
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

A New Approach for Short-Term 
Solar Radiation Forecasting 
Using the Estimation of Cloud 
Fraction and Cloud Albedo 
Andrew Kumler, Yu Xie, and Yingchen Zhang 
National Renewable Energy Laboratory 

Technical Report  
NREL/TP-5D00-72290 
October 2018 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

 

  

A New Approach for Short-
Term Solar Radiation 
Forecasting Using the 
Estimation of Cloud Fraction 
and Cloud Albedo 
Andrew Kumler, Yu Xie, and Yingchen Zhang 
National Renewable Energy Laboratory 

Suggested Citation  
Kumler, Andrew, Yu Xie, and Yingchen Zhang. 2018. A New Approach for 
Short-Term Solar Radiation Forecasting Using the Estimation of Cloud 
Fraction and Cloud Albedo. Golden, CO: National Renewable Energy 
Laboratory. NREL/TP-5D00-72290. 
https://www.nrel.gov/docs/fy19osti/72290.pdf. 

 

Technical Report  
NREL/TP-5D00-72290 
October 2018 

https://www.nrel.gov/docs/fy19osti/72290.pdf


 

 

NOTICE 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy 
Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the 
U.S. Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. 

NREL prints on paper that contains recycled content.  

http://www.nrel.gov/publications
http://www.osti.gov/


iv 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

List of Acronyms 
DNI Direct normal irradiance 
GHI Global horizontal irradiance 
MAE Mean absolute error 
MBE Mean bias error 
nRMSE Normalized root mean square error 
NWP Numerical Weather Prediction 
PSPI Physics-Based Smart Persistence Model for Intra-Hour Solar Forecasting 
RMSE Root mean square error 
SZA Solar zenith angle 
  



v 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Executive Summary 
Solar generation is an increasing part of the energy portfolio in the United States. An accurate 
forecast of the available solar resource and power is essential to managing the electric grid, 
market operations, and reducing the cost of solar energy. High-frequency forecasts of solar 
radiation in intra-hour horizons is important for real-time electric power system energy 
management, especially at the distribution level. Conventional Numerical Weather Prediction 
models perform poorly in intra-hour, high-frequency forecasts because of the limits on real-time 
computing, spatial resolution, and infrequent availability of observations. Although a number of 
alternative technologies, e.g., time-series analysis and machine learning, have been used to fill 
this gap, the smart persistence model is among the top-performing models in short-term 
forecasting and therefore often serves as the baseline to evaluate other forecasting models. 

Although the smart persistence model often serves as the baseline model in these intra-hour 
forecasts, obvious uncertainties exist in the current smart persistence model: (1) clear-sky index 
does not respond to the variation of the solar incident angle when cloud conditions are persistent 
within the forecast horizon, and (2) cloud coverage is inherently persistent though it is 
constrained by cloud advection. In this study, we developed a Physics-Based Smart Persistence 
Model for Intra-Hour Solar Forecasting (PSPI) that integrates cloudy property estimation, a 
radiative transfer model, and cloud fraction forecasts to improve the performance of the smart 
persistence model. Compared to the smart persistence model, PSPI does not require additional 
observations of various atmospheric parameters past global horizontal irradiance, but it is 
customizable because additional observations, if available, can be ingested to further improve the 
forecast. Our results show that the PSPI outperforms the persistence and smart persistence model 
on 5-minute, 15-minute, and 30-minute forecast horizons. The software package of PSPI is 
flexible to users’ needs and provides low computational time to run at site-specific locations 
across the continental United States. 
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1 Introduction  
Each year, solar energy is increasingly integrated into the electric grid. Costumer adoption of 
small distributed PVs such as rooftop has outpaced the growth of utility scale PVs, and they are 
expected to compose of 50%-60% of total U.S. PV capacity through 2020 (Palmintier 2016). 
Electrical utilities are heavily investing in Distribution Management Systems (DMS) 
technologies to increase situational awareness at the distribution level and enable an efficient, 
reliable, and secure control of highly distributed energy assets. With the rapid increase in 
distributed solar levels, the DMS systems will require accurate forecasts of PV 
patterns/variability and will need to ensure that control schemes offer centralized and distributed 
decision-making opportunities that match the time scales of ambient conditions (Kaur et al. 
2016; Mills 2013). For decades, solar forecasting methods have been studied in the literature 
using a variety of techniques and for a plethora of forecast time horizons. Thorough reviews of 
solar forecasting techniques can be found in Inman, Pedro, and Coimbra et al. (2013) and 
Sengupta et al. (2017). Of these solar forecasting techniques, time-series models are among the 
most original and simplest (Goh and Tan 1977). Time-series models often use solar radiation 
measurements, such as global horizontal irradiance (GHI), in addition to statistical models and 
possibly simple atmospheric radiation physics (Kleissl 2013). These models usually operate in 
the intra-hour forecast horizon, with more complex solar forecasting methods being more 
accurate past 1 hour, e.g., satellite-based methods, Numerical Weather Prediction (NWP). With 
current technologies (computing power, access to observations, etc.) NWP at the intra-hour 
forecast horizon is extremely expensive and not practical, especially for the renewable energy 
sector. The focus of traditional uses for NWP forecasts has been on severe weather and aviation, 
with renewable energy forecasts only recently becoming a topic of interest and study (Haupt et 
al. 2016; Haupt et al. 2018; Mathiesen and Kleissl 2011; Perez et al. 2013). To help fill this gap, 
techniques such as machine learning and time-series analysis, using multiple forecast horizons 
and data sets, have become popular in the literature (Inman, Pedro, and Coimbra 2013; Yang et 
al. 2018). 

