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Although selective area growth (SAG) and coalesced SAG (cSAG) have been utilized
extensively for many years to moderate the material quality of lattice-mismatched
films, the geometrical factors controlling dislocations in coalesced films are dif-
ficult to visualize, and some confusion regarding the topology of dislocations for
cSAG still persists. In this paper, we describe the topology of dislocations during
island coalescence for cSAG, framed in terms of fundamental dislocation proper-
ties and virtual dislocations, which are used as a helpful visualization tool. We
also show how the results and methods are generally applicable to coalescence of
any other epitaxial film. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5047945

INTRODUCTION

High crystalline quality semiconductor materials are critical for many electronic and opto-
electronic applications. As the need grows for material bandgaps beyond those of semiconductors
commercially available as substrates, research has expanded toward lattice mismatched (LMM)
materials. Lattice mismatch introduces strain and defects into these materials, which are often
detrimental to device performance. Many techniques have arisen over the years to mitigate high
dislocation densities associated with lattice mismatch: metamorphic graded buffer growth,1,2 ther-
mal cycle annealing,3 dislocation filters,4 and selective-area growth (SAG). While each technique
has its merits and uses, in this manuscript we focus on better understanding the dislocation mitiga-
tion mechanisms enabled by coalesced selective-area growth (cSAG) of lattice mismatched films.
Nonetheless, the ideas and conclusions are critical for understanding the coalescence of any epitaxial
material system, including porous materials, island growth [e.g. Volmer-Weber (VW)], heteroepitaxy
with coincident site matching or interfacial misfit (IMF), and forms of dislocation “blocking” such
as by voids, pores, second phases, and strained layers.

Selective-area growth is well established as a method for growing small areas of dislocation-
free LMM material.5,6 The concept of SAG was originally proposed by growing separate islands of
material,7 which has been demonstrated to eliminate some of the strain-related issues with LMM
epitaxy.8–10 This concept has also been extended to epitaxial growth of material within a via between
regions of masking material and enables defect reduction by aspect ratio trapping (ART)11 and/or
lateral epitaxial overgrowth (LEO).12

SAG and cSAG approaches are used to fabricate a myriad of semiconductor devices including
solar cells,13–18 lasers,19–21 light emitting diodes,22 and photodetectors.23 These techniques have been
utilized in multiple material systems, notably GaN epitaxy on SiC24,25 and Si,26 and Ge,27 GaSb,28

InP,29 and GaAs19,30 epitaxy on Si, and effectively remove threading dislocations (TDs) from each
individual small area of uncoalesced LMM epitaxial material.19,31,32
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Although significant threading dislocation density (TDD) reductions have also been reported
for LMM films grown via coalesced SAG,14,23 this should not simply be ascribed to ART. As will
be described in this paper, ART cannot, in and of itself, remove TDs from LMM cSAG epilayers.
Furthermore, reports in the literature often use different methods to quantify the material quality of
SAG and cSAG materials, making it challenging to directly compare different patterning and growth
approaches. For example, for AlGaAs and GaAs grown on Si, reported TDDs range from 104 cm−2

(etch pit density)33 to 109 cm−2 [cross-sectional transmission electron microscopy (XTEM)],34

and some reports show that TDD increases after coalescence of material from individual SAG
vias.35

In this paper, we address a significant and persistent source of confusion—the topology of
dislocations in coalescing systems. This confusion persists largely because the geometry of coalesc-
ing systems, over the wide range of length scales relevant to dislocations, is difficult to visualize.
Here we provide a detailed examination of the topological origins of threading dislocations in coa-
lescing materials and show how virtual dislocations (VDs) can be used as a visualization tool to
facilitate understanding. Although this work was motivated by LMM cSAG, the basic concepts
are generally applicable to many other situations for which the dislocation topology is difficult to
visualize.

COALESCED SELECTIVE-AREA GROWTH VERSUS VOLMER-WEBER GROWTH

In most applications of SAG [Fig. 1(a)], the substrate surface is coated with a masking material
(typically an oxide) which is then patterned with an array of vias. For organometallic vapor phase
epitaxy (OMVPE) on an appropriately patterned substrate with a sufficiently large aspect ratio,36

epilayer growth will occur only in the vias, and aspect ratio trapping will direct LMM-related dis-
locations toward the sidewalls of the material grown in each via. This enables the growth of small
areas of non-contiguous dislocation-free LMM material.

For some materials and applications, the volume of material created by SAG is adequate, but
for large-area devices such as solar cells, the epilayer should ideally cover the entire substrate. To
achieve such a large area, the area of each “epipillar” can be expanded by the LEO of “epiwings”
[terms defined in Fig. 1(a)]. Coalesced SAG accomplishes this by coalescing adjacent epiwings into
a contiguous “cSAG epilayer” [Fig. 1(b)]. However, this coalescence typically results in a large TDD
at the coalescence boundaries.35

One of the main themes of this paper will be the similarities between cSAG and Volmer-Weber
(VW) growth. In VW, individual islands nucleate [Fig. 1(c)] and then coalesce into a continuous
VW epilayer [Fig. 1(d)]. For both LMM cSAG and LMM VW growth, subtle misalignments dur-
ing coalescence can create TDs in the resulting epilayer. The goal of this paper is to facilitate the
visualization of these coalescence-related misalignments and their consequences.

