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Status of Wind and Solar PV Capacity in U.S.

U.S. DOE Wind Vision Study Scenarios
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Top 10 Solar States
1. California - 22,777 MW 6. New Jersey — 2,526 MW

2. North Carolina - 4,491 MW 7. Massachusetts — 2,226 MW
Total U.S. Solar

Capacity: 58.3 GW 3. Arizona - 3,613 MW 8. Florida - 1,943 MW
4. Nevada - 2,658 MW 9. Utah - 1,627 MW 50-199 MW
5. Texas - 2,624 MW 10. Georgia - 1,556 MW <o

Source: Solar Energy Industries Association Source: Solar Energy Industries Association
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Grid Integration Challenges for Variable Generation
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allenges:

Transient and dynamic stability (loss of
system inertia could reduce ability to respond to
disturbances—need ride-though capabilities in
VRE)

Frequency regulation (need primary,
secondary, and tertiary response from VRE)

Volt/VAR regulation (need ability to locally
change voltage to stay within nominal limits)

lutions:
Use smart inverters with advanced
functionality.

Mimic synchronous generator
characteristics.

Provide active power, reactive power,
voltage, and frequency control.
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Essential Reliability Services

* Active Power Control capabilities include: o ey e

* Ramp-rate-limiting controls PO s SO i i

* Active power response to bulk power system $30000
contingencies

* Inertial response
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* Primary frequency response (PFR)
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automatic generation control (AGC)

* Ability to follow security-constrained economic CAISO’s generation breakdown for April 24, 2016
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dispatch set points that are sent every 5 minutes ==
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* Fault ride-through B
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* Voltage, reactive, and power factor control and B
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Testing 300-MW PV Plant in CAISO’s Service Territory
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300-MW PV plant participating in AGC

30 MW headroom

POWER (MW)

Measured Regulation Accuracy by 300-MW PV Plant

Sunrise 93.7%
Middle of the day 87.1%
Sunset 87.4%

Typical Regulation-Up Accuracy of CAISO Conventional Generation
Combined Gas Hydro Limited Pump Steam
Cycle Turbine Energy Storage Turbine
Battery  Turbine

Resource

Regulation- | 46.88% 63.08% | 46.67% | 61.35% 45.31% | 40%
Up
Accuracy

Regulation accuracy by this
PV plant is 24%-30% better
than fast gas turbine
technologies.
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Frequency Response Metrics

Beginning of
the event

A

:

FREQUEN
B
w

T A ——

Initial rate if decline of frequency (ROCOF)
Value of frequency nadir (Point C)

A-to-C transition time

Value of settling frequency (Point B)
C-to-B transition time

C/B ratio.

Interconnection Frequency Response

Obligation

Calculated using statistical
observations from many similar
events
Depends on:

o Initial frequency

o  First step of underfrequency load
shedding

Contingency criteria

Governor withdrawal adjustment
C/B ratio

Demand response credit.
Western Interconnection
frequency response obligation = -
906 MW/0.1 Hz

BAL-003-1 standard also sets
frequency response obligations
for all balancing authorities
within interconnections.

O O O O
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Inertial Response by Large Wind Power Plant

Results of 65 inertial response tests by 1.5 MW wind turbine generator

Frequency event emulated by CGY — 1Hzfsec ROCOF
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NREL | 8



Aggregate Inertial Response

Full inertial response of 100 MW wind power plants

82

8 MW (10.7%) response in 2 seconds
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Fre-fault power — 75 MW

74

72
Beginning of event Production decline due to

- zlowing average wind speed
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80% Wind Penetration Study for

U.S. Western Interconnection

Studied Cases

Wind Controls Scenarios

Western Interconnection
Balancing Authorities (37)

0,
No inertia, Inertia ATl [ Inertia + PFR (5%
only headroom; headroom; 5% droop)
no PFR 5% droop) ’

Impact of wind controls

p o

halping amy langer ==fase Case
=@=inertia only
| |=aPEC only

=8=inertia + PFC
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woo
[ w

g 5955
& gqq .. First UFLS stage

o 10 20 a0 10 50 50 10% 20% I0% 40% S0% 0% T0% BO%
TIME {sac) WIND POWER PENETRATION (%)

Combining inertial and primary frequency controls by wind results in nadir
improvement with increasing penetration.

Largest Western Interconnection
N-1 contingency: loss of two Palo
Verde nuclear units (2.6 GW)
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Reactive Power Capability

Comparison of Reactive Power Capabilities

Q [MVAR]

D Measured P-Q Capability of 1-MW/1-MWh Li-ion BESS
Synchronous generator
1500

.............. @ Set point @ Measured
Field current limit

Synchronous condenser

Lagging
power Armature heating
factor constraints
STATCOM
l z
g
=
P[MW] %
©-1500
T PV Inverter and B
Type 4 wind turbine g
Leading =
power &
factor . -
Leading Qua. Winding end region heating limit
l Under excitation limit Type 3 wind turbine
-1500
[prime mover limit) BESS Inverter ACTIVE POWER (KW)
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Value Streams of Battery Energy Storage
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FREQUENCY (Hz)

Impacts of Wind and Energy Storage Controls on
Frequency Response
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BESS providing inertia and 1% droop

