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Graph Laplacian Spectrum and Primary Frequency
Regulation

Linqi Guo, Changhong Zhao, and Steven H. Low

Abstract—We present a framework based on spectral graph
theory that captures the interplay among network topology,
system inertia, and generator and load damping in determining
the overall grid behavior and performance. Specifically, we show
that the impact of network topology on a power system can
be quantified through the network Laplacian eigenvalues, and
such eigenvalues determine the grid robustness against low-
frequency disturbances. Moreover, we can explicitly decompose
the frequency signal along scaled Laplacian eigenvectors when
damping-intertia ratios are uniform across buses. The insight
revealed by this framework suggests the reason why load-side
participation in frequency regulation not only makes the system
respond faster but also helps lower the system nadir after a
disturbance. Finally, by presenting a new controller specifically
tailored to suppress high-frequency disturbances, we demonstrate
that our results can provide useful guidelines in the controller
design for load-side primary frequency regulation. We simulate
the improved controller on the IEEE 39-bus New England
interconnection system to illustrate its robustness against high-
frequency oscillations compared to the conventional droop control
and a recent controller design.

I. INTRODUCTION

The electric grid is one of the largest and most complex
engineering achievements, with numerous interconnected com-
ponents that interact in an intricate fashion. Without detailed
simulation and computation, it is hard to infer how the change
to part of the system affects the overall grid behavior and
performance [1], [2]. For example, one can argue that the
connectivity in the grid helps average the power demand
imbalance in the network, and therefore adding more con-
nectivity should reduce overall system oscillation. On the
other hand, one can also argue that more connectivity means
faster propagation of disturbances throughout the network, and
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therefore adding more connectivity should decrease system
stability. Both arguments seem plausible, but they lead to
(apparently) opposite conclusions. A corollary of our result
in Section III will clarify this paradox.

The increasing penetration levels of renewable generation
make such inferences even more difficult because it adds com-
plexity to the system dynamics and increases volatility on the
grid. For instance, one popular approach to maintaining system
stability in this new era is to integrate load-side participation
[3]–[8], which helps stabilize the system in a more responsive
and scalable fashion and improves the system transient behav-
ior [9]–[11]; however, so far such benefits are mostly observed
through simulation or experimental evaluation [6], [8]–[14]
and it is less clear how and why the load-side controllers affect
(and improve) the system performance. There has also been
work on improving the dynamic performance of the power
system through controlling power electronics or loads. An
example is iDroop [15], which is designed by analyzing theH2

norm. Such controllers usually make power system dynamics
more sophisticated and uncertain and hence make it hard to
obtain a stability guarantee [16]. Even more challenging but
also more useful in applications is understanding how we
should optimally choose the control parameters subject to
certain performance goals in the controller design. See [17] for
extensive references to recent literature on frequency control.

In this work, we present a framework that captures the
interplay among network topology, system inertia, generator
damping, and transmission line susceptance. Because of its
combinatorial nature, the impact of network topology on a
power system is usually hard to reason. Through this frame-
work, we show that such impacts can be quantified using
the network Laplacian eigenvalues. Our contributions can be
summarized as follows: a) We show that whether the system
oscillates or not in a particular supply-and-demand scenario
is determined by how strong the damping is compared to
the network connectivity in the “corresponding” direction. b)
Adding network connectivity increases the system robustness
against disturbances of relatively low frequency, but its benefit
in suppressing high-frequency oscillation is limited. c) The
network Laplacian eigenvalues reveal the set of harmonics
that are amplified by the network. d) This framework unifies
the optimization over many system and control parameters
and captures the trade-offs among different design goals,
which allows us to systematically improve and refine controller
designs. Within this framework, we can devise a quantitative
explanation on why load-side participation helps improve
system behavior in both the transient and steady states.
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The rest of this paper is organized as follows. In Section
II, we review the system model and relevant concepts from
spectral graph theory. In Section III, we present our character-
ization of the system response in both the time and Laplace
domain. The practical interpretations of our results are given
in Section IV. In Section V, we quantify the benefits of load-
side controllers and present a new controller systematically
designed and specifically tailored to suppress high-frequency
oscillation. In Section VI, we simulate the improved controller
on the IEEE 39-bus New England interconnection test bed and
illustrate its robustness against measurement noise and high-
frequency oscillation in injection. We conclude in Section VII.