FIG. 1. Terminology for (top) coalesced selective-area growth “cSAG” and (bottom) Volmer-Weber “VW” growth: (left)
before coalescence and (right) after coalescence. In cSAG growth, the epilayer material nucleates on regions of the substrate
exposed within the vias in the mask material and then grows upwards as an epipillar and then laterally as epiwings to finally
coalesce into a cSAG epilayer. In VW growth, islands nucleate on an unmasked substrate and then coalesce into a contiguous
epilayer.
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COALESCENCE-RELATED DISLOCATIONS

Here we will describe specifically how the dislocation content of a cSAG film evolves as it
coalesces. After coalescence, the dislocation content of a LMM cSAG epilayer will continue to evolve
as it does with any LMM epilayer, but these processes have been (and continue to be) extensively
studied elsewhere.37,38 Our discussion of cSAG coalescence will be based on the following three
fundamental dislocation properties:39,40

(1) Topologically, all dislocations must form complete loops. [As will be discussed extensively
in this paper, virtual dislocation (VD) segments can be used to complete a loop wherever a
dislocation exits through the surface of a material.]

(2) Pairs of threading dislocation (TD) segments can annihilate and connect two misfit dislocations
if, and only if, their parent misfit dislocations (MDs) have the same Burgers vector and line
sense.39

(3) A Burgers circuit with a non-zero closure error encircles a dislocation.

These properties and associated terminology are well established and thoroughly described else-
where39,40 and will not be re-derived here. The following discussion will be based upon hypothetical
examples which apply these dislocation properties to cSAG coalescence. Most of the discussion is
directed toward LMM cSAG, but, toward the end, implications and opportunities for lattice-matched
(LM) cSAG and related growth geometries will be considered.

Continuity of dislocations

To begin, Fig. 2 illustrates why aspect ratio trapping cannot, in and of itself, prevent threading
dislocations from continuing upwards into a LMM cSAG epilayer. Figure 2(a) illustrates the initial
phase of cSAG, in which a single dislocation has formed in a LMM epipillar. Before coalescence,
this dislocation can exit the side surfaces of the epipillar via aspect ratio trapping.36 This creates
a dislocation-free top surface upon which additional uncoalesced dislocation-free material can be
grown.19,41

However, isolated dislocations such as the one shown in Fig. 2(a) will reappear in the overlying
material if adjacent epipillars coalesce into a continuous film, as shown in the “allowed” configuration
[Fig. 2(b)]. The “forbidden” configuration [Fig. 2(e)] is not allowed. To understand why, the “allowed”
and “forbidden” cases from Fig. 2 are extended via a thought experiment in which the crystalline
material replaces the mask material. In the allowed case [Figs. 2(b)–2(d)], the resulting dislocation
terminates at an exterior surface [Fig. 2(d)]. In the forbidden case [Figs. 2(e)–2(g)], the two ends of
the dislocation terminate at an interior surface. The topological impossibility of this becomes clear
when the mask material is completely replaced with epilayer material, and the dislocation terminates
within the solid [Fig. 2(g)].

FIG. 2. During cSAG, an isolated dislocation (red dashed line) can be removed from an individual uncoalesced “epipillar”
(a), but will continue into the overlying epilayer to reach an exterior surface after coalescence (b). The configuration shown in
(e) is not allowed because the dislocation terminates at an interior surface. To understand this, some additional hypothetical
cases have been added (inside the dashed box). In (c) and (d), mask material in (b) is gradually replaced with epilayer material
to obtain (d), which is allowable. In (f) and (g), mask material in (e) is replaced with epilayer material to obtain (g), which is
strictly forbidden.
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FIG. 3. A reproduction of Fig. 2, with virtual dislocations (VDs) added as thin red dotted lines. As growth proceeds, the VDs
in (a) indicate the need for TDs to pass through the coalesced epilayer in (b). In the context of this paper, VD segments are
used to schematically complete dislocation loops. If its connectivity is not changed, the exact path of each VD segment is
arbitrary. By adding VD segments like these, dislocation loops can be created for every allowed dislocation configuration in
this paper (and in general).

To avoid the creation of schematic diagrams with forbidden configurations such as those shown in
Figs. 2(e)–2(g), “virtual dislocations” (VDs) can be used as a helpful visualization tool. Figure 3(a)
is identical to Fig. 2(a), but a VD has been added to form a complete loop (thin red dotted line).
Figure 3(b) is identical to Fig. 2(b), but, once again, segments of VD have been added outside of the
semiconductor material (i.e., within the masking material and outside the epilayer) to form a loop.
Using the same methods, loops can be formed for Figs. 2(a)–2(d) but not for Figs. 2(e)–2(g).

In the context of this paper, the sole purpose of VDs is to ensure that all topological rules
for dislocations are followed, so the exact path taken by a VD is not important and should not be
used to compute any elastic energies. The essential point is that for any allowable configuration of
dislocations, it must always be possible to form complete dislocation loops by using VD segments
to connect together points where dislocations exit through a surface of a material. When this is done,
the Burgers vector associated with each VD must match the dislocation to which it is connected. By
extension, VDs can be combined, but only if the associated rules for combining Burgers vectors39

are followed.
Figure 2 also helps illustrate one potential source of confusion produced by XTEM images of

threading dislocations. Because the volume of material imaged in an XTEM foil is thin, it rarely
includes the entire length of a dislocation. Therefore, when images similar to Figs. 2(e)–2(g) are
obtained, it does not mean that a dislocation terminates within the epilayer or at an internal surface,
but rather that the dislocation that originally reached the top surface, as shown in Figs. 2(b)–2(d), has
exited out of the front or back of the thin slab of material used for XTEM. (An experimental example
can be found in Fig. 1 of Ref. 32.)