The intra-hour forecast horizon is interesting from both an atmospheric science and an energy 
management perspective. From the atmospheric science perspective, the most interesting cloud 
phenomena happen sub hourly, with changes in cloud conditions having large impacts on 
incident solar radiation. From the energy management side, especially for solar energy, the quick 
changes in incident solar radiation can drastically alter the production of solar power especially 
in distribution systems with high penetrations of solar (Denholm and Hand 2011). To help 
alleviate this problem, time-series models can help detect future intra-hour ramps of solar 
irradiance and thus power. The most common of these models are the persistence and smart 
persistence models (see Section 2.1). These models are the simplest time-series models used in 
the solar energy community, and they are often used as a baseline to compare other forecast 
models. These qualities make them attractive for use by utilities. In addition, they need little to 
no observations of GHI and limited supervision, making them a cost-effective solution. Despite 
this, the smart persistence model suffers from two main problems: (1) the inability for the 
incident solar angle to change when cloud conditions are persistent, and 2) cloud cover remains 
persistent but is eventually advected depending on the forecast horizon. These two problems are 
also dependent on how often the smart persistence model is updated (e.g., 1-minute, 5-minute, 
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30-minute). These pitfalls of the smart persistence model and the need for a simple yet robust 
intra-hour solar irradiance forecast are the main motivations for this study. 

The purpose of this paper is to introduce a Physical Smart Persistence Model (PSPI) that is 
capable of better capturing cloud conditions than typical persistence models while needing only 
local GHI observations to run. In addition, the code that runs the model is customizable because 
additional atmospheric observations, if available, can be easily ingested into the code and thus 
produce a more realistic forecast. Last, utilities and grid operators can take advantage of PSPI by 
converting an irradiance forecast into an intra-hour power forecast, depending on their needs. 
Increased number of utilities’ installation of local solar irradiance sensors provide foundation of 
the proposed method to be widely adopted (Kuszamaul et al. 2010).  

The rest of this paper discusses the methods on which the PSPI model is built and how it 
operates (Section 2); results and performance of the PSPI model against traditional persistence 
models (Section 3); and conclusions that can be drawn from using the PSPI, including potential 
benefits to utilities and energy management systems (Section 4). Future work for improving the 
model is also considered. 
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2 Methods 

2.1 Review of Persistence Models 
In solar forecasting, the persistence model has often served as the baseline model to compare 
other models. Even today, the persistence model (and smart persistence model described next) 
performs well for intra-hour forecasts, mainly because accurately capturing cloud conditions 
remains elusive (Kleissl 2013; Marquez and Coimbra 2013). The simple persistence model can 
be defined as: 

𝐼𝐼𝑝𝑝(𝑡𝑡 +  Δ𝑡𝑡) =  𝐼𝐼(𝑡𝑡) 

where I(t) is the current irradiance (GHI) at the surface. The persistence model can be improved 
by adding a clear-sky index correction factor, which is the ratio of GHI measurements divided by 
clear-sky GHI (Kaur et al. 2016, Sengupta et al. 2017). This clear-sky index is then multiplied by 
future clear-sky GHI to obtain a forecast, defined as: 

𝐼𝐼𝑠𝑠𝑠𝑠(𝑡𝑡 +  Δ𝑡𝑡) =  𝑘𝑘𝑡𝑡(𝑡𝑡) ∗  𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 +  Δ𝑡𝑡) 

where kt (t) is the clear-sky index, and Iclr (t + ∆t) is the clear-sky GHI in a future time step. The 
benefit of the smart persistence model is that general atmospheric conditions are indirectly 
observed through the clear-sky index and advected into some future time. The clear-sky GHI can 
be computed through a variety of clear-sky models, each with varying degrees of complexity and 
accuracy (Ineichen 2016). 

