the original IEEE 13-Node Test Feeder model was maintained as a suitable capacity 
to accommodate this level of demand. 

Running a loadflow on the test circuit model under this peak load scenario, the lowest voltage experienced 
was 0.968 p.u. at Bus 675, and line segment 650 to 632 experienced the greatest thermal loading at 70% 
of the 725 amp current carrying capacity. Also, the power flow through the substation transformer was 
3746 kVA, or 75% of the substation transformer capacity. This represents a circuit with a realistic basis for 
operation. 

6.3.6. Unmanaged DG Interconnections 

In order to assess the limits of the static grid thermal capacity, a certain measure of unmanaged DG has 
been added to the distribution circuit. Under static hosting capacity requirements, a limit of 75% of the 
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thermal capacity15 of utility assets is utilized. The voltage range on the circuit must also be held within the 
range of 0.95 to 1.05 p.u. 

All generators outside of ANM control16 are presented in Table 5 along with the corresponding effect on 
the circuit characteristics. Due to the fact that all generators are outside of ANM control, the traditional 
FERC SGIP and utility limits of the circuit must be respected with all generators operating simultaneously 
at peak output under minimum circuit load conditions; this is the scenario used to quantify the voltage 
and service conductor loading. 

Table 5: DG Interconnections Outside of ANM Scheme (Peak Load with Minimum Generation) 

Name Capacity 
[kVA] 

PF Annual 
MWh 

PCC Voltage at PCC [p.u.] Service Conductor Loading 
[%] 

Normal 
Topology 

Alt. 
Topology 

Normal 
Topology 

Alt. Topology 

‘Smart Homes’ PV16 25 1 41 Bus 611 1.046 1.044 1 1 

‘Smart Homes’ PV16 40 1 66 Bus 652 1.046 1.044 1 1 

‘PV System 1’ 1400 1 2297 Bus 646 1.046 1.046 74 74 

‘PV System 2’ 550 1 902 Bus 670 
1.043 1.042 34 19 

‘Bio-digester 1’ 556 0.9 4380 Bus 670 

‘PV System 3’ 750 1 1231 Bus 675 
1.05 1.045 56 15 

‘Bio-digester 2’ 444 0.9 3504 Bus 675 

 

The total of the capacity listed in Table 5 sums to 3761 kVA. Under the minimum load scenario and the 
normal topology, this results in a real power export of 3068 kW through the substation, or a total power 
flow of 3070 kVA. This corresponds to 61% of the substation transformer capacity, which is below the 75% 
limit of 3750 kVA. These substation power export results also hold for the alternative topology with very 
minor differences due to a small increase in losses. 

To compare against the static grid limits presented here as well as to test the ANM control system, the 
sections below present the annual power flow curtailment results of the uncontrolled and then ANM-
controlled DER for the high penetration ANM enabled dynamic grid.  

 

                                                           
15 Utilities have been known to apply a limit of 20% of the thermal capacity. SGS has advised utilities and regulators 
that this is very conservative, and in one instance the utility changed its standards to allow 75% loading (without 
ANM). ANM enabled circuits have in the UK, and can for US utilities allow loading much closer to the design limit and 
even exceed it at times due to seasonal variations (e.g. summer thermal limits lower than winter). 

16 Smart Home PV systems included from the perspective of high residential rooftop PV deployment being assessed 
against traditional distribution planning criteria due to how integration via aggregators is not end-to-end control 
typical of larger ANM controlled commercial/community scale/utility DER. As per the body text, these are 
controllable via the aggregator controlling a combined solar PV + ESS prosumer. 
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6.3.7. On-site Demonstration Results 

The demonstration day primarily centered on the functional aspects of the ANM system. The 
demonstration started by showing the fundamental features of ANM; the ability of the ANM system to 
resolve a constraint in a real-time, deterministic manner. Upon a breach of a threshold at a measurement 
point, the ANM system correctly instructed devices to reduce their output, thus alleviating the constraint. 
This was shown for multiple measurement points. Another fundamental feature of the ANM system 
exhibited was the ability to fail safe. During the loss of communications, simulated by removal of the cable 
which connected sgs comms hub to sgs connect, the sgs connect recognized that it no longer was part of 
the wider ANM system and instructed the device to reduce is output to its failsafe value of 0kW.  

Following this, more advanced features were shown. The ability to detect a different topology and change 
the measurement point to generator relationship for that topology was shown. Switch positions, read from 
the simulated network in OPAL-RT, were read and processed to determine the topology. The final 
advanced functional element of the ANM system exhibited was dynamically changing thresholds at run-
time. Deterministic state-driven logic was shown to reduce the output of generators to a pre-defined safe 
zone, ensuring that the network was in a state ready to accept the new thresholds to prevent unnecessary 
breaches of thresholds.  

It should be noted that artificial loads and generation were introduced to the simulated network to 
demonstrate the actions and therefore the numerical results may appear to show significant load shifts 
atypical of a distribution network, and were therefore not the focus of the demonstration day. Figure 34 
to Figure 38 are from the actual day of demonstration and show the ANM system demonstrating its various 
functionalities to the advisory board.  

 

Figure 34: Demonstration of ANM Functionality to Advisory Board  
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Figure 35: Engineers R. Sims and F. Watson Demonstrating Live Control of ANM System 

 

 

Figure 36: ANM Demonstration of EV Charging Control Capabilities  
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Figure 37: F. Watson and R. Sims Demonstrating ANM Functionality  

 

 

Figure 38: F. Watson Explaining the ANM Functionality to the Board  
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6.3.7.1. Demonstration of effective grid-edge control of DER through ANM technologies  

As part of the on-site testing, the ANM system was evaluated through end-to-end and systems testing (see 
[5]) to ensure the control architecture and functionality allows distribution feeders to flexibly interconnect 
DER on constrained grids. The ANM controls thereby increase grid hosting capacity by enabling DER 
developers to interconnect via a flexible interconnection. This approach has been shown to be significantly 
more cost effective compared to firm interconnection via traditional T&D reinforcements. 

A suite of site acceptance and commissioning tests were performed to verify the ANM design meets 
functional and performance requirements. ANM escalating actions and failsafe operation represent two 
critical functionalities due to the Utility’s need to ensure grid safety and reliability, performance 
requirements traditionally guaranteed using T&D reinforcements.  

6.3.7.1.1. Escalating actions 

ANM escalating actions are carried out relative to the trim, trip, sequential trip, and global trip threshold 
definitions as seen in Figure 9 and Figure 10. Successful tests were carried out on-site where the current 
went above the trip threshold and the PHIL solar and wind DER were tripped according to priority order 
until the measured current fell below the Sequential Trip threshold, as seen in Figure 39. 

Figure 40 shows results from the day of demonstration when the trim threshold was breached at 10:41 
and the Sequential Trip threshold was breached at approximately 10:45. In both instances we see that the 
current was curtailed almost instantaneously by tripping the Wind Generator as the first line of curtailment 
in the escalating actions, and then tripping the Smart Campus as the second line of curtailment in the 
escalating actions. In Figure 40 we see the Wind Generator curtailed at 10:41 and subsequently at 10:45. 
Figure 41 demonstrates the Smart Campus being tripped to initially resolve the trim threshold breach and 
subsequently resolve the sequential trip breach. This test was repeated for the global trip scenario as well.  

 

 

Figure 39: Breach of Sequential Trip Threshold & Resulting Curtailment  
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Figure 40: Breach of Sequential Trip Threshold & Resulting Wind Generation Curtailment  

 

 

Figure 41: Breach of Sequential Trip Threshold & Resulting Smart Campus Curtailment  

Figure 42 demonstrates ANM’s functionality of the Response Timer, which communicates to the system 
that if the first generator curtailment does not bring the current below the safe threshold within a pre-
determined timeframe, the next sequential trip will occur autonomously. In Figure 42 we see that 
curtailing the Wind Generator did not bring the total current below the sequential trip threshold, and 
within a matter of seconds the ANM system autonomously responded by tripping the Smart Campus 
generation as well. This also illustrates the Principles of Access (POA) in that the Wind Generator falls at 
the bottom of the merit order followed by Smart Campus generation. It should be noted that the global 
trip threshold is set just below an Upper Limit threshold corresponding to physical limitations on the 
operation of the grid equipment corresponding to the protection settings for that asset. In this way, the 
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Global Trip should take action to avoid any nuisance tripping of the protection system, ensuring the asset 
remains in service. 

 

Figure 42: Curtailment of DER According to Principles of Access Merit Order 

 

6.3.7.1.2. Threshold group changes 

As referenced in Section 5.2.3, Figure 43 demonstrates the change of the Safe Threshold to a new 
threshold set. On the day of demonstration the new threshold set was initiated around 9:49:00, which 
resulted in the current being curtailed to below the newly defined Safe Threshold, at which point the new 
threshold set was accepted and put into service. 

 

Figure 43: Demonstration of New Safe Threshold Set  
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6.3.7.1.3. Fail-to-safe control 

The sgs connect and sgs core conjointly implement a number of fail-to-safe responses to system events. 
These failsafe responses are used to ensure that there is no possibility of overloading any network 
component in the event of failure of some or all ANM subsystems. The following functionality was 
demonstrated, along with advisory board member feedback from the demo:  

 Loss of communications to sgs comms hub: in the event of a loss of communications between sgs 
connect and sgs comms hub, sgs connect was configured to implement a failsafe response17 to 
ensure there is no possibility of network overloads from the respective DER. Following restoration 
of communications, the generator is automatically released by sgs connect in a stepwise manner 
to ensure safe grid operation during release. Stakeholder affirmed that this failsafe functionality 
is critical for grid safety, and on the other hand, automated restoration supports optimizing DER 
cost-benefits.  

 Setpoint monitoring and non-compliance: This failsafe response is designed to prevent issues 
associated with a generator failing to respond to setpoints issued by sgs connect. sgs connect can 
be configured to trip the DER following a period of non-compliance.  

 Stakeholder discussion moreover included instances of where fail-to-safe did not necessarily 
require tripping off generation. This agrees with how ANM was implemented for the Smart 
Campus, where for instance if communications are lost between the campus solar PV sgs connect 
and the sgs comms hub, then failsafe entailed reduction of the PV power setpoint to prevent 
export (i.e. load following and diversion to the battery energy storage). 

Overall these functionality perspectives and stakeholder discussions align with ANM’s critical systems 
control design principles: grid-edge distributed control technologies that are guaranteed to be predictable 
and repeatable in a time-bounded manner for deterministic operation based on available data.  