II. NETWORK MODEL

In this section, we present the system model as adopted in
[10] and review relevant concepts from spectral graph theory.

Let R and C denote the set of real and complex numbers,
respectively. We reserve uppercase symbols such as A,B,C
for matrices. For matrices A,B with proper dimensions,
[A B] means the concatenation of A,B in a row, and [A;B]
means the concatenation of A,B in a column. A variable
without subscript usually denotes a vector with appropriate
components, e.g., ω = (ωj , j ∈ N ) ∈ R|N |. For a time-
dependent signal, ω(t), we use ω̇ to denote its time derivative
dω
dt . The identity matrix of dimension n × n is denoted as
In. The column vector of length n with all entries being 1 is
denoted as 1n. The imaginary unit

√
−1 is denoted as j.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses, and E ⊂ N ×N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) ∈ E , then (j, i) /∈ E .

Let n,m be the number of buses and transmission lines,
respectively. The incidence matrix of G is the n ×m matrix
C, defined as:

Cje =


1 if node j is the source of e
−1 if node j is the target of e
0 otherwise

For each bus j ∈ N , we denote its frequency deviation as ωj ,
and we denote the inertia constant as Mj > 0. The symbol
Pmj is overloaded to denote the mechanical power injection if
j is a generator bus, and denote the aggregate power injection
from uncontrollable loads if j is a load bus. For a generator
bus, we model the droop control as Djωj with Dj ≥ 0, and for
load buses, we use the same symbol to denote the aggregated
frequency sensitive load. For each transmission line (i, j) ∈ E ,
we denote as Pij the branch flow deviation, and we denote as
Bij the line susceptance, assuming voltage magnitudes are 1

per unit (pu). With such notations, the swing and network
dynamics are given by:

Mjω̇j = −Djωj − dj + Pmj −
∑
e∈E

CjePe, j ∈ N (1a)

Ṗij = Bij(ωi − ωj), (i, j) ∈ E (1b)

We refer the readers to [10] for more detailed justification and
derivation of this model.

Using x to denote the system state x = [ω;P ], and putting
M , D, and B as the diagonal matrices with Mj , Dj , and Bij
as the diagonal entries, respectively, we can rewrite the system
dynamics (1) in the state-space form:

ẋ =

[
−M−1D −M−1C
BCT 0

]
x+

[
M−1

0

]
(Pm − d) (2)

We refer to the matrix:

A =

[
−M−1D −M−1C
BCT 0

]
as the system matrix. We emphasize that the variables [ω;P ]
denote deviations from their nominal values so that x(t) = 0
means the system is in its nominal state at time t.

For any node i ∈ N , we denote the set of its neighbors
as N(i). The (susceptance-weighted) graph Laplacian matrix
of G is the n × n symmetric matrix L = CBCT , which is
explicitly given by:

Lij =


−Bij i 6= j, (i, j) ∈ E or (j, i) ∈ E∑
k∈N(i)Bik i = j

0 otherwise

It is well known that if the graph G is connected, then L has
rank n − 1, and any principal minor of L is invertible [18].
For any vector x ∈ Rn, we have:

xTLx =
∑

(i,j)∈E

Bij(xi − xj)2 ≥ 0

This implies that L is a positive semidefinite matrix and thus
diagonalizable. We denote its eigenvalues and corresponding
orthonormal eigenvectors as 0 = λ1 < λ2 ≤ · · · ≤ λn
and v1, v2, · · · , vn. Note that we always have v1 = 1√

n
1n, a

uniform vector. When the matrix L has repeated eigenvalues,
for each repeated eigenvalue λi with multiplicity mi, the
corresponding eigenspace of L always has dimension mi,
hence an orthonormal basis consisting of eigenvectors of L
exists (yet such bases are not unique). We assume that one of
the possible orthonormal bases is chosen and fixed throughout
the paper. For any vector s ∈ Rn, we write its spectral
decomposition as s =

∑
i ŝivi, with ŝi ∈ R.