2.2 Simulation of GHI Using Estimations of Cloud Fraction and Cloud 
Albedo 

A major drawback to using a persistence model is that atmospheric conditions (mainly cloud 
conditions) are largely unknown. These conditions are hidden in the persistent GHI and are 
advected to a future forecast. Following the approach of retrieving cloud albedo and cloud 
fraction from Xie and Liu (2013), GHI can be reconstructed for the current time period while 
obtaining cloud conditions. To begin, certain irradiance variables are required to complete the 
reconstruction. These include clear-sky GHI at the surface (hereafter 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑), clear-sky direct 
normal irradiance (DNI) at the surface (hereafter 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑

𝑑𝑑𝑑𝑑 ), GHI measured at the surface by a 
CMP22 (Kipp and Zonen pyranometer, hereafter 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑), all-sky DNI at the surface (hereafter 
𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑 ), and all-sky upward GHI (hereafter 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑢𝑢𝑢). 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝑢𝑢𝑢𝑢 is given by the following equation: 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝑢𝑢𝑢𝑢 =  𝛼𝛼𝑠𝑠𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 

where 𝛼𝛼𝑠𝑠 is the land surface albedo, assumed to be 0.2 in this study. These variables can be 
obtained using the following methods: 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑

𝑑𝑑𝑑𝑑  can be modeled using a clear-sky model, 
and 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑  can be modeled using a DNI model. We chose the Ineichen-Perez clear-sky model 
(Ineichen and Perez 2002) because of its great performance among other clear-sky models while 
needing only minimal input (Reno, Hansen, and Stein 2012). For DNI, we chose the Erbs model 
(Erbs, Klein, and Duffie 1982) mainly because of its simplicity and speed. 
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Once these variables are obtained, reconstruction of current GHI can begin. As laid out in Xie 
and Liu (2013), GHI at the surface for a single-layer cloud atmosphere can be expressed as: 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 =  𝐹𝐹1(1 −  𝛼𝛼𝑠𝑠𝛼𝛼𝑟𝑟𝑓𝑓𝑇𝑇2)−1 

where 𝛼𝛼𝑠𝑠 is the surface albedo, 𝛼𝛼𝑟𝑟 is the cloud albedo, 𝑓𝑓 is the cloud fraction, T is the 
transmittance of diffuse radiation of the atmosphere, and 𝐹𝐹1 is the first-order downwelling flux at 
the surface. 𝐹𝐹1 is given by: 

𝐹𝐹1 = 𝑓𝑓𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 + (1 − 𝑓𝑓)𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 

where 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 is the downwelling flux because of cloudy skies, and it can be approximated by: 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 = (1 −  𝛼𝛼𝑟𝑟)𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 

with 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 being the clear-sky GHI that was obtained from the Ineichen-Perez model. Other 
parameters here, such as 𝛼𝛼𝑟𝑟 and 𝑓𝑓, are explained in greater detail in Xie and Liu (2013). 

2.3 An Improved Smart Persistence Model for Short-Term Solar 
Forecasting 

With the ability to reconstruct GHI using the method outlined in the previous section, it is then 
possible to forecast GHI using the same variables. In the future time step within 0–30 minutes, 
we assume semi-persistent cloud optical thickness and cloud fraction. Cloud thickness and 
fraction can be updated as often as desired, depending on the user’s needs and computing 
abilities. For this study, cloud fraction is semi-persistent for a given forecast horizon (e.g., a 15-
minute forecast assumes cloud conditions remain unchanged from 15 minutes prior) but is 
computed as a 5-minute rolling average. This changes if original cloud fraction values (non-
rolling average) ramp up or down within a 5-minute moving window. If cloud fraction changes 
by more than 30% in a 5-minute window, the forecast changes to a 5-minute forecast until cloud 
conditions stabilize. The original forecast is modified to reflect changing cloud conditions in 
addition to making a normal (e.g., 15-minute or 30-minute) forecast. The cloud albedo remains 
largely persistent but is also updated when the forecast changes to 5 minutes. Cloud albedo can 
be given by a two-stream approximation suggested by Sagan and Pollack (1967) when cloud 
absorption is neglected (Meador and Weaver 1980): 