 

  

                                                           
17 Please note that a circuit breaker (CB) was not available at the time of ANM testing at ESIF. Fail-to-safe operation 
was therefore demonstrated by confirming zero setpoint functionality (i.e. no generation), which in some cases may 
be acceptable as well for the utility. 
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7. SUMMARY OF KEY OVERALL PROJECT OUTCOMES 

By achieving very high penetrations of variable renewable energy on a representative distribution circuit, 
this ANM Integration project demonstrated that distributed autonomous controls can effectively increase 
grid hosting capacity using Active Network Management (ANM) technologies. ANM’s autonomous 
distributed control doubled the capacity of interconnected wind and solar systems by managing the 
thermal and voltage constraints in real-time. These generators flexibly interconnected to the grid via 
ANM’s end-to-end control architecture, and were managed and coordinated with other smart distributed 
energy resources (DER; e.g. EVs, battery ESS, controllable load) to unlock the latent capacity of the system. 
As a smart grid technology for standardizing the grid integration of variable generation sources, ANM 
provides a cost effective alternative to traditional transmission and distribution (T&D) reinforcements. The 
testing utilized full grid simulation with DER power-hardware-in-the-loop and likewise ANM’s distributed 
central and grid-edge controls deployed in NREL’s Energy Systems Integration Facility (ESIF) on the 
Research Electrical Distribution Bus (REDB).     

The Smart Distribution use case provided an integrative perspective of ANM across all distribution grid 
DER device scales (incorporating aggregated Smart Homes and the Smart Campus) in order to showcase 
how these devices can support smart grid services to manage DER penetration constraints in a safe and 
reliable manner. Furthermore, this shows how the system can extend and scale under future grid 
modernization schemes.  

A project industry advisory board attended a one-day demonstration and set of workshops to assess 
project outcomes and evaluate the relevance of ANM for increasing the grid hosting capacity for clean 
energy. Their comments were captured and are embedded in the summaries that follow. 

The results from the three use cases, the set of project outcomes and suggested field deployment 
recommendations that emerged from this demonstration project are summarized in this final section of 
the report. We include an assessment of opportunities to deploy ANM in the field today to address existing 
interconnection challenges, as well as project advisor suggestions for investment in these smart grid 
techniques, including possible future pilots for advanced schemes. The following subsections reflect the 
overall project outcomes, lessons learned, and recommendations. 

7.1. Summary of Increase in Grid Hosting Capacity:  

For the Smart Distribution test circuit, that integrates elements of the two prior use cases, ANM enabled 
a doubling of interconnected generation. This presupposes the existence of commercial arrangements for 
flexible interconnection and comparable economics that have proven successful in the UK. The following 
calculations and descriptions apply:  

 3.665 MWs 'firm' generation interconnected (solar PVs, bio-digesters) – these generators utilize 
the static grid hosting capacity which does not require active control of these energy resources. 

 4.0 MWs 'flexible' generation interconnected (solar, wind) – these generators utilized the 
dynamic grid hosting capacity enabled through ANM end-to-end control that resolves the thermal 
and voltage constraints caused by these generators.     

o Note: there were also battery ESSs, and EVs (both campus and aggregated smart homes), 
but these are not accounted for in hosting capacity calculations so as to reflect worst-case 
curtailment risk consistent with the financial impact evaluation these DER developers 
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would undertake. Including them within this calculation would further increase the 
hosting capacity value due to the coordinated management of all the DER. 

 109% increase in generation interconnected: (4.0 MW) / 3.665 MW = 1.09, or 109% increase in 
generation interconnected. This increase in generation is relative to the thermal rating of the 
substation transformer, as well as minimum and maximum load.  

o Generation interconnected at 2.765 MVA above transformer thermal ratings: 3.765 MVA 
+ 4.0 MVA - 5 MVA = 2.765 MVA over the thermal rating of the substation transformer of 
5 MVA. 

o 116% over peak load: ([3.765 MVA + 4.0 MVA] - 3.595 MVA)/ 3.595 MVA = 116% over the 
peak load of 3.595 MVA. 

o 1289% above minimum load: ([3.765 MVA + 4.0 MVA] - 0.559 MVA)/ 0.559 MVA = 1289% 
above minimum load of 559 kVA. 

 Hosting capacity is set by the market: By offering DER developers the choice of firm or flexible 
interconnection, utilities allow hosting capacity to be set by the market (i.e. will the next 5 MW of 
DER accept the implied level of curtailment risk?). 

o ANM enabled circuits always allow DER developers the choice of firm versus flexible 
interconnection – DER developers can choose the most economic arrangement for their 
given site. This choice can be made by an individual DER developer, or in coordination with 
multiple DER developers seeking to interconnect at the same time. Under joint DER 
constrained interconnection scenarios, flexible interconnection is therefore not required 
if the developers can mutually agree on the allocated costs and benefits of firm 
interconnection reinforcements – again ultimately aligning with a market definition of 
hosting capacity characterized by DER developers determining the most economic grid 
integration relationship for their site location on the distribution grid. 

 Summary of major outcomes: 

o Flexible interconnection can support hosting capacity increases beyond >50% of peak 
load. Typically this represents a doubling of hosting capacity but will be dependent on 
specific project economics. 

o Hosting capacity shifts from being utility defined to being market defined.  

7.2. Enabling Active Distribution Circuits 

As detailed in Section 3.3 for conceptualizing grid hosting capacity, there is a need to consider static grid 
limits that constrain DER pentation based on worst case constraint scenarios and require full T&D 
reinforcement for increases in grid hosting capacity, and compare this with actively network management 
(ANM) schemes that unlock these grid assets to enable the dynamic grid hosting capacity through 
distributed automation controls. Key outcomes include:   

 There is a need to move from passively managed distribution grids to actively managed 
distribution grids: smart grid investments to enable DER grid services correspond with rising 
penetrations of solar, wind, and other clean energy DER. Yet, single large DG projects (e.g. greater 
than 500 kW) can have prohibitively high interconnection costs under the traditional passive grid 
integration scenarios. 
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 The ANM enabled dynamic grid hosting capacity allows for much higher penetrations of solar 
and wind energy: grid edge ANM controls can support variable renewable generation 
interconnection at greater than 50% of peak load through flexible interconnection arrangements.  

o As calculated in the prior subsection, for the Smart Distribution test circuit the ANM was 
capable of managing the DER at 116% above peak load and 1289% above minimum load. 

 ANM’s real-time grid edge controls are cost-effective smart grid investments to “unlock” latent 
grid capacity/assets: dynamic hosting capacity is set by the market, whereby DER developers 
choose firm interconnection with traditional T&D reinforcements, or flexible interconnection via 
grid edge autonomous control. Under flexible interconnection, these DER utilize the real-time 
hosting capacity of the circuit based on the existing grid assets that have been modernized by 
deploying ANM’s distributed control platform.  

o A shift to market defined hosting capacity assessments supports utilities and their DER 
customers to evaluate the better of traditional T&D reinforcement versus smart grid 
upgrades, thereby mutually determining the most economic scenario to meet grid 
modernization goals. 

o The ANM control architecture is designed to be extendable and scalable for future DER 
flexible interconnection. New generators can join ANM schemes through Principles of 
Access (POA) arrangements that extend control schemes to zones and nested zones for 
coordinated multiple DER and multiple constraint management. As DER penetration 
continues, ANM schemes can scale to include multiple instances of distributed controllers 
and also can be installed at central locations to ensure ANM coordination with system-
wide bulk management requirements.  

 ANM modeling and simulation of distribution circuits can be performed based on small and 
incremental improvements to current feeder models: system wide distribution circuit models 
are not required for short-term ANM schemes, and small and incremental investments in better 
models coincide with DER developer interconnection needs on constrained circuits. Flexible 
interconnection arrangements can be deployed on circuits with very limited historical data. DERs 
have successfully flexibly interconnected to the grid in the UK under limited historical data, and 
the NY REV ANM demonstration project18 is employing similar techniques. ANM modeling and 
simulation, and likewise, curtailment evaluation process for the Smart Distribution use case are 
detailed in the appendices, see also [8], [10], and [11]. Based on the project testing and 
stakeholder engagement, the following scenarios apply:  

o ANM modeling and simulation are carried out offline and are used to determine 
curtailment risk relative to defining ANM control system configuration settings. These 
settings are pre-configured on the ANM controllers and confirmed via on-site testing and 
DER commissioning.   

o ANM modeling and simulation typically only uses, and requires, 8760 hourly data profiles 
(load & generation) for the local distribution circuit where interconnection is taking place.  

                                                           
18 http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7B06E123A8-0151-4456-93BB-CCC9E87280F8%7D 
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 Higher resolution data sets are helpful but not required – they support 
curtailment risk sensitivity evaluations. For this project for instance, 1-min load 
and generation profiles19 were compared with 1-hour profiles: finding on the 
order of 0.5% annual curtailment variance between the two simulations. This 
variation is of the same magnitude as other factors (e.g. loss of comms, variation 
of intermittent generation from year to year, etc.) such that hourly data profiles 
are sufficient for near-term flexible interconnection opportunities. 

 Online firm and flexible circuit capacity models can be created that allow DER 
developers to receive fully automated preliminary interconnection studies. One 
such system has been deployed with success in the UK, and it is anticipated such 
systems will be effective in North America.      

o Reduced circuit models can be appropriate, and generally are all that is required, for ANM 
modeling & simulation given that the constraints caused by the flexibly interconnected 
generation are generally restricted to one or two locations. 

o ANM schemes can successfully be modelled and simulated for circuits without full 
historical data – in these scenarios a Monte Carlo simulation with typical load/generation 
profiles can be used. 

 Unknown circuit parameters (e.g. cable types/distances/impedance) can be 
addressed within the model by configuring the ANM control thresholds more 
conservatively. After one or two years of ANM operation, the analysis of actual 
operational data can determine if additional capacity is available (i.e. determine 
if thresholds can be increased for example by extrapolating the rate of change of 
ramp rates/etc.). 

 Summary of major outcomes: 

o There is a need to shift from passive/static grid integration of variable renewable energy 
to active/dynamic grid integration of clean energy. Through flexible interconnection, 
ANM techniques incorporate wind, solar, biogas, and other DERs into the distributed 
control operations of the grid. 

o ANM schemes can be deployed today on circuits whose circuit models lack historical data 
at the individual customer level and without the need for high resolution datasets (e.g. 
8760 hourly data profiles of interval metered data at the substation level). 

7.3. Robust Distributed Smart Grid Controls 

 ANM’s deterministic control manages constraints safely and reliably:  ANM manages DER 
through an end-to-end critical control systems approach that is time-bounded and guaranteed 
repeatable. As demonstrated through the INTEGRATE use cases can be done without the need for 
forecasting or energy storage. Although not required for initial ANM flexible interconnection 
schemes, very high penetration scenarios present forecasting, energy storage, and demand 
response with additional revenue opportunities. 