In the sequel, we further assume that the buses are ho-
mogeneous in the sense that M = µIn and D = δIn for
some µ, δ > 0. This assumption significantly simplifies the
calculation and allows us to state the main conclusions in a
clean and transparent fashion. All of our results generalize
to nonhomogeneous case, with the cost of more convoluted
algebra and more obscure interpretation. We study both the
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transmission graph Laplacian matrix and Laplace domain
properties of (2). To clear potential confusion, we agree
that whenever the adjective Laplacian is used, we refer to
quantities related to the Laplacian matrix L; and whenever the
noun Laplace is used, we refer to notions about the Laplace
transform:

L{s(t)} (τ) :=
∫ ∞
0

s(t)eτtdt

or notions defined in the Laplace domain.

III. CHARACTERIZATION OF SYSTEM RESPONSE

In this section, we give a complete characterization of the
system response of (2) based on spectral decomposition in the
time and Laplace domains.

We first determine the modes of the system (2)—that is,
we compute the eigenvalues of the system matrix A. Such
eigenvalues indicate whether the system is stable and, if it is,
how fast the system converges to an equilibrium state.

Theorem 3.1: Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the
eigenvalues of L with corresponding orthonormal eigenvectors
v1, v2, . . . , vn. Then:

1) 0 is an eigenvalue of A of multiplicity m− n+ 1. The
corresponding eigenvectors are of the form [0;P ] with
P ∈ kernel(C).

2) −γ is a simple eigenvalue of A with
[
M−1/2v1; 0

]
as

a corresponding eigenvector.

3) For i = 2, 3, . . . , n, φi,± =
−γ±
√
γ2−4λi
2 are eigenval-

ues of A. For any such φi,±, an eigenvector is given by[
M−1/2vi;φ

−1
i,±BC

TM−1/2vi
]
.

Proof: Please refer to our online report [19].
When m − n + 1 = 0, or equivalently when the network

is a tree, item 1) of Theorem 3.1 is understood to mean that
the system matrix A does not have 0 as an eigenvalue. We
remark that a similar characterization of the system (2) under
a different state representation can be found in [20].

Assuming γ2 − 4λi 6= 0 for all i, we get 2n − 1 nonzero
eigenvalues of A from item 2) and item 3) of Theorem 3.1,
counting multiplicity, which together with the m − n + 1
multiplicity from item 1) gives m + n eigenvalues as well
as m + n linearly independent eigenvectors. Therefore, we
know A is always diagonalizable over the complex field C,
provided critical damping—that is γ2 − 4λi = 0 for some
i, does not occur. We assume this is the case in all following
derivations. When critical damping does occur, our results can
be generalized using the standard Jordan decomposition.

Theorem 3.1 explicitly reveals the impact of the trans-
mission network connectivity as captured by its Laplacian
eigenvalues on the system (2) and tells us that the system
mode shape is closely related to the corresponding Laplacian
eigenvectors. In particular, we note that the real parts of
φi,± are nonnegative, from which we deduce the following
corollary.

Corollary 3.2: The system (2) is marginally stable, with
marginal stable states of the form [0;P ] with P ∈ kernel(C).
Therefore, the system (2) is asymptotically stable on a tree.

The kernel of C corresponds to the set of branch flow
vectors P such that

∑
j∈N(i) Pij = 0 for all i ∈ N . They can

be interpreted as flows that are balanced at all the buses (e.g.,
circulation flows on a loop) for which each bus i is neither a
source node (for which

∑
j∈N(i) Pij > 0) nor a sink node (for

which
∑
j∈N(i) Pij < 0). This corollary tells us that the only

possible signals that can persist in (2) are the balancing branch
flows. Of course, such marginally stable flows cannot exist in
a real system because of losses in transmission lines (in which
case the network dynamics (1b) are no longer accurate). Even
if we take the simplified model (2), as long as the initial branch
flow does not belong to kernel(C), the system (2) under zero
input Pm − d = 0 converges to the nominal state.