𝛼𝛼𝑟𝑟′ =  
𝑏𝑏𝑏𝑏 𝜇𝜇0′⁄

1 + 𝑏𝑏𝑏𝑏 𝜇𝜇0′⁄  

where 𝜏𝜏 is the cloud optical thickness, defined as: 

𝜏𝜏 =  
2𝛼𝛼𝑟𝑟𝜇𝜇0

(1 −  𝛼𝛼𝑟𝑟)(1 − 𝑔𝑔) 

with 𝜇𝜇0 = |cos(SZA)| (SZA being the solar zenith angle), g is the asymmetry factor of cloud 
particles assumed to be 0.86, and b = 0.05 – 0.05g (Xie and Liu 2013). The prime denoted on 
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some of the variables indicates values for the future time step. Following these equations and 
from Section 2.2, the forecast for GHI can be given by: 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑
′ =  𝐹𝐹1′(1 −  𝛼𝛼𝑠𝑠𝛼𝛼𝑟𝑟′ 𝑓𝑓𝑇𝑇2)−1 

𝐹𝐹1′ = 𝑓𝑓𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑
′ + (1 − 𝑓𝑓)𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑

′ 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑
′ = (1 −  𝛼𝛼𝑟𝑟′ )𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑

′ 

where 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑′ can be computed by the Ineichen-Perez model and the solar zenith angle by a variety 
of Python libraries (see next section).  

2.4 Data Sources, Quality Control, and Software 
The measurement data used in this study are available for download from the National 
Renewable Energy Laboratory Solar Radiation Research Laboratory -  Measurement and 
Instrument Data Center (www.midcdmz.nrel.gov). The Solar Radiation Research Laboratory is 
located in Golden, Colorado, at an elevation 1,829 m above sea level, with atmospheric 
influences from the Rocky Mountains and the urban environment of the Denver Metro area, 
creating a complex site to model. Here, data can be downloaded or viewed in real time. It also 
contains historical data dating to 1981 (Stoffel and Andreas 1981). Most data come quality 
controlled, so little post-processing is needed. The forecast data generated from the equations in 
Section 2.3, and thus observations from the Solar Radiation Research Laboratory, undergo some 
simple quality control, such as eliminating data that occur when the solar elevation angle is less 
than 7° (Ruiz-Arias et al. 2010), correcting modeled values that exceed extraterrestrial radiation 
at any point in the time series, and eliminating the occasional (but rare) erratic value that differs 
unreasonably from observations. Some of these bad data situations can occur because of the 
inherent simplicity of the model. Many atmospheric parameters are assumed to be constant 
(precipitable water, aerosol content, pressure, etc.), which can lead to under- or overestimations 
of clear-sky variables, which thus produces instances of unphysical cloud variables. Although a 
reasonable forecast can still be made despite this, this hinders the ability to accurately know 
cloud conditions. To help alleviate this, measures can be taken to better capture the current state 
of the atmosphere, such as ingesting more data sources (if available) and setting upper and lower 
thresholds. 

To assist the forecast model with various variables such as extraterrestrial irradiance and clear-
sky GHI, the open-source and community-supported PVLIB Python library is used (Holmgren et 
al. 2015, 1–5). PVLIB is a great tool for assisting and enhancing solar resource and forecasting 
studies, with common tools and models found in the literature aggregated into one place. 

2.5 Metrics for Evaluating Model Performance 
To verify how well models explained in the previous sections perform against observations, 
various statistical measures common in the solar forecasting community can be used (Inman et 
al. 2013; Sengupta et al. 2017). One of the most common and straightforward statistical methods 
is the Pearson correlation (Benesty et al. 2009, 1–4), which measures the linear relationship 
between two variables: 

http://www.midcdmz.nrel.gov/
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𝑟𝑟 =  
∑ (𝑚𝑚𝑖𝑖 −  𝑚𝑚�)(𝑜𝑜𝑖𝑖 −  𝑜̅𝑜)𝑛𝑛
𝑖𝑖=1