                                                           
19 High resolution profiles were required for the real-time grid simulation, but were down-sampled to hourly profiles 
for the ANM modeling, simulation and configuration tasks of this project.  
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o As part of the on-site testing, the ANM system was assessed through end-to-end and 
systems testing via grid simulation with PHIL (see [10]) to ensure the control architecture 
and functionality allows distribution feeders to flexibly interconnect DER on constrained 
grids. ANM is a distributed control architecture and deterministic controls scheme that is 
separate and complementary to ADMS/SCADA – see Section 8.8 for more information.  

o Key demonstrated ANM functionality included: 

 Real-time: second-to-second control to manage multiple DERs and multiple 
constraints in real-time. Modern grids need to handle fast-changing volumes of 
data. That is why the ANM control platform uses critical systems industrial 
controls technology, which include time-bounded control responses. 

 Autonomous: The need to respond rapidly to large volumes of data and under a 
second-to-second basis make operator-in-the-loop control impractical, thus ANM 
operates autonomously.   

 Deterministic: Control decisions must be predictable, reliable, safe, secure and 
repeatable. The tested ANM scheme applied feed forward control within finite 
state machines that operate via time bounded response windows, thus yielding 
guaranteed repeatable, deterministic control responses. DER response 
characteristics are pre-configured for their respective constraint contribution 
sensitivity factors.  

o Critical to achieving dynamic grid hosting capacity are ANM escalating actions and failsafe 
operation due to the Utility need to ensure grid safety and reliability through ANM smart 
grid techniques compared to traditional T&D reinforcements under such massive DER 
penetration levels. The following critical systems functionality included:  

 Escalating Actions: ANM escalating actions are carried out relative to trim, trip, 
sequential trip, and global trip thresholds. ANM control actions are furthermore 
taken based on the information available at that time – hence control actions and 
escalating actions ensure grid safety and reliability even under loss of 
communication scenarios. Several scenarios comport with the need for escalating 
actions: 

 Escalating actions are required given how ANM enables DER 
interconnection and grid equipment operation closer to the actual 
physical limits of the distribution grid. Upper limits reflect equipment 
ratings versus protection ratings, such that protection schemes should 
only operate when the ANM control actions are not implemented within 
a reasonable time-frame for the constraint event. 

 ANM’s second-to-second operations align with the needs for control 
during high-rate-of-change events (e.g. intermittent cloud cover; e.g. a 
strong wind gust). Distributed control escalating actions again ensure grid 
safety given that the duration of these events are fast enough in many 
instances to not even be registered by traditional SCADA/ADMS central 
controller response times. For example, a high rate of change ramp rate 
could necessitate a trip event given the very high DER penetration levels.  
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 As a part of escalating actions, there is a need for alarms and potentially 
operator action for higher-level system needs. Bulk power operator 
notifications might be necessary in order for them to assess if the changes 
in distribution power flow necessitate schedule changes for bulk 
generation. 

 Engagement with Utility and DER developer stakeholders are therefore 
critical during the ANM modeling & simulation and ANM design 
configuration phases in order to ensure control actions meet grid safety 
requirements while still maximizing DER interconnection economics. 

 There is an ongoing need for discussion and evaluation as ANM schemes 
expand, especially for outage and fault conditions. Will for instance pre-
fault or post-fault limits be observed in cases where constraints occur 
during outage or fault conditions?  

 Fail-to-safe control: the sgs connect DER device controller implements a number 
of fail-to-safe responses to system events. These failsafe responses are used to 
ensure that there is no possibility of overloading any grid component in the event 
of failure of some or all ANM subsystems. The following functionality was 
demonstrated:  

 Loss of communications to sgs comms hub: in the event of a loss of 
communications between sgs connect and sgs comms hub, sgs connect 
was configured to implement a failsafe response20 to ensure there is no 
possibility of network overloads from the respective DER. Following 
restoration of communications, the generator is automatically released 
by sgs connect in a stepwise manner to ensure safe grid operation during 
release. Stakeholders affirmed that this failsafe functionality is critical for 
grid safety, and on the other hand, automated restoration supports 
optimizing DER cost-benefits.  

 Setpoint monitoring and non-compliance: This failsafe response is 
designed to prevent issues associated with a generator failing to respond 
to setpoints issued by sgs connect. sgs connect can be configured to trip 
the DER following a period of non-compliance.  

 Consider failsafe modes that do not trip off generation: Failsafe 
commonly requires generators to trip off, but ANM schemes can be 
configured to restrict any export when sited with load. This aligns with 
how ANM was implemented for the Smart Campus, where if 
communications are lost between the campus solar PV sgs connect and 
the sgs comms hub, then ANM is equipped with failsafe functionality to 
reduce the PV power setpoint so the PV system will autonomously curtail 
export (i.e. load following and diversion to the battery energy storage). 

                                                           
20 Please note that a circuit breaker (CB) was not available at the time of ANM testing at ESIF. Fail-to-safe operation 
was therefore demonstrated by confirming zero setpoint functionality (i.e. no generation). 
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 Enhanced ANM features: 

o Alternative circuit topologies: SGS demonstrated ANM deployment on a test circuit that 
included an alternative topology configuration. DER can therefore flexibly interconnect to 
distribution circuits that have alternative configurations (e.g. for fault isolation schemes 
to restore service to the other customers). With topology detection ANM can manage the 
DER to safely transition from one configuration to the next.  

 ANM has also been deployed in the UK for a scenario where there were no 
constraints under the normal topology, but were constrained under the 
alternative configurations. Again, allowing flexible interconnection in a scenario 
that historically would have been uneconomic (or not allowed) for those 
generators to connect to the grid.  

 This can also be applied to address constraints that only occur under N-1 or N-2 
scenarios. 

o Dynamic threshold configuration: SGS demonstrated that thresholds could be 
dynamically altered by the grid operations engineer in a manner that safely transitioned 
the DER to the new thresholds. This feature makes it easier to change thermal thresholds 
to incorporate seasonal/weather related changes to equipment ratings.    

 Protection systems are still required: As indicated in Figure 2, ANM technologies bridge the 
control and time response needs of protection (local, <1s) and SCADA/ADMS (central, minute+). 
As such, ANM does not replace protection systems, which are designed consistent with the level 
of DER penetration. 

 Additional modeling may be required. Changes in settings to existing protection 
may be required. Additional protection may be required.  

 The deterministic and local control attributes of ANM device controllers might 
support adaptive protection schemes and FLISR: on-going studies and pilots are 
necessary.   

7.4. Flexible Interconnection is Relevant to DER Sites Today 

 High DER penetration grid constraint periods coincide with when the DERs are available to be 
controlled: ANM monitors the constraints and controls DER when constraints occur. Constraints 
are mostly all local: circuit-by-circuit, substation-by-substation, with voltage, power flow, 
backfeeding, etc., managed autonomously to ensure grid limits are not breached by the ANM-
enabled DER.  

o DER interconnection constraints are mostly all local: circuit by circuit, substation by 
substation. And while many DERs might be non-dispatchable resources, the problems 
they cause coincide with when they are available to be controlled: voltage, power flow, 
and backfeeding. ANM enables DERs to be controllable, even if they are not 
dispatchable21. As demonstrated in this project, significant increases in hosting capacity 

                                                           
21 ANM autonomous and real-time control of variable renewable generation necessitates the need to define 
“controllable” as distinct from “dispatchable.” Controllability of a given DER is a function of constraint contribution, 
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can be achieved for various grid configurations without also requiring dispatchable 
generation.   

 Flexible interconnection is relevant today: DER interconnection limits can be breached by 
individual projects and are not a symptom of large-scale solar and wind penetration, these limits 
just become more frequent at higher DER penetration levels. Flexible interconnection curtailment 
solutions are already proven to provide economic solutions for developers that can significantly 
increase hosting capacity. Curtailment risk for a few ten to a few hundred hours of the year can 
be much more economic for some developers compared to traditional T&D upgrades for a firm 
interconnection. 

o Static hosting capacity limits reduce the size of DER projects or result in projects being 
moved to other locations due to uneconomic grid integration costs. This results in less 
interconnection and encourages the idea that there are no interconnection or constraint 
issues (i.e. these sites are not tracked). 

o Given that traditional static hosting capacity assessments limit DER interconnection based 
on rare worst case scenarios (and very rare coincident scenarios), ANM technologies offer 
an opportunity to increase the utilization of existing grid assets when they align with DER 
developer grid integration needs. 

o A small amount of curtailment risk could be more cost effective compared to T&D 
reinforcement costs, and such approaches align with ANM flexible interconnection 
schemes based on similar efforts in Europe.22 Hence ANM commercial arrangements 
cannot be separated from the technical control system functionality, and utilities will 
need to consider how to balance traditional system reinforcements with smart grid 
investments. ANM offers an example of a small, marginal smart grid investment that 
supports DER developers needs today to help inform wider grid modernization 
investment analysis.  

 ANM allows for faster interconnection to constrained grids: DER developers value optimal sites 
with locational value for clean energy, but also value speed to interconnect and overall grid 
integration costs. New flexible interconnection solutions can therefore provide significant and 
timely increases in hosting capacity that are aligned with developers’ interests when distribution 
feeders are constrained. ANM schemes can be deployed in a matter of months to meet flexible 
interconnection requirements, as compared to traditional T&D reinforcements for firm 
interconnection that can sometimes take years. 

 

 

 

                                                           
current generation level, and ANM control response, whereas dispatchablity includes these characteristics and also 
incorporates rated capacity availability (i.e. fuel/storage availability that is not dependent on intermittent resources).  

22 See for instance IEA, 2016. “Re-powering Markets: Market design and regulation during the transition to low-
carbon power systems”, and also see: 
 http://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/Studien/verteilernetzstudie-
englisch,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf  



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 70 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

 Summary of major outcomes: 

o Hosting capacity constraints happen today (e.g. with a single large solar/wind site on a 
“weak” grid), and flexible interconnection would offer an alternative grid integration 
pathway for constrained generators. 

o ANM allows faster interconnection to meet DER developer commissioning timeframes 
and goals as compared to lengthy construction times for T&D reinforcement.   

7.5. Deployment Opportunities for ANM Today 

Flexible interconnection has proven effective in the UK for certain use cases where firm interconnection is 
cost prohibitive (e.g. 276 MW in operation with a few hundred more already under contract) – it is 
anticipated that ANM opportunities will be similar for the US. Given the degree of utility and DER developer 
learning required for ANM adoption, pilot projects are encouraged that include public dissemination of 
results and lessons learned. As the market matures best practice guides would need to be developed 
similar to the UK.23 

 General ANM adoption characteristics: 

o Large commercial/community/utility scale DER: 50kW+: Today’s ANM hardware 

requirements (e.g. sgs connect: RTU controller) are typically only cost effective for DER 

above 50kW, with a few hundred kW to MW sites being the most common in the UK.  