Next, we determine the system response to a step function.
More precisely, we define s(t) := Pm(t)−d(t) as the surplus
function and compute the frequency trajectory ω(t) with s(t)
as input to (2), assuming s(t) takes constant value s over time.
Note that the components sj can be different over j. We put
s =

∑
i ŝiM

1/2vi to be the decomposition of s along the
scaled Lapalacian eigenvectors (note that the scaling M1/2vi
is different from the scaling M−1/2vi in the following theorem
statement).

Theorem 3.3: Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the
eigenvalues of L with corresponding orthonormal eigenvectors
v1, v2, . . . , vn. Assume:

1) The system (2) is initially at the nominal state x(0) = 0.
2) δ2 − 4λi 6= 0 for all i.

Then:

ω(t) =
n∑
i=1

ŝi√
γ2 − 4λi

(
eφi,+t − eφi,−t

)
M−1/2vi (3)

where:

φi,+ :=
−γ +

√
γ2 − 4λi
2

φi,− :=
−γ −

√
γ2 − 4λi
2

Proof: Please refer to our online report [19].
We remark that all conditions in this theorem are for

presentation simplicity, and the frequency trajectory (3) can
be generalized by adding correction terms to the case where
neither condition is imposed. We opt not to do so here because
these terms lead to much more complicated notations yet do
not reveal any new insights.

This result tells us that the frequency trajectory of (2) can
be decomposed along the scaled eigenvectors of the Laplacian
matrix L. Moreover, we note that all φi,± have negative real
parts except φ1,+ = 0. Therefore, the only term in (3) that
persists is the term involving φ1,+ given as:

ŝ1√
γ2 − 4λ1

eφ1,+tM−1/2v1 =
ŝ1
γ
M−1/2v1

Thus, under the input Pm − d = s, the ω(t) signal converges
to the steady state ŝ1

γ M
−1/2v1 exponentially fast. This allows

us to recover the following well-known result in frequency-
regulation literature [1], using a new argument.
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Corollary 3.4: In the steady state, the system (2) has
synchronized frequencies ωi = ωj =: ωc, and ωc = 0 if and
only if the power injection is balanced

∑
i∈N si = 0.

Proof: It is easy to show:

v1 =
M1/2√∑
j∈N Mj

1n

By Theorem 3.3, we know the steady state of (2) is
(ŝ1/γ)M

−1/2v1, which then has all entries equal to the same
value:

ŝ1

γ
√∑

jMj

Therefore, ωi = ωj =: ωc for all i, j ∈ N . From s =∑
i ŝiM

1/2vi, we see ŝ1 = (M−1/2s)T v1 = sTM−1/2v1,
and thus:∑

i∈N
si = sT1n =

√∑
j

Mjs
TM−1/2v1 =

√∑
j

Mj ŝ1

= γ

∑
j

Mj

ωc =

∑
j∈N

Dj

ωc

Hence, ωc = 0 if and only if
∑
i∈N si = 0.

It is also informative to look at the system behavior of
(2) from the Laplace domain. Instead of analyzing transfer
functions from any input to any output as in the classic
multi-input-multi-output system analysis, we take a slightly
different approach such that the Laplacian matrix spectral
information is preserved. More precisely, for a time-variant
surplus signal s(t), we first decompose it to the spectral
representation s(t) =

∑n
i=1 ŝi(t)M

1/2vi. Now ŝi(t) is a real-
valued signal, and thus assuming it is regular enough, we
can write it as the integral of exponential signals eτt through
inverse Laplace transform. It can be shown that when the
input to system (2) takes the form eτtM1/2vi, the steady-
state frequency trajectory ω(t) is given by Hi(τ)e

τtM−1/2vi,
where Hi(τ) is a complex-valued function of τ specifying the
system gain and phase shift. We refer to the function Hi(τ) as
the i-th spectral transfer function. Compared to classic transfer
functions, the spectral version does not capture the relationship
between any input-output pair; in contrast, it captures the
behavior of system (2) from a network perspective. Once
the spectral transfer functions are known, we can compute
the steady-state trajectories for the general input signal s(t)
through the following synthesis formula:

ω(t) =
n∑
i=1

L−1 {Hi(τ)L{ŝi(t)} (τ)}M−1/2vi

Theorem 3.5: For each i, assuming γ2 − 4λi 6= 0, the i-th
spectral transfer function is given by:

Hi(τ) =
τ

τ2 + γτ + λi

Proof: Please refer to our online report [19].