For this reason, the threading dislocation content of an epilayer is more accurately assessed
via a plan-view geometry using techniques such as planar transmission electron microscopy (TEM),
electron channeling contrast imaging,42 or electron beam-induced current mapping. Furthermore,
an area appropriate for the TDD of the epilayer should be measured. For consideration, a TDD of
108 cm−2 corresponds to one TD per square micron, which is much larger than the area typically
included in an XTEM sample.

It should also be mentioned that some common characterization methods such as defect selective
etching (DSE) and x-ray diffraction (XRD)43 can lead to inaccurate TDD values. For example, if defect
selective etching conditions are not properly optimized (due to over- or under-etching, for example),
there will not be a one-to-one correspondence between TDs and etch pits.44 When characterizing
material quality with XRD, both the optics and sample geometry must be carefully considered. Non-
optimal optics can lead to peak broadening, and different sample geometries can lead to complexities
such as anisotropy within the sample.45,46 To unambiguously measure dislocation densities, multiple
quantitative characterization techniques should be employed.

Pairwise annihilation of threading dislocation segments

Next, we discuss the second dislocation property—that pairs of TD segments can annihilate
and connect two misfit dislocations if, and only if, their parent MDs have the same Burgers vector
and line sense. However, this rule simply addresses the possibility that two TD segments could
annihilate. Whether or not they actually annihilate also depends upon energetics and kinetics, and
these factors can become very complex. Here we merely show that voids in a coalescing material can,
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in principle, influence how sets of dislocations interact during coalescence. It should be emphasized
that our intention here is not to provide a predictive theory but rather to provide some representative
dislocation-interaction examples for the cSAG and VW growth geometries, in order to illustrate some
subtle but important differences between the two geometries.

Figure 4 illustrates a few representative limiting cases for which all dislocations are glissile. (The
line direction and Burgers vector of a glissile dislocation lie within the same glide plane. Glissile
TD segments can, under the right circumstances, glide together to annihilate. The line direction and
Burgers vector of a sessile dislocation are not coplanar with a glide plane. Sessile dislocations can
only move via mass transport/climb.)40,47

In Fig. 4, each dislocation has been assigned a Burgers vector representing (for example) one of
the four strain-relieving glissile 〈110〉 Burgers vector directions for a cubic epilayer material growing
with a {100} surface and {111} glide planes.48 Although this example is constrained to glissile
dislocations, the concepts are general and can be applied to any mixture of dislocations, regardless
of whether they are sessile or glissile.

The shading in Fig. 4 represents, very schematically, the displacement field at the surface associ-
ated with each underlying dislocation line. In the following discussion, dislocations will only combine

FIG. 4. Examples of dislocation interactions during coalescence for (a) Volmer-Weber and [(b) and (c)] cSAG growth. In the
left column, two adjacent islands have partially coalesced; in the right column, they are fully coalesced. The cross-sectional
side views AA′, BB′, and CC′ are taken from the regions labeled in the corresponding top views. The shading represents,
very schematically, the extent of the displacement field at the epilayer surface associated with each underlying dislocation.
The initial set of misfit dislocations (left column) is the same for both VW and cSAG. “Dislocation blocking” can hinder the
annihilation of TD segments for VW growth, as is seen in [(a), right], where annihilation of the two b1 TD segments creates
a single b1 MD whose associated strain field prevents the two b2 TD segments from gliding together and annihilating. (The
jog in the final b1 MD is the result of cross-slip.) In (b), the gap between the epipillars in cSAG facilitates the annihilation
of TD segments (see text) leading to a lower TD density [(b), right]. In (c), the dislocation spacing is increased such that the
dislocations are only able to interact pairwise, creating the “grown-in” dislocations (b2 + b1) and (b1 + b2). In general, these
summed “grown-in” dislocations will be sessile.
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if these displacement fields overlap. Otherwise, they will behave as isolated dislocations, essentially
unaffected by the displacement fields of other dislocations.

Figure 4(a), left, shows two hypothetical islands as they are just beginning to coalesce during
Volmer-Weber growth. Each island is populated with MDs with the Burgers vectors indicated in the
top view [Fig. 4(a), lower left], and each of these MDs is connected to a VD segment which extends
upwards through the hole in the material formed by the two points of coalescence. All four of these
VD segments must be accounted for after coalescence.

Figure 4(a), right, shows one possible post-coalescence outcome in which the two b1 VD seg-
ments annihilate pairwise, joining the b1 MDs together. As a result, there are no b1 TDs after
coalescence. By contrast, the two b2 VDs become b2 TD segments. During coalescence, this pair
of b2 TD segments could have annihilated pairwise but did not. The reason they did not is that prior
annihilation of the b1 TD segments has already created one long b1 MD, and the associated local
over-relaxation of epilayer stress can “block” the motion (and thereby annihilation) of the two b2 TD
segments.49 Eventually, if epilayer growth continues, it will become easier for the b2 TD segments to
annihilate somewhere further away from the LMM interface, spatially separated from the localized
stress associated with the b1 MD.