 ANM hardware cost reductions or hosting of ANM software on other DER 

equipment would be needed to cost effectively apply ANM to smaller DER – 

noting that there is a risk of potentially reducing hardware reliability and/or 

performance that would need to be considered within the controls configuration. 

o DER nameplate capacity causes constraints beyond FERC SGIP screens: The proposed 

DER name plate capacity is large enough that potential constraints are triggered due to 

going above FERC SGIP screens.  

 As mentioned in the prior section, these triggers can happen for large individual 

DER systems seeking to interconnect (e.g. 2MW solar array on a rural feeder) – 

thus high penetration challenges are present even for single DER deployments.  

 Short-term ANM deployment criteria that are applicable for field trial today: 

o DER flexible interconnection sites will be those with export power constraints that may 

also coincide with further upstream reverse power flow constraints. 

 Scenario feasibility will need to assess allowable reverse power flow use cases 

(e.g. changes to protection settings/sensitivity to allow reverse power flow). 

Examples include: N-1/etc. conditions and alternative topology configurations.  

 ANM is typically deployed today on balanced 3-phase circuits.  

o Mitigating constraints via real power (P) setpoint control of DER, typically inverter based 

interconnection, is the most simple control scenario: direct curtailment of DER. 

                                                           
23 http://www.energynetworks.org/modx/assets/files/news/publications/1500205_ENA_ANM_report_AW_online.pdf 
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 While P control is more simple for Utility adoption of ANM schemes (i.e. less risk 

to grid operations control), real-power curtailment directly impacts DER revenue. 

 For thermal constraints, P control schemes are easy to adopt within LIFO 

Principles of Access (POA) frameworks. 

o sgs connect (e.g. RTU) devices may replace the need for a separate Direct Transfer Trip 

(DTT) relay. 

 Beyond DTT expense, extensive use of DTT schemes has scalability issues when 

the DER trip scenarios start interfering with each other. These issues can be 

circumvented by providing DTT functionality as part of the ANM system. Among 

other criteria, ANM was originally developed in the UK to address this lack of 

scalability of intertripping, which has similar performance requirements to DTT. 

o Interconnection causing voltage rise issues are likely to be the most common constraint24 

to trigger ANM adoption in North America.  

 Early field deployments are likely to be limited to voltage rise management at the 

point of common coupling (PCC) for single large DER (i.e. multiple DER 

coordinated volt/VAR management is a longer-term use case as mentioned 

below). 

 Initial deployments may coordinate with grid tap changer/voltage 

regulation equipment control schemes. Inverter control be configured so 

as to minimize extensive tap changes (i.e. minimize costly replacement 

due to shortened life from repeated tap changes).  

 Coordination with tap changers, capacitor banks, and/or line drop 

compensation schemes might be required, hence DER provision of 

Volt/VAR use cases in the short-term are likely to use single/a few DER so 

as to fully test the scheme before expanding to multiple DER.  

 Short-term deployment scenarios will be limited to ensure operational 

grid reliability goals are met.  

 For voltage constraints, a pro rata/shared Principles of Access (POA) framework 

might be the most appropriate for expanding the scheme for future generators. 

This is due to how future ANM generators can disproportionally affect the original 

ANM generator’s relationship to the voltage constraint. 

 Reactive power (Q) control may be more effective at managing voltage rise 

constraints compared to P control, yet not all DER have this capability. 

 Initial field trials may only use stepped power factor (PF) control due to 

its simplicity, ease to plan for, and ease to understand. 

 Dynamic P & Q setpoint control is more flexible and powerful for a wider 

variety of situations.  

                                                           
24 See for instance: Reno, M.J. and Broderick, R.J., (2016). “Statistical Analysis of Feeder and Locational PV Hosting 
Capacity for 216 Feeders.” No. SAND2016-6874C. Sandia National Laboratories (SNL-NM), Albuquerque, NM. 
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o Utilities might require controls and HIL grid simulation to validate 

factory assessment testing. 

o Early field deployments should push for this functionality to 

ensure operational performance before wide deployment. 

 Oversizing the inverter to make full use of the Q control needs might be 

necessary depending on the nature of the voltage constraint. 

 Incentivizing Volt/VAR support from DER may be required to support creating 

ancillary markets – early pilots could test some of these market functions.  The 

economics of Q control are less clear. 

 Long-term ANM deployment criteria that will require more simulation and lab testing with more 

restrictive field testing: more advanced ANM schemes will require more modeling/simulation, 

more controls & HIL grid simulation for factory acceptance testing, and thus more targeted pilot 

projects to mature these approaches before wider field deployment. These include: 

o Schemes that address observability and controllability for underdetermined distribution 

circuits such as Distribution State Estimator, may enhance the performance of ANM or 

limit the monitoring and communication requirements. We should investigate conditions 

under which this a DSE should be leveraged. 

o Examples of long-term ANM deployment scenarios include:  

 Multiple DER providing dynamic volt/VAR in coordination with grid voltage 

regulation equipment (and possibly line drop compensation), with higher 

complexity when some DER are absorbing and some are injecting VARs. Stable 

reactive power flow schemes will need to be developed. 

 More advanced scenarios will include substation configurations where 

the tap changer controls voltage on multiple feeders, but DERs providing 

volt/VAR are only on one feeder.  

 Volt-Var Optimization (VVO) or Conservation Voltage Optimization (CVO) for 

underdetermined distribution circuits to support minimizing losses or energy 

consumption, with higher complexity when DER providing volt/VAR are included 

in the scheme. 

 Use of ANM to mitigate voltage flicker on long rural feeder. 

 Deploying ANM schemes on underdetermined unbalanced distribution circuits: 

incorporating, for instance microPMUs with an ANM scheme. Investigate 

developing ANM schemes to aid in phase balancing through control of DER. 

 Role of ANM in multiple points of common coupling (MPCC) utility / community 

microgrids, with higher level complexity for synchronized macrogrid 

disconnection (i.e. transitioning) and also island mode operation for weak grids, 

and under fault conditions (N-1, etc.) 

 ANM interfacing for adaptive protection and distribution automation schemes, 

For instance, new network protector schemes for DER reverse power flow 

scenarios on secondary mesh grids would need to be piloted. Adaptive 
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configurations as well as coordination among zonal protection equipment will be 

required, and ANM’s distributed finite state machine control architecture aligns 

well with the deterministic needs for effective protection.  

 Piloting this functionality on secondary mesh grids today aligns with how 

adaptive projection will be needed in the future for radial grids with very 

high DER penetrations. 

 Application of ANM to manage DER during fault location, isolation and 

system restoration (FLSIR) schemes. 

o Very high DER penetrations will start disrupting transmission systems markets and in some 

scenarios real-time operations, for instance balancing and ancillary services – thus 

requiring T&D coupled forecasting and potentially coordinated control. Modeling and 

simulation of TSO-Distribution interfacing should be investigated and lab tested today to 

consider effective coordination and systems design characteristics, especially if a 

Distribution System Operator (DSO) emerges (i.e. the TSO-DSO interface) 

o ANM applications for utilities of the future: as a second-to-second data and control layer 

within grid systems, ANM can support grid modernization use cases today. The following 

key scenarios apply:  

 DER-to-DER markets test DSO implementation and operation that support 

transactive distribution grid schemes. It should be noted that early ANM schemes 

exemplify DER-to-DER market situations, where matching load/storage with 

generation curtailment would increase the value for all DER while utilizing smart 

grid techniques valuable to all ratepayers. Given flexible interconnection 

inherently includes curtailment risk, this property reflects one of the highest value 

propositions for testing DER-to-DER market animation – as anticipated for 

example in NY REV’s Flexible Interconnection Capacity Solution (FICS)18 

demonstration project.  

 ANM’s existing control architecture supports import constraint management (i.e. 

demand response; peak shaving; demand side management)25 in addition to 

export, reverse power flow, and voltage constraints.  

 Beyond allowing operation closer to equipment ratings due to ANM’s 

autonomous, deterministic, real-time control framework, ANM enhances 

demand response schemes by mitigating oversubscription and fully 

incorporating flexibly interconnected variable renewable generation 

within peak demand operational scenarios. It is anticipated that this might 

also thereby reduce the use of high emissions peaking plants. 

                                                           
25 Note: this functionality was tested in factory simulation during the Smart Campus use case, but was unable to be 
site tested on the ESIF grid simulator due to time constraints. 
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7.6. Other Considerations 

 ANM platforms support grid modernization today: ANM deployments align with grid 
modernization efforts to actively manage distribution resources, and such approaches augment 
the ongoing work on LMP+D+E and transactive grid initiatives26, moreover they support efforts 
for utilities to develop alternative revenue streams in light of changing regulatory structures.  

o Given that traditional static hosting capacity assessments limit DER interconnections 
based on rare worst case scenarios (and very rare coincident scenarios), ANM 
technologies offer an opportunity to increase the utilization of existing grid assets when 
they align with DER developer constrained grid integration needs. These smart grid ANM 
investments deploy a real-time controls and data platform that can be extended to 
include DER-to-DER markets and other transactive grid and nodal pricing DSO market 
schemes. 

o ANM systems should be deployed utilizing existing infrastructure where available and 
cost effective. Investments for ANM should be targeted to meet specific DER deployment 
needs with interoperability, cybersecurity, extendibility, and scalability in mind.  

o Coordinated distributed and centralized data management – typical ANM controllers 
allow local data logging up to 1 month, with data consolidation to necessary distilled data 
required for transmission to a central repository. Central/remote database 
synchronization is available upon restoration of communications. 

 Commercial arrangements for flexible interconnection cannot be considered independent of 
the technical control requirements: beyond a DER developer choosing between a firm and 
flexible interconnection, commercial arrangements for DER access to the grid need to be 
contractually defined at the time of interconnection and through a framework that extends to 
future generators with clear grid access rights defined. The following key attributes apply:     

o Firm interconnection DERs are given full access to the grid.  

o Flexibly-interconnected DERs are given access to the grid based on a Principle of Access6 
(POA) scheme. POA frameworks relate the risk of curtailment to the control priority 
ordering for resolving constraints from multiple DERs. Example POA schemes include: 
Last-In-First-Off (LIFO), Shared Percentage, Generator Size, Greatest Carbon Benefit, 
Market Based, Technical Best, Most Convenient, Combined/Hybrid Approach.  

 The technical portion of the POA specifies the POA scheme and maps directly to 
the control priority stack pre-configured in the ANM system.  

 The commercial portion of the POA specifies where the DER developer resides 
within the control priority stack and the associated annual curtailment risk 
(percent reduction of estimated generation).  

 Curtailment estimates are given to the DER developer as part of their evaluation 
to accept a flexible interconnection contract. Assumptions, analysis 
methodology, and model characteristics are all included in the estimate. DER 

                                                           
26 See for instance NY DPS effort here: 
 http://documents.dps.ny.gov/public/MatterManagement/CaseMaster.aspx?MatterCaseNo=15-E-
0751&submit=Search+by+Case+Number 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 75 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

developers have the right to request the full model (data sets, load/generation 
profiles, distribution grid model) for independent 3rd party due diligence 
evaluation of curtailment risk, including performing sensitivity and scenario 
analysis. 