We remark that a similar formula also shows up in [21]
as the representative machine transfer function for swing
dynamics.

IV. INTERPRETATIONS

In this section, we present a collection of intuition we can
devise from the results in Section III. They are useful for
making general inferences and for the controller design in
Section V.

Towards this goal, we rewrite (3) as:

ω(t) =
n∑
i=1

ŝiω̂i(t)vi

The signal ω̂i(t) captures the response of system (2) along vi
to a step function input. From Section IV-A to IV-D, we focus
on ω̂i(t) and understand how properties of such components-
wise responses are related to different system parameters. We
then comment on how the discussion can be generalized to
the complete trajectory ω(t) in Section IV-E.

A. Impact of network connectivity

We first clarify how the network connectivity affects the
system. By Theorem 3.1, we see that whether the system
oscillates or not is determined by the signs of δ2 − 4λi. For
λi such that δ2 − 4λi > 0, we have:

ω̂i(t) =
1√

δ2 − 4λi

(
eφi,+t − eφi,−t

)
vi

with φi,± ≤ 0. Thus the system is overdamped along vi,
and deviations along vi exponentially fade away without
oscillation. The slower-decaying exponential has a decaying
rate determined by φi,+, which is a decreasing function in λi.
Thus, a larger λi implies faster decaying. Intuitively, this tells
us that when the system damping is strong, adding connectivity
helps move more disturbances to the damping component so
the disturbances can be absorbed sooner.

For λi such that δ2 − 4λi < 0, we have:

ω̂i(t) =
1√

δ2 − 4λi
e−

δ
2µ t sin

(√
4λi − δ2
2µ

t

)
vi

Thus, the system is underdamped along vi, and oscillations do
occur. We also note that larger values of λi lead to oscillations
of higher frequency. This intuitively means that when the
system damping is not strong enough, adding connectivity
causes the unabsorbed oscillations to propagate throughout
the network faster, bringing disturbances to the already over-
burdened damping components, causing the system to oscillate
in a higher frequency.

We thus see that Theorem 3.1 and Theorem 3.3 precisely
clarify our seemingly contradicting intuition on whether con-
nectivity is beneficial to stabilization—it depends on how
strong the system is damped, i.e., how fast the system can
dissipate energy.
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B. Impact of rotational inertia and damping

Next, we clarify the differences in how the generator inertia
and damping impact the system performance. Toward this
goal, we examine three common metrics for ω̂i(t): a) settling
time, which is the time it takes ω̂i(t) to get within a certain
range1 around the steady state; b) nadir, which is defined to
be the sup norm of ω̂i(t); and c) first peak time, which is the
time it takes ω̂i(t) to reach the nadir.

Table I summarizes the formulas2 for these metrics. As
shown, although the inertia constant, µ, and the damping
constant, δ, both capture the “frictional force” of the system,
they impact the system performances in different ways. In
particular, µ affects the settling time and first peak time in
a linear fashion, but it does not affect the nadir. Intuitively,
this means that for a system with larger inertia, the same level
of excitation induces a smaller system “acceleration,” and thus
it takes longer for the system to respond. The invariance of
the nadir can be interpreted as a result of energy conservation
because the energy dissipation strength is independent of µ.

In contrast, the impact of the damping δ is less clear from
observing the complicated formulas in Table I. Nevertheless,
one can show using basic calculus that the settling time and
nadir are decreasing functions of δ, and the first peak time is
an increasing function of δ. Intuitively, this means that a higher
level of damping slows down the system response, but it also
increases the energy dissipation rate, leading to a smaller nadir
and overall shorter settling time.