Figure 4(b), left, shows a pre-coalescence configuration for cSAG, in which there is some mask
material between the cSAG epipillars, but everything else is identical to the VW case shown in
Fig. 4(a), left. However, the post-coalescence dislocation configuration shown for cSAG is different
[Fig. 4(b), right]. The possibility for different outcomes for VW and cSAG has two origins. One
difference is that the energetics and kinetics are different. This is because dislocation interactions are
governed by energy associated with the strain fields surrounding the dislocations. In cSAG, some of
this material has been removed and replaced by the mask material, which alters the elastic forces
between interacting dislocations.

The second difference is that the relevant displacement fields are different. For VW growth,
coalescence occurs at or near the epilayer/substrate interface, where the displacement fields of
the dislocations are highly localized near their respective dislocation cores. For cSAG epilay-
ers, coalescence occurs much further from the substrate and thus much further from the relevant
underlying MD cores at the epilayer/substrate interface. As the distance from a dislocation core
increases, its associated displacement field broadens and becomes superimposed with the dis-
placement fields of other dislocations. Very schematically, the four virtual dislocation segments
in Fig. 4(b), left, annihilate in Fig. 4(b), right, because the atomic bonding during coalescence
is guided by the superimposed displacement fields, which, far from the dislocation cores, are
insensitive to the exact arrangement of the underlying MDs, so coalescence can proceed without
TDs.

By contrast, the MDs in Fig. 4(c), left, are more widely spaced such that the superposition of the
displacement fields of adjacent MDs is negligible. In this case, the dislocations can interact pairwise
as shown in Fig. 4(c), right, to create “grown-in” TDs. The identity of the resulting TDs depends on
how the VDs combine, but there is no guarantee that the resulting TDs will be glissile. (Consider,
for example, the sessile “Lomer-Cottrell” locks that can form via the combination of two dissociated
glissile dislocations in a zinc-blende crystal.39,40)

It is also worth mentioning here that configurations such as in Fig. 4(b) occur preferentially
at high TDDs. As the TDD decreases, configurations like Fig. 4(c) become more common, and at
the lowest TDD, configurations with isolated TDs (Fig. 3) become most common. Therefore, any
facilitation of the annihilation of TD segments via the mechanism illustrated in Fig. 4(b) would be
most effective at large TDDs and then become less effective as the TDD decreases. This is consistent
with the existence of many TDD reduction strategies which quickly bring the TDD down to the
107–108 cm−2 range, but not much further.

Geometrically necessary TDs

Finally, we will discuss the consequences of the third fundamental dislocation property—that a
Burgers circuit with a non-zero closure error must encircle a dislocation. This property implies that
an alignment error of just one atom during the coalescence of a set of adjacent islands will create a
“geometrically necessary” TD in the coalesced epilayer.48
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Our discussion of geometrically necessary dislocations will be split into three sections. The first
section will apply Burgers circuit analysis to the crystal lattice of coalescing islands at the atomistic
level. This is helpful for basic understanding, but creating atomic-scale diagrams for every relevant
coalescence event is not practical. The second section will show how the same geometrically necessary
dislocations can be understood using VDs, without needing to explicitly draw the underlying crystal
lattice. And finally, the third section will discuss geometrically necessary dislocations created by
Burgers circuits with non-zero closure errors in the z direction (normal to the growth surface).

Geometrically necessary TDs from coalescence: An atomistic analysis

Figure 5 illustrates atomistically how island coalescence can lead to grown-in “geometrically
necessary” dislocations. In this example, the lattice mismatch is such that 8 epilayer atoms span
the same distance as 9 substrate atoms. The periodic supercell representing a fully relaxed inter-
face is created by stacking these two adjacent layers of atoms on top of one another [Fig. 5(a)].
Misfit dislocations follow lines of atoms with the maximum displacement from ideal interfacial
bonding positions, and a periodic array of supercells will create a periodic interfacial MD network.
For specific favorable sample geometries, near-surface interfacial MD networks have been imaged
with transmission electron microscopy (TEM) and scanning tunneling microscopy (STM). Some
examples of this are Ag/Cu(111),50 Ge/Si(111),51,52 InAs/GaAs(111),53–55 InN/GaN(0001),56 and
GaSb/GaAs(111).57,58

When two adjacent epilayer islands coalesce, there is the potential for misalignments that can
create TDs. In Fig. 5(b), two adjacent islands are placed such that they could be subsequently con-
nected by an additional supercell to form one large undistorted island. However, this alignment is
statistically rare. If two islands nucleate randomly on the surface, the probability of perfect alignment
is only 1/81 for the 8/9 LMM ratio used in this example. In most cases, two adjacent islands will be
misaligned [Fig. 5(c)], and the epilayer must distort during coalescence. These distortions can cancel
to enable coalescence without a TD [Fig. 5(d)] or accumulate such that coalescence encircles a TD
[Fig. 5(e)].