 Additional information for the POA scheme and curtailment estimate approach 
used for the Smart Distribution use case can be found in Section 6.3 and 
Section 8.1. 

 In terms of the initial investments and annual costs for ANM schemes, it should 
be noted that a variety of shared versus separate cost frameworks have been 
utilized in the UK and there is on-going evaluation. There will be a need for similar 
considerations in the US that reflect the mutual interests of all stakeholders 
(utility, DER developers, ratepayers, society).  

 Cybersecurity requirements and mitigation techniques need to be addressed throughout the 
ANM design, deployment, and operation processes: The foundations of achieving a secure, 
stable ANM platform are anchored in the culture and business practices adopted by both SGS and 
the Utility – see [9] for more information.  

o SGS has committed to operating a formal, documented integrated management system. 
SGS's management system is certified to ISO 9001, this provides the framework upon 
which to establish, verify and continually improve business procedures that ensure the 
intended cybersecurity outcomes and objectives of SGS technology are met.  

o As part of the integrated management system, SGS has established an Information 
Security Management System (ISMS). The ISMS is focused on establishing and meeting 
the security objectives of SGS and its stakeholders. SGS has used the ISO27001 standard 
to build its ISMS and the system also draws heavily from the NIST 800 series of guidelines 
and NERC-CIP. SGS was awarded ISO 27001 in August 2016. 

 Incremental and diverse communications investments triggered and aligned with DER developer 
needs and ANM deployments: ANM schemes have been applied successfully across a myriad of 
communication systems with loss of communications representing one of several curtailment 
uncertainty variables. Two things to consider for communications quality are (1) the marginal 
reduction in curtailment from improved communications availability, and the (2) varied ownership 
options that can exist within an ANM scheme. 

o Extensive high speed fiber communications are not required for ANM. Instead 
communications investments to each ANM component should be considered for the value 
that improved communications brings to the ANM scheme. Improved communications 
can support: 

 Faster and more reliable communications to grid constraint locations on the utility 
side of the meter ensure DER devices maximize their access to the grid: further 
unlocking grid equipment operation margins for increased dynamic hosting 
capacity levels. 

 Quicker DER release times after a constraint has been cleared. 
 More marginal economic value might be realized when fiber or other high 

speed/high reliability communications are used for constraint measurement 
points. However, if these communication media are required to meet DTT 
requirements, then obviously they can be leveraged for ANM. 
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 Communication investments might only be required/economic local to the ANM 
integrated equipment, but this approach aligns with how the constraints that 
need managed are local and ANM is a distributed control approach.  

o The Utility and DER customer should decide if mixed communications ownership models 
mutually address each other’s risk.  

 Having the DER developer own the communications to their DER site controller 
might for example align risk better: a flexibly interconnected DER site would have 
the responsibility for, and thus the incentive to improve communications to their 
site when loss of comms to the site increases curtailment to an uneconomic level.  

 Systems integration and continuing to support interoperability at each control domain layer: 
there is an on-going need to have interoperability communications and controls signals industry 
wide, and at all layers: DER device, distributed controls, and central controls. There is moreover a 
need to consider ANM integration across utility systems. Additional information can be found in 
[4] and [7], with the following key considerations: 

o ANM’s distributed control architecture aligns with recent developments around OpenFMB 
and other industry efforts to ensure field and enterprise systems integration 
interoperability across all DER and grid equipment devices. 

o Systems configuration needs to be approached from a management of complexity 
perspective, as well as utilizing risk identification and mitigation strategies. ANM 
deployments need to be considered from a systems of systems approach that includes 
hierarchical control requirements. Systems integration requirement at a minimum needs 
to consider ANM interfacing with regard to: 

 Systems integration: SCADA/DMS/EMS | Measurement Points |Field message bus 
| Local Control Systems 

 Teams involved: Commissioning | Real-time systems | IT | Network Planning 
 Systems involved: Up and downstream communications | Cybersecurity | 

Firewalls | Databases | Data protection & privacy | Standards and protocols  
o Enterprise integration and architecture should be considered early within the ANM 

scheme. Figure 44 provides an example of the systems to consider. 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 77 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

 

Figure 44: Enterprise Integration of ANM 

 

o For the Smart Distribution use case, integration options included: 
 Serial and IP-based: ModBus | DNP3 
 IP-based only: ICCP/TASE.2 | IEC 61850 | OSIsoft PI | OPC | DDS 
 Gateway adapters: Apache Camel | MQTT | AMQP | XMPP | JMS 
 The following adapters are under development: CIM/XML | CIM/RDF 

 Prevalent flexible interconnection will impact transmission systems operations: regions with 
extensive ANM-enabled DER will export power. This exported power will need to be considered in 
TSO balance and reserve margin markets. 

o While outside the scope of this project, future coupled transmission-distribution systems 
modeling is suggested to characterize impacts on markets as well as support integrated 
systems planning for balancing smart grid investments with traditional T&D 
reinforcements. 

 Cost-Benefits of flexible interconnection are site specific and relative to the DER developer’s risk 
profile. When connecting to constrained grids, flexible interconnection is generally 60-90% more 
cost effective compared to traditional T&D reinforcements27. When extrapolating these results 
system-wide for grid modernization over the coming decades, a 30% savings is estimated.28  The 
following table includes key ANM cost-benefit categories: 

                                                           
27 See for instance the deliverable reports from the Flexible Plug & Play (FPP) project from UKPN, available here: 
http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-2-projects/Flexible-Plug-and-Play-(FPP)/   

28 See TRANSFORM model from Ofgem’s Smart Grid Forum: Workstream three (WS3): Developing networks for low-
carbon. See also footnote 22. 
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Table 6: Cost and Benefits of ANM Enabled Flexible Interconnection of DER 

In
ve

st
m

e
n

ts
 /

 c
o

st
s 

Category Description 

Operational IT & Telecoms 
Data monitoring and acquisition, including communications; if not 
already available 

Operational IT & Telecoms ANM/smart grid technology CAPEX 

Operational IT & Telecoms DER host site ANM communications 

Network Design & 
Engineering Data gathering & verification labor 

Network Design & 
Engineering Data integration for system modeling labor 

Network Design & 
Engineering ANM/smart grid technique modeling and simulation labor 

Reinforcement New/increased O&M costs (distribution equipment) 

Technical losses and other 
environmental Higher system loss due to reverse power flow 

Engineering Mgt & Clerical 
Support Design, testing, integration, commissioning 

Engineering Mgt & Clerical 
Support On-going support & service 

Project Management PM throughout 

B
e

n
e

fi
ts

 

Interconnections ANM system fees, where relevant 

Reinforcement 
Deferred/mitigated traditional distribution system reinforcement 
costs 

Operations Additional DER contributing to security of supply 

Existing assets Higher asset utilization 

So
ci

et
y 

Losses Net losses 

Environmental  Environmental benefits (e.g. CO2 etc.) 

GDP / jobs 
Additional DER developer business; faster interconnection; highly 
skilled technicians and engineers employment 
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8. APPENDIX 

8.1. Background Information on the Curtailment Assessment 

Overall ANM unlocks the dynamic grid hosting capacity for DER – see Section 3.3 for background 
information on conceptualizing grid hosting capacity under static “fit and forget” perspectives compared 
to ANM enabled dynamic “managed” perspectives. 

Having established the circuit definition as well as the constraints present due to the addition of DER and 
load demand restriction, an annual estimate of the ANM actions associated with a given installed DER 
capacity can be derived. To do so requires that at each time step, all required actions to relieve constraint 
breaches are recorded to provide an estimate of the actions that the ANM system might incur in reality 
over the entire year.  

8.1.1. Curtailment Assessment Methodology 

Curtailment assessments use time-series historical circuit data, representative of the expected range of 
demand and generation conditions, to approximate the power system conditions at constraint locations 
on the circuit. This allows the identification of cases where constraints will arise and thereby simulate the 
control actions required to manage those constraints. This involves performing a large number of 
calculations to represent a sufficiently broad range of circuit conditions, reflecting the frequency of such 
conditions occurring. In terms of constraint impact locations, interconnecting DER to a constrained circuit 
generally causes thermal and voltage issues local to the DER location, as such vast and complex circuit 
models can typically be simplified to those zones sensitive to the DER’s constraints. The curtailment 
assessment methodology applied for a specific case will depend upon the availability of input data, power 
system circuit models, and the complexity of constraints that are to be studied.  

8.1.1.1. General Approach 

At a minimum, the historical time-series profiles of aggregated power flows at the constraint location(s) 
and time-series profiles of ANM generator export are required. Sensitivity factors can then be used to 
approximate worst-case power flows, prior to ANM control actions, at each constraint location. A simple 
spreadsheet analysis can then be applied to estimate overall curtailment. The following figure conceptually 
presents the simulation layers for performing a curtailment analysis. 
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Figure 45: Simulation Layers for Curtailment Assessment Modeling 

In the event that a circuit model is available as well as historical time series information for vital elements, 
such as loads and existing generation, an iterative approach can be employed. This entails integrating the 
historical data into a power simulation software and performing load flow simulations across each time 
step under study. A more accurate estimate of the required curtailment is provided through this approach. 
Given the large number of simulations to be run, the aid of computer scripts is required to produce the 
results. SGS has developed in-house modeling tools designed specifically for this purpose. 

8.1.1.2. Calculation of ANM Actions 

Initial power flow estimates at the constraint location(s) are compared with asset operational limits for 
each time step; in cases where the constraint threshold is exceeded, a high-level simulation of ANM control 
actions is performed, modelling the curtailment of ANM generators with reference to ANM scheme 
operational characteristics. The constraint threshold is typically set at a defined design factor below the 
actual operational limit of the constraint. Summing the ANM actions over all time steps for each DER 
reveals an estimate of the amount of action required. 
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8.1.2. Curtailment Analysis Assumptions 

A number of discrepancies exist between the modeling associated with a curtailment analysis and the 
operation of an ANM system in the field. These discrepancies often require that an assumption be made 
or corrective measurement applied. Such actions are performed in a fashion that intends to capture a 
conservative estimate of the number and magnitude of control actions that the ANM system is likely to 
incur over the course of a year.  

Below is a list of the discrepancies that exist as well as a description of the relevance toward this 
demonstration project and any associated corrective measure that is applied as a result. 