C. Impact of line susceptance

The line susceptances are implicitly absorbed to the Lapla-
cian eigenvalues λi, and its impact is relatively easily shown
if we assume that all lines have homogeneous susceptance
β (that is, B = βIm). Now, let λi denote the eigenvalues
of CCT , which can be interpreted as the pure topological
part in the Laplacian spectrum, and we see that λi = βλi.
Therefore, the impact of increasing the line susceptance is
similar to increasing the overall network connectivity. This
agrees with our intuition that a line with smaller susceptance
exhibits larger “resistance” to the power flow, and therefore it
induces a larger “effective distance” in the topology.

D. Robustness to disturbance

The impact of different system parameters in the Laplace
domain can be understood from the spectral transfer functions
Hi. In particular, from Theorem 3.5, we can calculate:

|Hi(jσ)| =
|σ|√

µ2σ4 + (δ2 − 2λiµ)σ2 + λ2i
(4)

For high-frequency signals, the gain can be approximated by
|Hi(jσ)| ≈ 1

µσ , and therefore a system with larger rotational
inertia is less sensitive to high-frequency components in its

1The range is specified as [ω∗i − c, ω∗i + c], where ω∗ is the equilibrium
state, and c is a constant.

2We define ∆i =
∣∣δ2 − 4λi

∣∣ to simplify the formulas. The settling
time formula is an upper bound; finding its exact value requires solving
transcendental equations and is generally hard.

input. The significance of this intuition is twofold. First, it
implies that a system with a large µ value is generally more
robust against measurement noise because noise is usually of
high frequency. Second, it implies that the only effective way
to suppress fluctuations with high frequency (for example,
from renewable sources) is to increase the inertia constant µ.
Adding damping level δ or connectivity λi, although helpful,
would be much less effective.

Equation (4) shows that for any fixed frequency σ, |Hi(jσ)|
is decreasing in δ. This means that a larger damping leads to
smaller gains for all frequencies. Such decrease is negligible
for large σ, and therefore increasing δ mostly helps the system
to suppress low-frequency oscillations. This agrees with our
time domain result in (3), which says that the steady-state
value of the frequency deviation is inversely proportional to the
damping level δ (and independent of the inertia µ). Through a
similar argument, we can also see that increasing the network
connectivity λi also mostly helps the system suppress low-
frequency oscillations.

E. General inferences

The complete trajectory (3) is a linear combination of ω̂i(t),
and because of the possibility of negative ŝi, our previous
discussions do not generalize to ω(t) in a straightforward way.
Instead of focusing on ω(t) for a specific s(t), we can look
at all possible ω(t) and generalize our previous interpretations
to the worst-case performance metric. To be concrete, let us
take nadir as an example. By (3), we see the nadir of ω(t)
satisfies:

‖ω(t)‖∞ ≤
n∑
i=1

|ŝi| ‖ω̂i(t)‖∞ ≤

√√√√ n∑
i=1

|ŝi|2
√√√√ n∑

i=1

‖ω̂i(t)‖2∞

=

√√√√ n∑
i=1

‖ω̂i(t)‖2∞

 ‖s‖2 := ‖ω‖w∞ ‖s‖2

It is easy to see that all the inequalities above can attain equal-
ities. Therefore, among all input s with unit energy ‖s‖2 = 1,
the worst possible nadir is ‖ω‖w∞, which is a decreasing
function of δ, as shown from our previous discussions.

This worst-case nadir is a system level metric that is
independent of the input. Although this metric does not predict
the exact nadir for any specific input, it does reveal to what
extent the system can tolerate disturbances of certain energy,
which is a property that is intrinsic to the system itself.
Moreover, for the secure and robust operation of the grid, we
need to make sure that the worst-case nadir is well-controlled.

Similarly, denoting the settling time of ω̂i(t) by ti, the
worst-case settling time of ω(t) is (maxi ti)/ ‖s‖2. We can
then generalize our previous discussion to conclude that this
worst-case metric is a decreasing function of δ and increasing
function of µ. The situation for the first peak time is trickier,
and our prediction for ω(t) based on componentwise ω̂i(t)
usually does not agree with simulations (for example, from
[10], [11]). As a result, we expect our previous discussion on
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TABLE I
SYSTEM PERFORMANCE IN TERMS OF NETWORK MIXING CAPABILITY, GENERATOR INERTIA, AND DAMPING.