These two cases can be understood by using Burgers circuit analysis. In Fig. 5(d), a Burgers
circuit has been drawn through the four coalescing islands. This Burgers circuit starts in Island 1 and

FIG. 5. Misalignment of coalescing islands can create “geometrically necessary” TDs. (a) In this example, 8 epilayer atoms
span the same distance as 9 substrate atoms. (b) If randomly positioned, the probability that two adjacent islands will be
perfectly aligned such that they can coalesce without distortion is 1/81. (c) In general, adjacent islands will be misaligned and
will distort during coalescence, as demonstrated by the connecting virtual dislocation. (d) If these distortions cancel when
traveling around a Burgers circuit, the lattice will be distorted but with no closure error and therefore no encircled TD. (e) If
lattice distortions accumulate when traveling around a Burgers circuit such that there is a closure error, a TD will result. In
these diagrams, the x̂/3 distortions represent relative displacements between coalescing islands of 1/3 of the x-component of
a primitive lattice constant. For simplicity, all islands in (d) and (e) are perfectly aligned in the y and z directions.
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then travels 10 atoms in each direction. On the downward leg, there is a 1/3 atom shift to the left, but
this is offset by a 1/3 atom shift to the right on the upward leg. The epilayer is distorted, but there
is no closure error and therefore no encircled TD. In Fig. 5(e), the registry of the islands is slightly
different. In this case, the downward, leftward, and upward legs of the Burgers circuit each produce
a 1/3 atom shift to the left. This produces a one-atom closure error. Prior to full coalescence, this
closure error is indicated by a VD. After the islands fully coalesce, the VD becomes a “geometrically
necessary” TD.

Atomistic diagrams such as those in Fig. 5 could in principle be used to illustrate any arbitrarily
complicated dislocation configuration during coalescence, but this quickly becomes tedious and
cumbersome. To facilitate visualization, TDs resulting from island misalignment errors can also be
described using VDs, as explained in the next Section (titled Geometrically necessary TDs from
coalescence: A VD analysis).

Geometrically necessary TDs from coalescence: A VD analysis

This section will illustrate how virtual dislocations (VDs) can be used to facilitate visualization
of the formation of geometrically necessary dislocations during coalescence. It will also be used as
an opportunity to show how the same concepts apply equally to sessile dislocations.

Figure 4 illustrated a limiting case in which all dislocations were glissile (prior to coalescence).
This would happen if the initial interface were coherent, and any strain relief were due to subsequent
dislocation glide. At the other extreme, Figs. 6 and 7 illustrate a different limiting case in which
all MDs are sessile “grown-in” 90◦ edge dislocations, as occurs for the coalescence of fully relaxed
LMM islands during “interfacial misfit” (IMF) growth on a cubic {100} surface.57,58 In this example,
each individual island (or epipillar) is fully relaxed through an interfacial MD array and, prior to
coalescence, contains no TDs. However, as was just shown and will be shown again here, coalescence
of TD-free islands does not guarantee the formation of a TD-free epilayer. Furthermore, the same
underlying principles apply equally to VW growth (Fig. 6) and cSAG (Fig. 7).

Figure 6 illustrates a hypothetical island coalescence event for LMM VW growth. Figure 6(a)
is a cross-sectional side view of the top view shown in Fig. 6(b). Figure 6(c) is a wider-range top
view showing how a Burgers circuit can be drawn through the points of coalescence of these three

FIG. 6. A hypothetical example for VW growth showing how small misalignments between adjacent islands before coales-
cence [(a)–(c)] can create a “geometrically necessary” threading dislocation (TD) after coalescence [(d)–(f)]. (a) is a side view
of the cross-sectional cut-out DD′ in (b), and (b) is an enlarged view of (c), where three misaligned islands have begun to
coalesce. In (d) and (e), all MDs (orange and brown lines) have joined together pairwise except for one, which must bend
upwards to reach the surface as a TD. (d) is a side view of the cross-sectional cut-out EE′ in (e). (f) An enlarged schematic
view of the atomic lattice near the resulting TD, whose Burgers vector by is defined by the closure error of the Burgers circuit.
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FIG. 7. A hypothetical example for cSAG growth showing how small misalignments between adjacent islands before coa-
lescence [(a)–(c)] can create a geometrically necessary threading dislocation (TD) after coalescence [(d) and (e)]. (a) is a
side view of the cross-sectional cut-out FF′ in (b), and (d) is a side view of the cross-sectional cut-out GG′ in (e). Aside
from the mask/spacer layer, the initial conditions and resulting geometrically necessary TD formation are the same as for the
VW example in Fig. 6. (f) For cSAG, the MD array at an epipillar/substrate interface is extended to become a virtual MD
(VMD) array beneath the epiwings. These VMDs serve to indicate the registry of the epiwings with respect to the underlying
substrate. If the mask/spacer material were replaced with epilayer material, the VMDs would become MDs with the same
(x, y) positions.

islands. Figures 6(d) and 6(e) are side and top views after coalescence, showing the resulting TD for
this hypothetical example. Figure 6(f) shows the atomic lattice surrounding the resulting TD.

The lattice mismatch between the substrate and epilayer creates two orthogonal sets of regularly
spaced MDs (orange and brown lines). In this example, the ratio of the epilayer/substrate lattice
constants is 9/8, so the MD spacing is 8 times the primitive lattice constant of the epilayer in the plane
of the interface. [This ratio of 8 epilayer atoms per 9 substrate atoms can be seen along the right edge
of Fig. 6(f). Elsewhere in Fig. 6(f), this ratio changes as the strain field around the indicated TD alters
the local lattice constant of the epilayer.]