 Operating margins: In practice, the ANM system performs increasing control actions based on the 

level to which the constraint breach occurs. This is done to ensure the ANM system respects 

protection limits when bringing circuit operating conditions a safe distance away from the 

constraint threshold. The ANM system then also incrementally releases export capacity back to 

the DG over specified time intervals. This is done to prevent cycling of the DG. In order to account 

for the operational nature of the ANM system within the curtailment analysis, a safety factor is 

added to a given constraint’s threshold instead of controlling DER directly to the constraint 

threshold.  

 Sensitivity factors: A DER element under the control of an ANM scheme is assigned a sensitivity 

factor toward each of the constraints it is being used to manage. Due to the time constraints 

associated with the real-time control aspect of ANM and to ensure that it operates in a 

deterministic fashion, it is currently not feasible to calculate this sensitivity factor in operation 

based upon the circuit conditions at the time of a constraint breach. A curtailment analysis that 

runs a load-flow based upon current conditions is able to determine the exact level of control 

required. In operation, power export capacity is decreased in iterations through ANM until the 

targeted limit is achieved. This can have the effect of extending the amount of time required for 

the ANM system to limit the export capacity to an appropriate level. This however would be 

balanced with a delayed start to the release of export capacity and no corrective measure is taken 

within the curtailment analysis. 

 Load profile derivation29: metered data is typically not available for each load on a given circuit. 

Instead, characteristic load profiles are derived to the extent possible using historical information 

from existing metered data sources on the circuit (e.g. substation transformer) and the load 

qualities available (e.g. peak demand, annual consumption, customer type, etc.). The more 

historical data being used to form the basis of the curtailment analysis the better. The loading on 

the circuit can vary between years. At minimum one calendar year should be considered. To 

ensure that a conservative curtailment estimate is being used, caution is always taken toward 

incorporating a low estimate of the load on a given circuit to provide a worst case curtailment 

estimate. It is also assumed that the nature of the load on the circuit does not change over the 

                                                           
29The annual profiles being used for the curtailment analysis being performed for the Smart Distribution are derived 
directly from the high resolution data being used within the real time simulation environment. Therefore, measures 
to ensure that a conservative profile is derived for circuit elements need not be applied to the profiles being used for 
the curtailment analyses performed for this study. 
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project lifetime. This of course may not be the case (e.g. relocation of industrial customer) and can 

affect future curtailment results. Sensitivity analyses can be run to try to predict such effects. 

 DG profile derivation: A best estimate can be made based upon historical conditions, but there is 

a certain measure of uncertainty inherent to predicting the output of a resource dependent DG. 

To compound this uncertainty, the historical data attributed to a given project site is often derived 

through the correlation of data from an existing nearby installation. This is accommodated by 

adding an additional measure to the safety factor associated within the operating margins above. 

This has the same effect as assuming higher power export during constraint conditions, without 

increasing the overall magnitude of power export. Similar to the loading on the circuit, the more 

historical data being used to form the basis of the curtailment analysis the better, since the 

resource supporting the generation can vary year to year. At minimum, one calendar year should 

be considered so as to capture seasonal variations in generation. 

 Data cleansing/ profile averaging: Data profiles provided by the utility are often incomplete and/ 

or contain errors within the data. These must be removed and assumptions made to correct these 

inconsistencies. Furthermore, a certain level of error is inherently associated with the averaging 

of data, where constraint breaches within an interval are masked. This is compensated for by both 

taking conservative assumptions toward filling in data as well as further adding to the safety factor 

associated with the operating margins. 

 Communications availability: The reliability of the communication channels between sgs connect 

and sgs comms hub depend upon the communication technology available for an ANM 

deployment scheme. When this communication link is lost, logic is contained within sgs connect 

that places the DER into a fail-safe mode, which in some instances can mean full shut down. 

Depending upon the reliability factor of the communication channel and fail-safe settings of the 

DER, a loss factor can be applied to the final output of the curtailment analysis. 

 ANM maintenance: The ANM system itself requires maintenance. As the nature of the conditions 

on a given circuit change, the parameters that ANM uses to dictate control of DER may need 

updating. This means that the ANM system is put offline periodically to update these parameters, 

but more importantly, increased levels of curtailment could be the result prior to updating the 

parameters. A small correction factor is applied to the result of the curtailment analysis to account 

for this fact. 

 Microgeneration presence: The initial curtailment analysis takes into account all loads and 

generators present on a circuit at the present time. The uptake of microgeneration on a circuit 

that is outside the purview of ANM can erode the generation capacity available over time as 

compared to the curtailment analysis. This scale of DG currently does not need to contract under 

a flexible connection scheme, and will not for the foreseeable future, but it does remove capacity 

on the circuit. If enough microgeneration connects, curtailment levels for existing ANM contracted 

generation could experience an increase. Uptake scenarios can be implemented to predict this 

influence. 
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 Principles of Access (POA): the order in which DER are utilized toward the relief of a given 

constraint must be established. If this includes DER from different owners, this priority stack is 

typically governed by the principles of access, which could be Last In First Off (LIFO). 

8.2. Curtailment Assessment Application 

8.2.1. Annual Load and Generator Profiles 

The hourly load and generation profiles for the Smart Distribution ANM scheme are presented below. This 
includes the aggregate load on the circuit as well as the output profile for the 500 kW ‘PHIL GEN1’ PV 
generator, and a normalized output profile that represents the uncontrolled output from all firm 
interconnection generators (PV and biodigesters). 

 

Figure 46: Annual Smart Distribution Circuit Load Profile (note scale shading) 
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Figure 47: Annual Uncontrolled 500 kW Wind Generation Profile (note scale shading) 

 

 

Figure 48: Annual Uncontrolled Normalized PV Generation Profile (note scale shading) 

 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 85 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

These annual profiles are processed on a coincident per interval basis through the OpenDSS power 
simulation software to reveal resultant power flows and voltages across the network. ANM actions on 
distributed energy resources are then simulated within each interval as required to resolve any breaches 
of the constraint zones identified in Section 8.5. The predicted actions of the ANM system on each of the 
distributed energy resources is known as the curtailment assessment and is described in further detail in 
the Appendix. 

8.3. Curtailment Assessment Results 

The curtailment results pertaining to each of the four zones identified as being part of the ANM control 
scheme in Section 8.5 are presented below. The results of this curtailment assessment are subsequently 
discussed and the appropriate time intervals selected to realize the objectives of the Smart Distribution 
use case through testing in the OPAL-RT system. 

For those applicable constraints, the curtailment assessment is presented for both the normal topology 
case as well as the alternate topology separately across the entire year. In practice, an estimate toward 
the duration of time that the alternate topology will be present is required to properly estimate the 
expected curtailment of a particular generator, or utilization of a particular resource. 

8.3.1. Substation Thermal Export Constraint 

The net power flow through the substation transformer constraint prior to ANM controlling any resources 
in response to the 4.5 MVA power export limit, as defined in Section 8.5, is presented below in Figure 49.  
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Figure 49: Net Power Import through the Substation Transformer Prior to ANM Control (note scale 
shading) 

The net power flow through the substation transformer constraint under the alternate topology is nearly 
identical to the normal topology case prior to applying the ANM Smart Distribution control scheme. It is 
therefore also represented by this figure. 

In order to limit the power export on the circuit to 4.5 MVA, Table 7 presents statistics describing the 
control actions applied by the Smart Distribution ANM control scheme to each of the 10 dedicated 
resources as presented in Table 13.  

The thermal export constraint at Line 671 to 675 is present under the alternate topology and this 
constraint is nested within the substation thermal export constraint. Being nested within the substation 
thermal constraint, it is assessed first. This changes the net flow at the substation when assessed by the 
ANM control scheme and also the required control actions as compared to the normal topology case. The 
updated statistics describing the control actions on the dedicated resources for the alternate topology is 
therefore presented separately in Table 7. 
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Table 7: Substation Thermal Export Constraint Control Action Summary 

Resource Total Number of Control 
Actions 

Total Annual Energy Adjustment 
via Control Actions [MWh] 

Normal 
Topology 

Alternate 
Topology 

Normal 
Topology 

Alternate 
Topology 

Smart Campus PV 71 27 -35.0 -2.6 

Smart Campus Flexible 
Load 

76 0 3.7 0 

Smart Campus ESS 96 0 9.6 0 

Smart Campus EV 116 0 6.4 0 

PHIL GEN1 221 136 -71.1 -30.4 

PHIL GEN2 311 263 -68.6 -56.3 

Smart Homes Prosumer 
Bus 611 

320 41 6.3 0.7 

Smart Homes Prosumer 
Bus 652 

329 35 10.4 0.9 

Smart Homes EV Bus 611 338 28 8.0 0.6 

Smart Homes EV Bus 652 356 30 12.5 0.8 

 

8.3.2. Line 671 to 675 Thermal Export Constraint 

The net power flow through the line segment from Bus 671 to bus 675 prior to ANM controlling any 
resources in response to the 1.56 MVA power export limit, is presented below in Figure 50. This constraint 
only exists under the alternate topology and is the first constraint to be addressed when the alternate 
topology is present. 
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Figure 50: Net Power Flow through Line 671 to 675 Prior to ANM Control (note scale shading) 

In order to limit the power export through this conductor to 1.56 MVA, Table 8 presents statistics 
describing the control actions applied by the Smart Distribution ANM control scheme to each of the 9 
dedicated resources as presented in Table 13. 

Table 8: Line 671 to 675 Thermal Export Constraint Control Action Summary 

Resource Total Number of Control 
Actions 

Total Annual Energy 
Adjustment via Control 
Actions [MWh] 

Smart Campus PV 197 -58.7 

Smart Campus Flexible Load 220 10.4 

Smart Campus ESS 281 27.7 

Smart Campus EV 340 18.8 

Smart Homes Prosumer Bus 611 360 7.0 

Smart Homes Prosumer Bus 652 398 12.1 

Smart Homes EV Bus 611 412 9.6 

Smart Homes EV Bus 652 445 15.5 

8.3.3. Line 632 to 670 Thermal Export Constraint 

As was initially predicted, there were no control actions initiated during the curtailment assessment 
specifically toward the thermal constraint through line segment 632 to 670. As was previously mentioned, 
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future additional ANM generation could cause constraints at this location depending on future load and 
generation on the circuit. However, it will not be required for set up within the NREL testing environment. 

8.3.4. Smart Campus PCC Over-Voltage Constraint 

The annual voltage profile at the Smart Campus point of common coupling, Bus 680, prior to ANM 
controlling any resources in response to the 1.05 p.u. upper voltage limit, as defined in Section 8.7, is 
presented below for the normal and alternative topology in Figure 51 and Figure 52, respectively. 

 

Figure 51: Voltage Profile at the Smart Campus PCC Prior to ANM Control – Normal Topology (note 
scale shading) 
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Figure 52: Voltage Profile at the Smart Campus PCC Prior to ANM Control – Alternative Topology (note 
scale shading) 

In order to limit the voltage at this node to the 1.05 p.u. upper limit, Table 9 presents statistics describing 
the control actions applied by the Smart Distribution ANM control scheme to each of the 4 dedicated 
Smart Campus resources presented in Table 13. 