Case Settling Time Nadir First Peak Time

δ2 > 4λi
2µ

δ−
√

∆i
ln

(
1

2c
√

∆i

)
1√
∆i

[(
δ+
√

∆i

δ−
√

∆i

)−δ+
√

∆i
2
√

∆i −
(
δ+
√

∆i

δ−
√

∆i

)−δ−
√

∆i
2
√

∆i

]
µ√
∆i

ln

(
δ+
√

∆i

δ−
√

∆i

)
δ2 < 4λi

2µ
δ

ln

(
1

c
√

∆i

)
1√
∆i

exp

(
− 4πδ√

∆i

)
4πµ√

∆i

the first peak time to be correct in practice only if the system
input is mostly along the direction of a particular vi.

F. System trade-offs

From our previous discussions, we see that when choosing
system parameters, there are usually trade-offs among different
design goals, and we must balance different aspects to obtain
a good design.

Example 4.1 (Trade-off between robustness against mea-
surement noise and system responsiveness): We have shown
that in order for the system (2) to be robust against measure-
ment noise, we need an inertia µ that is large enough. On the
other hand, increasing µ leads to a larger settling time, thus
making the system less responsive.

Example 4.2 (Trade-off between small intrinsic frequency
and robustness against attack): It is easy to show that |Hi(jσ)|
is maximized at σ∗i =

√
λi
µ . In other words, the system (2) can

be interpreted as a filter around σ∗i along vi, and harmonics
around σ∗ are amplified by the network. To decrease the
system gain to oscillations of high frequency, we want a
smaller σ∗i and thus smaller λi; however, a smaller λi suggests
lower connectivity. In fact, one can show that among all
possible topologies over n buses, the line topology minimizes
λn, the largest Laplacian eigenvalue. Such networks are very
prone to component failures and fragile to most types of attack.

V. CONTROLLER DESIGN FOR LOAD-SIDE PARTICIPATION

In this section, we quantify the benefits of integrating load-
side participation and demonstrate how we can improve the
controller design in a systematic way.

A. Benefits of load-side participation

We adopt the controller design from [10] as an example
to explain the benefits of load-side participation. We assume
the system deviation is small so that the capacity bounds of
the load-side controllers are not binding. In this setting, the
control law of [10] is simplified to:

di = Kpωi (5)

which when plugged into (2) can be absorbed into the damping
term δωi. Therefore, the integration of controller (5) effectively
increases the system damping level. Based on our discussion
in Section IV, we then conclude that load-side participation
decreases both the settling time and nadir of (2). This means
that with load-side participation, system (2) is more responsive
and its transient behavior is improved.

Such benefits have been observed and confirmed during
a series of work [9]–[12], [22] in their simulations. With
our framework, we can theoretically derive such benefits and
quantify how beneficial the load-side integration can be when
we use a certain system gain, Kp. Moreover, it is observed
in [22] that load-side participation also helps maintain the
system stability when the generator output fluctuates. Using
our characterization in the Laplace domain, we see that such
benefit comes from the improved system ability in suppressing
oscillations of relatively low frequency.

B. Proportional-derivative controller

Despite the many benefits of load-side controllers explained
so far, one key component still missing is that they only
affect the system damping but cannot increase the system
inertia. As mentioned in Section IV, the system inertia is the
key parameter affecting the system robustness against high-
frequency oscillations. We cannot expect a low-inertia grid
with extensive penetration levels of renewable generation to
work well without finding a way to produce inertia because
renewables introduce more fluctuations to the grid. Neverthe-
less, a quick glimpse into (2) suggests that to have larger µ,
it suffices to add a derivative term in (5):

di = Kpωi +Kdω̇i (6)

This, of course, comes with the price of increased settling time
compared to (5), which can be resolved by using a larger Kp.

Although it is a natural idea to generalize proportional
controllers to proportional-derivative (PD) controllers, we see
that the necessity of adding the derivative term can actually be
reversed engineered from our characterizations. Moreover, our
framework reveals how the parameters Kp and Kd affect the
system performance precisely, allowing us to optimize such
gains subject to different design goals. Using derivative terms
in controller design is often problematic in practice because of
the amplified noise in their measurements; however, based on
our previous discussions, to improve the grid stability under
high-frequency fluctuations, we must have some components
of the network that are able to measure the signal derivative
either explicitly or implicitly and provide the necessary inertia.
From a pure control system point of view, the difficulty of
handling high-frequency fluctuations from renewables lies pre-
cisely in the accurate measurement of frequency derivatives.