In this geometry, the VD segments connected to any two parallel MDs from separate islands
or epipillars can annihilate pairwise, as seen here in Figs. 6(b) and 6(e), and later in Figs. 7(b) and
7(e). This is because, for the same MD line sense, every orange MD has the same Burgers vector,
so the associated VD segments can annihilate. The same is true for the orthogonal set of brown
MDs. However, as will be discussed below, any small misalignments during coalescence can create
unpaired MDs, which must continue upwards into the coalesced film as “geometrically necessary”
threading dislocations.

To create the conditions needed to form a geometrically necessary TD, small island-to-island
misalignments have been included in Fig. 6. In the y direction, Island 1 is shifted down with respect
to Island 3, and Island 2 has been shifted upwards with respect to Island 3. Although the underlying
atomic lattice is not shown, each shift is about 1/3 of the surface atomic row spacing, as can be inferred
from the relative positions of the MDs on adjacent islands. This creates a 1/3-row gap between Islands
1 and 2, which will close during coalescence, creating a TD. [These displacements match those in
Fig. 5(e) but with a 90◦ clockwise rotation.]

The need for a geometrically necessary TD can be inferred from the pattern of MDs in Fig. 6(b).
During coalescence, the lattice near the edges of each island will distort to bring MDs into align-
ment, enabling most MDs to be joined together pairwise by VDs. However, one unpaired MD will
remain. Before coalescence [Figs. 6(a) and 6(b)], the unpaired MD is connected to a VD traveling
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upwards through the hole in the coalescing film. After coalescence, this unpaired VD becomes a TD
[Figs. 6(d)–6(f)].

With regards to TD formation, the situation for LMM cSAG [Fig. 7] is essentially identical. To
facilitate comparison, the misalignments in Figs. 6 and 7 are identical. The only difference between
the two configurations is the mask/spacer layer. And, as was shown in Fig. 2, this mask material
cannot, in and of itself, prevent TDs from reaching the epilayer surface.

For cSAG, MDs only occur at the epipillar/substrate interface, as shown in Fig. 7(f). However,
as will be shown next, it is very useful to extend this array of MDs with an array of virtual MDs
(VMDs). The VMDs in Fig. 7 are located where MDs would be if the spacer layer were thinned
to zero thickness and eliminated, bringing the cSAG epiwings and substrate into contact without
changing their lateral (x, y) registry.

The salient feature of the VMDs in Fig. 7 is that they convey information about the registry
of each epiwing with respect to the substrate and can therefore be used to predict the existence or
absence of threading dislocations in the cSAG epilayer after coalescence. When this is done, the one
unpaired VMD must bend upwards toward the surface to form a VD before coalescence [Figs. 7(a)
and 7(b)]. After coalescence, this VD becomes a TD [Figs. 7(d) and 7(e)]. In essence, Fig. 7 can
be converted into Fig. 6 simply by removing the spacer layer and shortening the epipillars, until the
epilayer and substrate come into contact. The resulting TDs will be the same.

Although subsequent glide, climb, and annihilation of TD segments can affect the final outcome,
it is instructive to consider what TDD might be expected for a simplified representative case in which
islands or epipillars nucleate with a spacing of 1 µm in both the x and y directions, with randomly
chosen island misalignments. In simplified form, the problem reduces to computing the statistical
probability that the random misalignments sum to zero, for which there will be no TD [as in Fig. 5(d)],
or to a non-zero value, in which case a TD will be encircled [as in Fig. 5(e)].

Based on random statistics, x-direction misalignments for a Burgers loop passing through four
coalescing islands (or epipillars) will sum to a non-zero value for approximately 1/3 of all coalescence
events, as will y-direction misalignments. The 1/3 value is simply the probability that three randomly
chosen numbers between −0.5 and 0.5 will sum to a number with a magnitude greater than 0.5,
leading to a non-zero closure error such as the one shown in Fig. 5(e). [In this simplified analysis,
minimization of localized lattice distortion at each point of coalescence will round any closure
error to the nearest integer. If the magnitude of this integer is zero (unity), no (one) TD will be
encircled.]

Ignoring z-misalignments and interactions between x and y, the resulting TDD for this example,
with each island having an area of 1 µm2, will be (1/3 + 1/3)/(10−4 cm)2 = (2/3) × 108 cm−2. In
other words, the TDD computed solely from geometric alignment errors will be similar to the areal
density of the original island/epilayer nucleation sites. Conversely, the observed TDDs for LMM
VW growth59 could be used to estimate the original areal density of islands/coalescence sites, and
the resulting sub-micron distances are reasonable. Of course, the exact coalescence geometry can
modify these numbers, and post-coalescence annihilation of TD segments further modifies the TDD
(and therefore plays an important role in most TDD-reduction strategies).

Ultimately, this thought experiment indicates that the TDD due to alignment errors during the
coalescence of LMM epilayers cannot (and should not) be neglected. Instead, information about
coalescence-related TDs should be sought out and used to guide the development of TDD reduction
techniques. Experimentally, this type of information can be extracted from images of interfacial MD
networks50,54,58,60 by looking for unpaired MDs [which indicate the locations of TDs, as shown in
Fig. 6(e)].