Table 9: Smart Campus PCC Overvoltage Constraint Control Action Summary 

Resource Total Number of Control 
Actions 

Total Annual Energy Adjustment 
through Control Actions [MWh] 

Normal 
Topology 

Alternate 
Topology 

Normal 
Topology 

Alternate 
Topology 

Smart Campus PV 344 414 -171.8 -215.8 

Smart Campus Flexible 
Load 

310 256 14.7 12.0 

Smart Campus ESS 318 264 32.8 23.8 

Smart Campus EV 328 256 18.8 14.0 
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8.4. Curtailment Assessment Discussion 

Under the normal topology, the Smart Campus PV experiences a total of 207 MWh of curtailment by 
summing the values in Table 7 and Table 9. From the 4923 MWh of uncurtailed production listed in Table 
10, this equates to 4.2% curtailment. The ‘PHIL GEN1’ and ‘PHIL GEN2’ managed connections experience 
a total of 71 MWh and 69 MWh of curtailment respectively, as listed in Table 7. From the 820 MWh and 
2047 MWh of uncurtailed production listed in Table 10, this equates to 8.7% and 3.4% of respective 
curtailment. The following figure shows the aggregated curtailment level (all ANM enabled flexible 
interconnection generation) for the full annual period by hourly impact.  

 

Figure 53: Estimated ANM Curtailment (note unique scale shading)  

This level of curtailment corresponds to a 109% increase in generation interconnected: (4.0 MW flexible) 
/ 3.665 MW firm = 1.09, or 109% increase in flexible interconnected generation above the firm generation. 
The following figure visually displays this increase in capacity relative to the substation thermal constraints. 
The effect of the ANM enabled solar PV (i.e. the 3 MW Smart Campus PV array and the 0.5 MW 
community/utility scale PV array) is seen in the mid-day maximum generation. The effect of the ANM 
enabled wind energy (i.e. the 0.5 MW community/utility scale wind turbine) is seen primarily in the ~500 
kVA generation during the overnight hours.  

From reviewing these curtailment and capacity diagrams, SGS noted that additional flexible 
interconnection generation could have connected onto the circuit to further take advantage of the 
nighttime capacity. It was estimated for instance that up to 2 MWs of additional wind energy could flexibly 
interconnect under the same ANM curtailment and economics assumptions. 
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Figure 54: ANM enable dynamic capacity at the substation transformer (note unique scale shading)  

 

When multiple topologies are possible on a circuit, the effect of each topology should be considered 
toward the total curtailment estimate. This requires an estimate toward the amount of time spent in each 
arrangement as well as when the switching actions are likely to occur. For the Smart Distribution test 
circuit, the alternate topology provides back-up to the customers downstream of Bus 670 in the case of 
an outage along line segment 670 to 671. The probability of an outage along this section of the feeder 
would drive this narrative. 

Under the alternate topology, the Smart Campus PV experiences a total of 5.6% curtailment, the ‘PHIL 
GEN1’ PV generator 3.7% and the ‘PHIL GEN2’ wind generator 2.8% curtailment due to the three constraint 
zones (i.e. sum of results for each presented in Table 7, Table 8 and Table 9). The Smart Campus PV 
generator has greater curtailment under this topology due to the nested constraint of the thermal export 
through line segment 671 to 675 acting as a bottle-neck to limit the export of PV. This subsequently 
reduces the amount that the ‘PHIL GEN1’ and ’PHIL GEN2’ generators must be curtailed to respect the 
thermal export limit of the substation. 

In order to gauge whether these generator capacities are economically viable, a curtailment assessment 
was run on the three generators under the normal topology without any of the additional demand 
response and prosumer resources from the Smart Homes. The Smart Campus demand response load and 
energy storage are not included so as to ensure economic viability under conservative assumptions. In 
order to satisfy the substation thermal export constraint and maintain an acceptable voltage at the Smart 
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Campus PCC, the resulting curtailment numbers were 10.3% for the ‘PHIL GEN1’ 500 kW PV generator, 
3.9% for the ‘PHIL GEN2’ wind generator and 6.6% for the 3000 kW Smart Campus PV generator. 

The effects of the alternate topology on the curtailment estimates have been assumed to be negligible. 
The curtailment numbers presented for the alternate topology do not deviate widely from the associated 
numbers quoted for the normal topology. Furthermore, a greater presence of the alternate topology 
would effectively act to balance the curtailment numbers between the two generators. 

The 10.3% curtailment listed for the ‘PHIL GEN1’ PV generator is at the threshold for project economic 
viability in many cases. However, in this case, the capacity factor for the PV generation is high at 0.187. As 
such, it is likely that this level of curtailment is economically viable and demonstrates the combination of 
multiple variables that affect DER economics – enforcing the view of the market need to assess hosting 
capacity of the dynamic grid.  

The Smart Campus PV experiencing 6.6% curtailment and ‘PHIL GEN2’ 3.9% curtailment are within the 
range that SGS has seen DER developers consider economically.  Furthermore, the capacity factor being 
used for the wind generation is also high at 0.47. As such, it could likely endure even greater amounts of 
curtailment. 

These curtailment results demonstrate the hosting capacity of the Smart Distribution circuit to have 
increased from the 4310 kVA traditional limit, based upon the substation thermal export rating, to at least 
7765 kVA as the total generation capacity presented here under the ANM control scheme. 

8.5. Managed DG Interconnections Description 

8.5.1. Smart Campus PV Generator 

The first ANM managed DG interconnection was placed within the Smart Campus (i.e. Bus 680), where a 
3 MW PV generator was included. Accompanying this PV generator was a 600 kWh capacity lithium-ion 
storage system with a 120 kW power rating and 110 kWs of flexible load (aggregated EV’s and facility 
controllable load). These resources together form the Smart Campus that is actively managed by ANM.  

For static grid hosting capacity scenarios, worst case conditions must be assumed. In this case, it means 
that the storage and demand response through flexible load are not available to assist with any issues 
caused by excess generation from the PV system. Therefore, the PV system alone will be considered with 
the other existing DG on the circuit and minimum circuit load conditions for the static design case. 

In order to trigger the implementation of a circuit-wide ANM control scheme, the avoided T&D 
reinforcement costs must be cost prohibitive and the DG project must still be economically viable relative 
to curtailment risk under ANM. Three conditions must be satisfied for this to be true: (1) the cost of 
implementing a new or updating an existing ANM scheme must be less than the traditional upgrades being 
triggered by the interconnection screens, (2) the cost of implementing or being adopted within an existing 
ANM scheme must be economical to the generation developer, (3) the amount of energy lost due to 
generator curtailment in response to ANM constraint management must not render the generation 
project uneconomical. Additional assumptions and information on curtailment analysis is described in 
“200285 26A - Smart Campus AMM Modeling and Simulation”, and overall Smart Campus hosting capacity 
assumptions in “200285 29A - Smart Campus Acceptance Test Specification & Final Test Plan”.  

For interconnecting the campus solar PV, the power export limit through the substation transformer of 
3750 kVA, or 75% of its thermal rating, was breached with a power export of 6557 kVA. The cost to upgrade 
the substation transformer would be in the order of millions of dollars, which is well above the threshold 
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required to adopt an ANM control scheme. Also, given the large nature of a 3 MW PV project, it is more 
than likely that the cost of the ANM system could be accommodated within the DG project’s economic 
budget. 

To ensure the substation thermal capacity is not breached, measurement point 1 (MP1) is shown in Figure 
32 to monitor real-time power flow. The Smart Campus 3 MW PV generator also produced an over-voltage 
at its PCC of 1.071 p.u. as well as a breach of the 75% thermal capacity threshold of line segment 632 to 
670 at 89% under the typical topology arrangement. While under the alternate topology (i.e. Switch 1 
(SW1) normal open and Switch 2 (SW2) normal closed), line segment 671 to 675 is overloaded at 189%.  

In practice, each of these constraints would also need to be managed within the ANM scheme. As such, 
MP4 in Figure 32 is included for the management of the constraint at line segment 671 to 675. The ANM 
control system monitors the status of the switches on the circuit (MP2 and MP3) to identify the current 
topology of the circuit. Under the alternate topology this constraint zone also becomes active.  

Given that the breach of line segment 632 to 670 was not greater than the 90% threshold for thermal 
capacity under ANM, this constraint could be excluded at this point, but would need to be re-considered 
with the inclusion of future generation. 

8.5.2. PHIL GEN1 PV + PHIL GEN2 Wind Generation 

Following the interconnection of the Smart Campus, an additional 500 kW PV generator was 
interconnected at Bus 670 (i.e. ‘PHIL GEN1’ in Figure 32) followed by a 500 kW wind generator at Bus 633 
(i.e. ‘PHIL GEN2’ in Figure 32). Given that the static design case must consider all existing interconnected 
generators, including the Smart Campus PV, these interconnections further exacerbated the thermal 
export breach through the substation transformer and line segment 632 to 670 as well as the overvoltage 
at the Smart Campus PCC (i.e. Bus 680). 

The inclusion of ‘PHIL GEN1’ caused the loading on line segment 632 to 670 to reach 99%, which is now 
above the 90% threshold permissible under ANM. However, this constraint is not expected to incur any 
control actions even though it is possible, given that the ANM system will already be managed against the 
lower capacity constraint at the Substation (i.e. MP1). Similar to the overvoltage at Bus 680, the constraint 
on this line segment was still included in the preceding curtailment assessment to produce a 
comprehensive curtailment assessment and to quantify the rarity of its occurrence. 

Under the alternate topology, the service conductor for ‘PHIL GEN2’ identified with the potential to be 
overloaded. This overload can be ignored due to the fact that the downstream line segment 671 to 675 is 
the ACSR ‘Raven’ type conductor with much less capacity than the ACSR ‘Dove’ type conductor servicing 
this generator. This lower capacity line segment is already included as a constraint zone for the Smart 
Campus PV. The ANM control system would resolve the breach of the downstream constraint prior to this 
potential constraint surfacing. 

These generators were therefore only associated with the thermal export through the substation 
transformer, MP1, for both the real-time testing and curtailment assessment. 