VI. EVALUATION

In this section, we simulate the controller design (6) using
the IEEE 39-bus New England interconnection system, as
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Fig. 1. Line diagram of the IEEE 39-bus interconnection test bed.

shown in Figure 1, and compare its performance to that of (5)
and the conventional droop control. There are 10 generators
and 29 load nodes in the system, and we take the system
parameters from the Matpower Simulation Package [23]. In
contrast to our theoretical analysis, the simulation data have
heterogeneous inertia and damping. The droop control is
implemented as the Djωj term for the generator buses and
is deactivated for simulations with the controllers (5) and (6).
We assume that all the buses (including the generator buses)
have load-side participation enabled and pick the controller
gains Kp and Kd heterogeneously in proportional to the bus
damping Dj .

A. Robustness against measurement noise

We first look at the controller performances against mea-
surement noise. Toward this goal, we add a white Gaussian
measurement noise of power −20 dBW to the frequency
sensor at Bus 30, and we observe its frequency trajectory,
which is shown in Figure 2. As shown, the controller (5) is
less prone to measurement noise compared to the conventional
droop control, because it increases the system damping level
and therefore helps suppress the low-frequency part of the
noise; however, its benefit in suppressing high-frequency noise
is limited, shown from its performance gap compared to the
controller (6). To more clearly see such distinction, we replace
the measurement noise at Bus 30 with the signal 0.2 sin(10πt)
pu that contains only the high-frequency component, and we
observe its trajectory, which is shown in Figure 3. In this
case, we see that controller (5) performs nearly the same as
the conventional droop control, whereas the system under the
improved controller (6) exhibits a much smaller oscillation.

B. Wind power data

Next, we look at the performance of the controllers under
real wind power generation data from [24]. We choose Bus
30 to be the wind generator, whose output follows the profile
given in [24], and we look at the frequency trajectory at Bus
36. The two buses are specifically chosen to be geographically
far away so that the simulation results reflect the end user
perception of such penetration levels of renewable generation.
The simulation results are shown in Figure 4. Compared to
controller (5), the improved controller (6) incurs a smaller

Fig. 2. Frequency trajectory at Bus 30 when we add white Gaussian
measurement noise of −20 dBW.

Fig. 3. Frequency trajectory at Bus 30 when we add a signal following the
sine curve 0.2 sin(10πt) pu.

frequency deviation almost all time, and the resulting trajec-
tory is smoother. This is because (6) filters high-frequency
fluctuations in the generator profile. We expect such benefits to
be more significant when the system aggregate load fluctuates
more frequently because of increasing penetration levels of
renewable generation.

VII. CONCLUSION

In this work, we proposed a framework using spectral graph
theory that captures the interplay among different system
parameters. It leads to precise characterizations on how control
parameters affect the system performance, and it allows us

Fig. 4. Frequency trajectory at Bus 36 under wind power output at bus 30.

7
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



to make general inferences without extensive simulations. We
quantified the benefits of load-side participation within this
framework and explained how we can improve it so that the
system is more robust against high-frequency oscillations.

We remark that our framework can be generalized to in-
clude secondary frequency controllers. In particular, load-side
controllers for secondary frequency regulation can usually be
locally interpreted as the control law (5) plus a term that
captures the overall supply-demand imbalance from other parts
of the network. Therefore, in terms of system stabilization,
our discussion about how load-side participation helps system
(2) in both the transient and steady states will still apply.
In terms of driving the system back to the nominal state,
the framework explains how the cyber and physical network
topologies interact with each other and suggests methods
to improve the overall system convergence rate. Because of
space limitations, we refer interested readers to [25] for more
detailed discussions. We are still investigating how our results
can be generalized to more detailed models (e.g., where the
generators have higher order or nonlinear dynamics).
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