Geometrically necessary TDs from coalescence: ∆z errors

Any closure errors in ∆x and ∆y are readily visualized when a Burgers circuit is viewed from
above. However, small ∆z errors between adjacent epiwings/islands can also accumulate to create a
Burgers circuit error encircling a threading dislocation. [For ∆z closure errors, the lattice will spiral
upwards or downwards around the enclosed TD, as is illustrated later in Figs. 9(c) and 9(d).]

Figure 8(a) illustrates some potential sources of ∆z misalignment for cSAG. Perhaps the most
obvious is bending of the epiwings (∆zbend),61 which could be due to temperature gradients, or to
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FIG. 8. (a) Examples of potential∆z errors for cSAG growth, which can accumulate to create a∆z closure error in a Burgers
circuit traveling through coalescing islands, creating a TD (as shown in Fig. 9). (b) Without the mask/spacer layer, adjacent
islands remain in contact with the substrate, so coalescence occurs without∆z errors. The white layer in (a) represents a mask
layer; in both (a) and (b), the black and gray layers represent atomic layers of the substrate and LMM epilayer, respectively.
Dashed circles indicate regions where the epilayer is tilted or rotated with respect to the substrate.

forces between the laterally growing epilayer and the spacer layer such as those caused by thermal
expansion differences or minute variations in the thickness of the spacer layer. On an offcut substrate,
a ∆zoffset can result from nucleation of adjacent epipillars on different substrate terraces, combined
with vertical lattice mismatch of the two materials. Similar∆zoffset errors could be caused by substrate
roughness or differences in substrate etching depth for different SAG vias (if substrates are etched
prior to epitaxy).

Another subtlety of LMM epitaxy on offcut substrates is the “Nagai tilt,” where the epitaxial
layer tilts to compensate for differences in the vertical lattice constant of the epitaxial layer and
substrate.62 If the surface step spacing beneath adjacent epipillars is different, the non-uniform Nagai
tilt can produce the “∆zNagai” shown in Fig. 8(a). [Another source of the epilayer tilt (i.e., epitaxial
layer rotation) which can produce a “∆ztilt” similar to ∆zNagai is asymmetric relaxation for tilted glide
planes.63 Taken to an extreme, such angular misalignments could create low-angle grain boundaries,
but this is outside the scope of this paper.]

Understanding and control of the∆z errors in Fig. 8(a) is important because∆z errors can become
an increasingly important source of TDs in LMM cSAG films as the distance between epipillars is
increased (and any such TDs would increase the TDD beyond that created by ∆x and ∆y alignment
errors).

During Volmer-Weber growth [Fig. 8(b)], many of these same epilayer tilts occur, but the con-
tiguous epilayer-substrate interface maintains the layer-to-layer registry in the vertical direction,
preventing ∆z errors and associated TDs. This can inform the choice of cSAG mask geometry for
lattice-matched applications, described in the next Section (titled Coalescence in a lattice-matched
system).

Coalescence in a lattice-matched system

For LM cSAG, there is no lattice mismatch to drive ∆x or ∆y misalignments but TDs related to
∆z misalignments can occur during the lateral overgrowth of the epiwings [as in Fig. 8(a)]. Figure 9
illustrates schematically how this can be affected by the mask topology.

Figures 9(a)–9(d) correspond to the cSAG geometry considered throughout all of the previous
figures in this paper—namely, epipillars growing up through an array of disconnected vias in a mask
and then coalescing into a continuous epilayer. Although lattice-matching will ideally prevent ∆x
and ∆y errors, the ∆z errors from Fig. 8(a) can accumulate in this cSAG geometry to cause TDs in
the resulting epilayer as the epiwings coalesce. Nothing about this geometry suppresses the ∆z errors
which create the closure error and associated TD in Figs. 9(c) and 9(d).

Figures 9(e)–9(h) illustrates a different mask geometry which could, in principle, avoid TDs
related to ∆z errors. This geometry inverts the mask geometry into an array of disconnected mask
pillars, each of which is completely surrounded by exposed substrate surface prior to growth. If the
initial contact between all epilayer islands occurs where the islands are in direct, contiguous contact
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FIG. 9. Two examples illustrating how the mask topology could affect TD formation during lattice matched (LM) cSAG, e.g.,
GaAs epitaxy on a GaAs substrate. In [(a)–(d)], the epilayer grows upwards through an array of disconnected vias in the mask
and then grows laterally above the mask material (lateral epitaxial overgrowth) before coalescing. Any of the ∆z errors in
Fig. 8(a) can accumulate to create a geometrically necessary TD, as shown in (c) and (d). In [(e)–(h)], the mask topology has
been inverted to become an array of disconnected mask pillars. Coalescence of LM islands occurs contiguously in contact with
the substrate around each mask pillar [as in Fig. 8(b)] such that a Burgers circuit encircling a masked region will contain no
closure errors. Therefore, no geometrically necessary dislocations are required during subsequent coalescence as the epilayer
buries the mask pillar, as shown in (g) and (h). These examples also apply equally to the coalescence of lattice-matched
crystalline materials on porous substrates.

with the substrate [Fig. 9(f)], then there will be no ∆z errors at the points of initial coalescence,
and a Burgers circuit such as the one in Fig. 9(g) will not encircle a dislocation. Once this occurs,
subsequent epilayer growth is topologically able to coalesce laterally over the mask material with no
threading dislocations or other defects. Of course, any nucleation of defective material on the mask
surface can act as a source of defective material in subsequently grown material, so suppression of
nucleation on the mask is likely an essential requirement for good lattice-matched epitaxy for any
cSAG geometry. For this reason, different results may be expected for different growth methods and
conditions (OMVPE versus molecular beam epitaxy, for example).