8.5.3. ANM Managed Generator Interconnection Summary 

A summary of the ANM-managed generator interconnections is presented in Table 10. It should be noted 
that the results presented are also reflective of the interconnection order. The ‘PHIL GEN1’ PV generator 
was interconnected after the Smart Campus and this was followed by ‘PHIL GEN2’. The effects of each 
generator therefore included the peak generation of the preceding generators, as well as itself, on the 
circuit when analyzing the minimum load static design case scenario. 
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Table 10: ANM Managed Generator Interconnections 

Name Capacity 
[kW] 

Uncontrolled 
Annual 
Production 
[MWh] 

PCC Voltage at PCC [p.u.] Service Conductor Loading 
[%] 

Normal 
Topology 

Alternate 
Topology 

Normal 
Topology 

Alternate 
Topology 

Smart 
Campus PV 

3000 4923 Bus 680 1.071 1.081 64 65 

‘PHIL GEN1’ 
PV 

500 820 Bus 670 1.056 1.05 99 18 

‘PHIL GEN2’ 
Wind 

500 2047 Bus 633 1.05 1.052 8 90 

8.6. ANM Managed Loads & Smart Home Prosumers 

In addition to the generators listed in Table 10 that are under ANM control, additional resources within 
the Smart Homes and Smart Campus were also added to the resources accessible by ANM. A summary of 
these managed load and prosumer objects is presented in Table 11, below. Smart Homes control is via the 
single sgs connect at the aggregator. Through the aggregator, Smart Home control includes EV charging as 
well as a combined solar PV + ESS prosumer. Thus aggregator integration with the ANM scheme is 
consistent with the industry today: control of key loads like EV chargers, and control generically of 
generation and/or storage for the stochastic prosumer availability of responding to grid constraint signals 
and/or pricing to maximize clean energy generation.  

Table 11: ANM Managed Load Connections 

Name PCC Flexible Power Capacity 
[kW]30 

Max Load [kW] Min Load [kW] 

Smart Campus Load 680 50 265 46 

Smart Campus EV 680 60 60 0 

Smart Campus ESS 680 120 120 -120 

Smart Homes 611 
Prosumer 

611 20 165 19 

Smart Homes 611 EV 611 24 24 0 

Smart Homes 652 
Prosumer 

652 32 125 13 

Smart Homes 652 EV 652 36 36 0 

                                                           
30 The flexible capacity would be limited by the maximum load in the case of supporting an export constraint, and 
the minimum load in the case of supporting an import constraint. 
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8.7. Principles of Access ANM Control Scheme 

As described in the curtailment assumptions detailed in Section 8.1.1, a Last In First Off (LIFO) Principles 
of Access approach has been taken toward controlling generators – in correlation with their order of 
interconnection. This means that the ‘PHIL GEN2’ 500 kW PV generator would be the first generator to be 
curtailed followed by ‘PHIL GEN1’ wind, and lastly, the Smart Campus in order to try to remedy a breach 
of the substation transformer thermal export capacity. But given that Smart Homes with controllable PV, 
storage and EV charging exist on the circuit that is controlled by ANM via the aggregator, for the purposes 
of the demonstration these resources will be targeted first in order to avoid clean energy curtailment (i.e. 
enabling coincident load or storage to minimize clean energy curtailment). This could be the case in the 
event that a utility is trying to meet carbon reduction targets, or some other metric that promotes 
renewable power production. This principles of access curtailment order will demonstrate functionality 
sufficient for the use case, while also initiating discussion from the project Advisory Board consistent with 
how establishing LIFO, shared, or hybrid curtailment regimes is fundamental to each DER’s economic 
considerations – fitting of the market assessment of hosting capacity needed for ANM enabled dynamic 
grids.  

For the case of the Smart Campus, its supporting energy storage and controllable load resources will be 
utilized to the extent possible prior to curtailing the 3000 kW PV generator.  

The summary of the static grid thermal and voltage constraints are shown in Table 12 below. As described 
in Section 8.5, it is the breach of the substation transformer thermal export capacity that triggers the 
deployment of the circuit’s ANM control scheme.  

Table 12: Smart Distribution Static Grid Constraint Summary 

Constraint 
Type 

Constraint 
Location 

Topology ANM 
Control 
Threshold  

Traditional Design 
Factor 

Traditional 
Generation 
Capacity Limit 

Contributing 
Generator 
Location 

Thermal 
Export 

Substation 
Transformer 

Normal 
and 
Alternate 

90% of 
thermal 
rating (4500 
kVA) 

75% of thermal 
rating (3750 kVA) + 
Min Load (560 kVA) 

4310 kVA 
(Generation) 

Anywhere on 
circuit 

Thermal 
Export 

Line Segment 
632 to 670 

Normal 90% of 
thermal 
rating (4700 
kVA) 

75% of thermal 
rating (3920 kVA) + 
Min Load 
Downstream (427 
kVA) 

4347 kVA 
(Generation) 

Downstream 
of Bus 670 
(inclusive of 
Bus 670) 

Thermal 
Export 

Line Segment 
671 to 675 

Alternate 90% of 
thermal 
rating (1560 
kVA) 

75% of thermal 
rating (1300 kVA) + 
Min Load 
Downstream (252 
kVA) 

1552 kVA 
(Generation) 

Downstream 
of Bus 671 
(inclusive of 
Bus 671) 

Over-
Voltage 

SC PCC Normal 
and 
Alternate 

1.05 p.u. 
voltage 

1.05 p.u. voltage 2000 KVA 
(Generation) 

Smart 
Campus (Bus 
680) 
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An overview of the ANM control scheme is presented below in Table 13. The ANM constraint zones are 
assessed from lowest priority (Zone Priority #4) to highest priority (Zone Priority #1). Similarly, the 
resources are accessed from lowest priority (Resource Priority #10) to highest priority (Resource Priority 
#1) when attempting to relieve the breach of the corresponding ANM constraint zone. Highest priority 
DERs are curtailed last as per the principles of access LIFO regime described above. 

Table 13: Smart Distribution ANM Control Scheme Overview 

 Zone Priority #1 Zone Priority #2 Zone Priority #3 Zone Priority #4 

ANM 
Constraint 
Zone 

Smart Campus PCC 
Over-Voltage 

Line 632 to 670 
Thermal Export 

Capacity 

Substation 
Transformer Thermal 

Export Capacity 

Line 671 to 675 
Thermal Export 

Capacity31 

Resource 
Priority #1 

Smart Campus PV PHIL GEN1 Smart Campus PV Smart Campus PV 

Resource 
Priority #2 

Smart Campus 
Flexible Load 

Smart Homes 
Prosumer Bus 611 

Smart Campus 
Flexible Load 

Smart Campus 
Flexible Load 

Resource 
Priority #3 

Smart Campus ESS 
Smart Homes 

Prosumer Bus 652 
Smart Campus ESS Smart Campus ESS 

Resource 
Priority #4 

Smart Campus 
Flexible Load 

Smart Homes EV Bus 
611 

Smart Campus 
Flexible Load 

Smart Campus 
Flexible Load 

Resource 
Priority #5 

-- 
Smart Homes EV Bus 

652 
PHIL GEN1 

Smart Homes 
Prosumer Bus 611 

Resource 
Priority #6 

-- -- PHIL GEN2 
Smart Homes 

Prosumer Bus 652 

Resource 
Priority #7 

-- -- 
Smart Homes 

Prosumer Bus 611 
Smart Homes EV 

Bus 611 

Resource 
Priority #8 

-- -- 
Smart Homes 

Prosumer Bus 652 
Smart Homes EV 

Bus 652 

Resource 
Priority #9 

-- -- 
Smart Homes EV Bus 

611 
-- 

Resource 
Priority #10 

-- -- 
Smart Homes EV Bus 

652 
-- 

The fourth priority constraint zone, ‘Line 671 to 675 Thermal Export Capacity’, is only present under the 
alternate topology and is a nested constraint relative to the substation transformer thermal export 
capacity when active.  

The overvoltage at the Smart Campus PCC and thermal export constraint through line 632 to 670 are 
resolved last. 

                                                           
31 The thermal export capacity breach of line segment 671 to 675 only occurs under the alternate topology scenario. 
The ANM system is able to identify the current topology and activate this constraint zone when required. 



National Renewable Energy Laboratory 
Active Network Management Integration 

Project Final Report  

200285-44A Page 98 of 99 11/18/2016 
© 2016 Smarter Grid Solutions Inc.   

8.8. Background Information for ADMS versus ANM Systems 

ADMS and ANM are complementary technology solutions for managing today’s grid resources and 
supporting grid modernization for tomorrow’s smart grid. The following summarize their typical 
applications and key functionality: 

 Advanced Distribution Management System (ADMS) 

o Evolution of SCADA/DMS/OMS control and asset management systems 

o For central area power system management 

o Rely on operator in the loop and power model in the loop approaches for grid monitoring 

and control 

o Ensure safe and reliable bulk power delivered to customers 

 Active Network Management (ANM) 

o Recent critical industrial controls applied to distribution grids 

o Deterministic, real-time, autonomous control 

o Distributed and localized monitoring 

o Allows for better (and real-time) utilization of grid assets to meet customer needs 

o ANM is most commonly associated with the creation of hosting capacity for new 

Distributed Generation (DG) connections 

The following table compares ADMS versus ANM in more detail. 
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Table 14: ADMS vs ANM Comparison  

Functionality ADMS ANM 

Overall 
Description 

• Whole distribution system control and asset 
management  
• Bulk transfer of power (minutes-to-hours)  
• Control center visibility and situational 
awareness 
• Enterprise deployment to support bulk 
distribution automation for all customers. 

• Local and autonomous control system  
• Actively manageme grid constraints in real-
time (second-to-second) 
• Incremental deployment to support specific 
customer needs. 

Architecture; 
Operation 

• Central and hierarchical  
• Platform hosts many non-critical applications  
• Limits to scalability due to increasing complexity 
in control actions 
• Operator-in-the-loop operation 

• Part-central & part-distributed 
• Dedicated platform, hierarchical and next 
generation is networked p2p 
• Architecture allows for high rate of change 
applications across larger areas and devices 
• Autonomous operation 

Timescale • Minutes-to-hours 
• Some synchronous and many asynchronous 
communications and responses to control 

• Second-to-second 
• Real-time synchronous communications 
with responses in sub-seconds  
• Based on the capability of the underlying 
communication 

Control 
applications 
framework 

• Event driven  
• Load flow modeling-in-the-loop and iterative 
objective seeking control applications  
• Require operator intervention  
• Speed of logic interpretation dependent on the 
other (not critical) activities of the system at the 
time 

• Local time-bounded (deterministic)  
• Repeatable control of multiple constraints 
(thermal, voltage) & multiple DERs (grid 
assets and DG/load/ESS) 
• Includes failsafe and escalating actions 
control. 

Deployment 
scale; 
Costs 

• Whole network, enterprise wide 
• Millions to 10’s of millions to 100’s of millions 

• From single constrained DER to multiple 
constrained circuits 
• Tens of thousands to a few million 

Links to 
Guides / Best 
Practices 

https://www.smartgrid.gov/files/ADMS-Guide_2-
11.2015.pdf  

http://www.energynetworks.org/modx/asset
s/files/news/publications/1500205_ENA_AN
M_report_AW_online.pdf  
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