𝜎𝜎(𝑚𝑚)𝜎𝜎(𝑜𝑜)  

where m represents the model value, and o represents the observations. The Pearson correlation 
gives a very general idea of how well two data sets relate to each other. Other useful measures, 
such as mean bias error (MBE) and mean absolute error (MAE), give an idea of forecast 
accuracy. MBE helps identify if the model has a positive or negative bias, whereas MAE states 
the overall error of the model. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�(𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�|𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

One of the most common statistical metrics used in the solar forecasting community is the root 
mean square error (RMSE). It calculates the average spread of the error in a population, which is 
a good indicator of model performance:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
1
√𝑁𝑁

��(𝑚𝑚𝑖𝑖 −  𝑜𝑜𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

The last statistical metric used in this study is the forecast score (Marquez and Coimbra 2013; 
Yang et al. 2018). The forecast score takes the ratio of the normalized RMSE of a model over a 
persistence model and subtracts the results from one. 

𝐹𝐹𝐹𝐹 = 1 −  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

This number indicates how well a model performs in relation to the persistence model (or model 
of choice), with a positive value indicating better performance and a negative value worse 
performance. Although many other statistical measures exist in the solar energy community 
(Gueymard 2014), we believe that the metrics outlined in this section give a well-rounded 
assessment of simple time-series models, such as persistence models. 
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3 Results 

3.1 Reconstruction of GHI 
Before delving into the results of the PSPI model, it is first necessary to see how well the 
reconstruction of GHI matches observations. For all figures in this paper, results from the year 
2013 are shown. Figure 1 shows the results of the reconstruction against observations for a clear-
sky day and a cloudy-sky day in 2013. As shown in each panel in Figure 1, reconstruction of 
GHI matches essentially perfectly with observations. 

 
Figure 1. Comparison of observations versus reconstruction for the clear-sky day of July 17, 2013, 

(top) and the cloudy-sky day of December 2, 2013 (bottom) 

 

3.2 Performance of the PSPI model 
With the reconstruction of GHI being accurate, we can now evaluate the PSPI model. Figure 2 
shows a time-series plot of a 5-minute, 15-minute, and 30-minute forecast for a cloudy-sky day 
in December 2013. As shown in this plot, especially the 15-minute and 30-minute forecasts, 
overall the PSPI has a better handle on cloud ramps than the smart persistence model. This is 
evident throughout the year under varying cloud conditions. In addition, as the forecast horizon 
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decreases, the forecasts begin to converge, which is to be expected. This is also revealed in 
Figure 3, which bins the better performing model into clearness index and cloud fraction bins. 
For every combination of clearness index and cloud fraction, the better performing model at that 
time is assigned to that bin for the entirety of 2013. Referring to Section 2.4, if an unphysical 
cloud fraction value occurs, and to a lesser extent clearness index value, then this value is 
adjusted according to the theoretical maximum and minimum value possible for each respective 
variable. At the 30-minute forecast horizon (Figure 3, right panel), PSPI performs admirably in 
nearly all clearness index and cloud fraction situations. As the forecast horizon decreases, the 
forecasts become more similar until no clear difference can be made between the two models. 
Although smart persistence appears dominant in the 5-minute forecast horizon (Figure 3, left 
panel), the amount of area covered is not directly indicative of better performance. For example, 
most of the clearness index and cloud fraction combinations could happen in a particular range, 
which is not expressed in Figure 3. To address this, Figure 4 depicts three Taylor diagrams, one 
for each forecast horizon. Taylor diagrams (Taylor 2001) are a succinct way of showing three 
different statistics in one diagram and have generally been underappreciated in the solar energy 
community (Gueymard 2014). For these Taylor diagrams, the lower right corner (where 
correlation coefficient = 1 and RMSD = 0) is considered truth, or the statistics of the 
observations. The closer a model is to this point on the figure, and thus observations, the better 
the model is considered to be. As shown in Figure 4, for all forecast horizons, PSPI (red) 
outperforms both the smart persistence and persistence models (blue and green, respectively). 
The smart persistence and persistence models both converge as the forecast horizon decreases. 
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Figure 2. Five-minute (top), 15-minute (middle), and 30-minute forecast (bottom) for the smart 
persistence and PSPI models for the cloudy-sky day of December 2, 2013 

 



10 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 3. Clearness cloud fraction bins for the 5-minute (left), 15-minute (middle), and 30-minute 

(right) forecasts 

 