Interestingly, Fig. 9 can be applied equally to coalescence of a porous crystalline material64,65

by simply removing the mask material from Figs. 9(b) and 9(f) to create voids. When this is done,
the implication is that a porous crystalline surface created by disjoint holes [analogous to Fig. 9(f)]
can coalescence more easily into a defect-free overlayer than a porous crystalline surface consisting
of disjoint crystalline pillars [analogous to Fig. 9(b)].



120903-13 McMahon et al. APL Mater. 6, 120903 (2018)

GENERAL APPLICABILITY

To reinforce the main points of this paper, Fig. 10 shows how virtual dislocations can be applied to
several other common growth geometries, besides cSAG. The diagrams on the left illustrate forbidden
configurations in which dislocations terminate (unphysically) at interior surfaces, without ultimately
reaching exterior surfaces. The diagrams on the right are corrected to illustrate allowed dislocation
configurations, using VDs as a visualization tool.

These diagrams make clear, for example, that dislocations do not terminate at a “dislocation
blocking layer”—a common tool used in a variety of applications. Instead, dislocation blocking
layers lower the TDD by either facilitating the annihilation of TD segments [Fig. 10(d)] or (if and
only if they are close enough to an edge) guiding them to the epilayer edge.1 And, as has been discussed
at length in this paper, TDs which “terminate” at sidewalls during SAG are not necessarily eliminated
from the overlying epilayer formed during cSAG [Fig. 10(f)]. It is therefore critical to understand
the physical processes underlying the terms “dislocation blocking” and “dislocation termination”;
otherwise they can become very misleading.

These diagrams emphasize another point which was made earlier in the discussion of Fig. 4,
namely, that TDD reduction strategies that work by annihilation of TD segments are likely to be far
more effective at high TDDs than at low TDDs. When fully understood, cSAG strategies can be used
to very deliberately steer the remaining TDs in a LMM film to specific locations,19,41,66 but they
cannot, in and of themselves, fully eliminate TDs.

Finally, it is interesting to notice that all of the growth geometries in Fig. 10 are identical from the
perspective of dislocation topology. To create (d), the voids in (b) can be filled with the “dislocation
blocking” material, then combined, and flattened to extend to the edges of the epilayer. To create (f),
the voids in (b) can be stretched downwards to contact the substrate. For (h), the voids in (b) can
be stretched upwards to reach the surface and downwards to reach the substrate and then collapsed
during coalescence. In all cases, the use of VDs ensures that forbidden dislocation topologies are
avoided.

While the discussion in this paper focused on planar substrate topologies for conceptual simplic-
ity, other growth configurations may be useful for achieving high quality LMM epitaxy for different

FIG. 10. Examples showing how virtual dislocations can be applied to various sample geometries. When virtual dislocations
(VDs) are used as a visualization tool (right), forbidden dislocation topologies (left) can be avoided.
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applications. For instance, V-grooved substrates14,30,33,67–70 and confined epitaxial lateral overgrowth
(CELO)71 have been shown to be beneficial for defect control. Template-assisted selective epitaxy
(TASE)72,73 can also achieve good quality nanoscale heteroepitaxy with a variety of geometries
(nanowires, cross junctions, and 3D stacked nanowires). The concepts discussed in this paper are
generally applicable and can be extended to help visualize the formation of coalescence-related TDs
in these or any other LMM system.

CONCLUSIONS

Selective area growth is widely used to create localized volumes of dislocation-free material
through aspect ratio trapping for small-area devices on lattice-mismatched substrates. For large-area
devices, these small defect-free volumes would ideally be coalesced into a large defect-free epilayer.
Unfortunately, for LMM growth, the resulting coalesced SAG epilayer will contain geometrically
necessary threading dislocations which degrade the material quality of the cSAG epilayer, even if the
epiwings of the starting uncoalesced islands are dislocation-free.

Motivated by persistent confusion in the literature about the existence and origin of these geo-
metrically necessary TDs, we have illustrated their causes and consequences by carefully examining
a series of representative examples. In each case, “virtual dislocations” can be used as a visualiza-
tion tool to enforce the rules governing dislocation topology during coalescence, and in so doing,
understand the source of any geometrically necessary TDs for a given configuration.

A careful comparison of LMM cSAG and LMM Volmer-Weber growth shows that the origin of
geometrically necessary TDs is essentially identical for both cases, but with a few subtle differences.
One difference relates to dislocation combination at voids during cSAG coalescence, which may
help cSAG (or related approaches) remove TDs via dislocation combination, but only when the
TDD is large. When the TDD becomes smaller, voids cannot be used to remove isolated TDs.
Another difference is that, for some cSAG mask geometries,∆z alignment errors can create additional
TDs.

Finally, the use of virtual dislocations helps avoid common misinterpretations of cross-sectional
TEM data; more accurate TD densities can be obtained using multiple quantitatively rigorous planar-
view techniques. Although the included examples were chosen to facilitate the understanding of
geometrically necessary dislocations for LMM cSAG, the visualization methods illustrated here can
be applied to a variety of situations, and a few examples of this were discussed.
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