)—WindInertia+5% Wind droop+BESS inertia
—WindInertia+5% Wind droop+BESS inertia +1% BESS droop
—WindInertia+5% wind droop+5% PV droop
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NWTC Controllable Grid Platform

NWTC Wind Turbines
Alstom 3 MW

GE 1.5 MW
Gamesa 2 MW
Siemens 2.3 MW

‘ —o0
SunEdison :—ﬂq

1 MW PV Array

(m]

First Solar

430 kW PV arraw 4 ,

GE 1.25 MW / 1.25 MWh BESS

1 MW /1 MWh BESS

Regular grid,
Xcel Bus

Controlled grid,
CGI Bus

Switchgear
Building

AC

=

o 13.2kv

DC DC

AC

DC
AC

Controllable Grid Interface (CGl)
for Grid and Fault Simulation
(7 MVA continuous / 40 MVA s.c.)

13.2 kV tie-line

Substation

Aerial view of the site

NREL | 14



NREL Software Tools for Grid Integration

Steady-State Control S Eagnctic

Planning Transients
' ' . i ] Hardware-in-the-
¢ ¢ Economic Operation System Dynamics
] ] loop
L] ]
N ‘ ‘ H EINREL] » ‘
L] ] ] [} (] 2 2
: ' ' ¢ FESTIV ¢
TINREL - . . PSCAD
REEDS, RPM, REPRA - ' o -
. “ L RSCAD/RTDS
MAFRIT .

-

PLEXOS

L]
Wind and Sola|' Resource Data

Year Month Day Hour Min
TIME RESOLUTION

mS MS Real-Time

NREL in-house modelling tools

REEDS - Regional Energy Deployment System model . L.
RPM — Resource Planning Model tool Gap with the existi ng
REPRA — Ren?wable Energy Prob_abilistic Resource As.sessment tool commercial software
FESTIV — Flexible Energy Scheduling Tool for Integrating Renewables

MAFRIT — Multi-area Frequency Response Integration Tool tools




Thinking Beyond Traditional Variable Generation Plants

Single Renewable Technology Players

Traditional Plants

Evolution of Variable Renewable Power Plants

it

Plants Integrated
with Storage

Hybrid Technology Players

High potential to disrupt the game for
single-technology players

|
2020

Flexible, Dispatchable and Reliable Renewable Generation Plants

/A

Hybrid Renewable
Energy Plants

Reliability+

Synchronous
Condensers

Addtional
Hybridization
with Reliability
Enhancing
Technologies

T i

FACTS Devices

Dispatchability

Energy shifiting

Flexibility

Scalability

All essential reliability services
Advanced reliability services
All forms of APC and RPC
Short circuit currents

Grid strength reinforcement
Real and synthetic inertias
Synchronizing torque

Grid forming/black start
Fast response, ultra-wide
dynamic ranges

Resiliency, robustness
Grid-connected and islanded
operation
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Services by Multi-Technology

(Hybrid) Plants

Hybridization Recipe

Dispatchable renewable plant operation
*  Long-term and short-term production forecasts
e Capability to bid into day-ahead and real-time energy markets like conventional generation
*  Flexibility services.
Ramp limiting, variability smoothing, cloud-impact mitigation
Provision of spinning and nonspinning reserves
AGC functionality
Primary frequency response (programmable droop control)
Fast frequency response
Inertial response:
*  Programmable synthetic inertia for a wide range of H constants emulated by wind generation
* Selective inertial response strategies by wind turbines. Grid reliability
Reactive power/voltage control and resilience
Black start, resiliency services

Advanced controls: power system oscillations damping, phasor measurement unit measurement-based controls,
wide-area stability services

Stacked services

Plant electric loss reduction, annual energy production increase

Battery state-of-charge management

Optimization model-predictive control strategies

Revenue optimization for transmission- and distribution-level applications.
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CAISO’s typical wind and solar hourly production
profiles; data for July 17, 2017 (source: NREL)

POWER (MW)

Potential for Hybridizing Solar and

Taller Wind Resources in U.S.
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Taller wind unlocking wind power potential in all 50 states
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Conclusions

Modern inverter-coupled variable generation and energ
providing all types of reliability services to the grid.

Adequate market design is essential for unleashing such

y storage systems are capable of

capabilities as important tools in

achieving the broader objective of a resilient, reliable, low-carbon grid.

Explore economic and/or contractual incentives to maxi
production to provide reliability services.

Markets should incentivize faster and more accurate res

PV Collector Bus = 34.5 kV

PV Array 1

i Z '“Z‘""l 480V / 34.5 KV

Ledie, Inverter2 | 34.5 /230 kv
H
H
-]
3
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R

PV Arr; H
Inverter3

:

H

.

mize production and not hold back

ources that provide such services.

>
Irradiance measurements | P aed
1. Frequency droop sattings Controller

2. Up-Ramp rate control sattings

e il System Operator

AGCSE’\aI

Grid-friendly PV power plant 3 AGC power se point

4. Voltage/reactive power/power factor

it
5. Voltage droop settings for PV inverters

: Setpoints, Headroom, Droop, Ramp rate settings

Plant state data
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