 
Figure 4. Taylor diagram showing the performance of the 5-minute (left), 15-minute (middle), and 

30-minute (right) forecasts for the year 2013 

 
Finally, the annual statistics for 2013 for the 5-minute, 15-minute, and 30-minute forecasts are 
shown in tables 1, 2, and 3 respectively. Here, the correlation coefficient, MBE, MAE, RMSE, 
and forecast score are displayed. Starting with the 5-minute forecast (Table 1), across the board it 
is evident that PSPI outperforms the smart persistence and persistence models, though this is not 
immediately clear by investigating only figures 2 and 3. At this forecast horizon, the models 
should nearly converge, which does occur for the smart persistence and persistence models. For 
the 15-minute forecast (Table 2), the statistics degrade some across all models, which is to be 
expected, but the PSPI still outperforms the other two models. The 30-minute forecast (Table 3) 
continues the same trend from the 15-minute forecast, but with an interesting discrepancy: the 
forecast score for the PSPI actually increases and is higher than the 15-minute forecast score. 
This primarily means that in relation to the normalized root mean square error (nRMSE) of the 
persistence model, the increase in nRMSE for the PSPI did not change as much when going from 
the 15-minute to the 30-minute forecast. This could be because of an inherent drop-off in the 
forecast ability for the persistence model when moving from the 15-minute to the 30-minute 
forecast (e.g., rate of changing cloud conditions) and/or the ability of the PSPI to still accurately 
capture cloud ramps despite being on a 30-minute forecast horizon. 
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Table 1. Annual Statistics (2013) for the 5-Minute Forecast 

MODEL CORRELATION MBE MAE RMSE Forecast 
Score 

PSPI 0.96 10.1 40.0 78.9 0.30 
SMART PERSIST 0.93 0.87 46.9 111.6 0.01 

PERSISTENCE 0.93 -0.17 50.8 112.3 0 
 

Table 2. Annual Statistics (2013) for the 15-Minute Forecast 

MODEL CORRELATION MBE MAE RMSE Forecast 
Score 

PSPI 0.9 15.1 65.4 127.8 0.16 
SMART PERSIST 0.87 2.6 71.4 147.7 0.03 

PERSISTENCE 0.87 -0.5 84.6 151.7 0 
 

Table 3. Annual Statistics (2013) for the 30-Minute Forecast 

MODEL CORRELATION MBE MAE RMSE Forecast 
Score 

PSPI 0.87 22.3 78.8 148.2 0.21 
SMART PERSIST 0.82 5.23 91.1 174.3 0.07 

PERSISTENCE 0.82 -0.9 119.2 186.5 0 
 
  



12 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

4 Conclusions 
For short forecast horizons where limited observations are available, and where physical aspects 
of the atmosphere are desired, it is beneficial to use a physical forecast model that can handle 
both of these situations. One of the most important situations is rapidly changing cloud 
conditions, which the PSPI handles better than the other persistence models. The speed of 
making the forecast is another concern because short-term forecasts need to update frequently to 
know the latest cloud conditions. Although the PSPI model does achieve these goals, some 
assumptions about the atmosphere in a future time period are made to achieve efficiency. Despite 
this, the PSPI outperforms the other persistence models on all the forecast horizons addressed in 
this study. The smart persistence and persistence models have been great base models for the 
solar energy community, with the advantages of being simple, fast, and fairly accurate for intra-
hour forecasts. With these forecasts, though, one forgoes the knowledge of the atmosphere, and 
with it cloud conditions remain unknown. In addition, GHI observations are still needed to run 
the smart persistence model, so it is prudent to get as much information out of the GHI 
observations as possible to create a better forecast (PSPI). 

The PSPI model is designed to be part of a bigger grid integration software platform that 
produces fast (<1 min) and reliable forecasts for grid operators and other stakeholders to use 
(Melton et al. 2018). In addition, the code that PSPI is built on is customizable in case more 
observations are available (almost always better) than the bare minimum (GHI observations). It 
is quite possible that the performance of the PSPI could be improved if more observations are 
added, but one of the main goals of this study was to see if a fast yet accurate solar forecasting 
model could be made with minimal observational input. 

Future work is planned for the PSPI. It will be an ongoing effort because the PSPI will be open-
source code on GitHub. Users can contribute anything from code improvements to better 
physics/models to increase the accuracy of the PSPI. Ultimately, this software is designed to help 
utilities and the like with their short-term forecasting needs when other methods are impractical. 
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