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A Vortex Step Method for Nonlinear Airfoil Polar Data as
Implemented in KiteAeroDyn

Rick Damiani∗ Fabian Wendt† Jason Jonkman ‡

National Renewable Energy Laboratory, Golden, CO 80401 - USA

Jerome Sicard§
Makani, Alameda, CA 94501 - USA

This paper summarizes the underlying theory in the recently developed KiteAeroDyn
(KiteAD) module, which is part of KiteFAST (KiteFAST), a numerical simulation tool that
is currently being developed at the NREL. KiteFAST is intended for the simulation of airborne
wind energy systems (e.g., energy kites). KiteAD implements an innovative vortex step method
for the calculation of aerodynamic loads on all of the lifting surfaces of the kite, which is capable
of accounting for two-dimensional viscous effects through the use of nonlinear airfoil polars.
Considering nonlinear airfoil polar data allows for themodeling of flap or othermoving-surface
deflections, as well as for the modelling of inflow conditions with larger angles angles of attack.
From preliminary verification against other existing codes that can solve for lift distribution on
lifting surfaces, the results of the newly implemented method proved to be numerically robust
and computationally inexpensive, thus ideal for aeroelastic design and analysis applications.

I. Introduction

The dynamics of semirigid kites can be simulated by combining models for aerodynamics and structures. This paper
describes the theory developed and implemented in KiteAD, an aerodynamics module that is coupled to MBDyn [1]

through the FAST framework [2] to simulate airborne wind energy kites.
The main aerodynamic problem for aircraft-like structures comes down to solving for the induction associated with

the vorticity field generated by the presence of lifting surfaces. In this document, we denote any lifting surfaces as
‘wings’ regardless of the actual component function of the surfaces. Various methods exist to accomplish this task and
with various levels of fidelity and computational demand. KiteVSM is based on Weissinger’s method [3], also known
as Vortex Step Method (VSM), but with some modifications and extensions to improve the accuracy, computational
efficiency, minimization of instabilities, and to consider nonlinear airfoil polar data (e.g., airfoil cross sections with flap
deflections) in combination with multiple lifting surfaces.

In Section II, a brief review is offered on the existing induction models for lifting surfaces. Section III describes the
theoretical development of the new VSM. The code organization and implementation within a prescribed modularization
framework are summarized in Section IV.A. Sections V and VI present the results of preliminary verification conducted
on the newly implemented method. The results demonstrate that the code is computationally efficient and appropriate
for supporting the aeroelastic design and analysis of semirigid kites.

II. Review of Existing Lift Models
The VSM belongs to the vortex-lattice class and it approximates Prandtl’s lifting-line theory [4], with contributions

from the work of Munk [5], Pistolesi [6, 3/4-chord theorem],Wieghardt [7], and Mutterperl [8]. The lifting-line method
can be applied to straight, planar wings of high aspect ratio (AR>4). In its original formulation, this method reaches a
closed form solution for the induced angle of attack along the wingspan by assuming a simple flat-plate behavior where
the lift coefficient is simply regarded as Cl = 2πα.

The VSM, on the other hand, promises accurate solutions for low and high AR wings of different shapes, including
swept and dihedral wings. Furthermore, the VSM can be modified to account for the nonlinear polar curve of real
airfoils.

∗Sr. Engineer, National Renewable Energy Laboratory, AIAA Professional Member. rick.damiani@nrel.gov
†Engineer, National Renewable Energy Laboratory.
‡Sr. Engineer, National Renewable Energy Laboratory, AIAA Professional Member.
§Sr. Engineer, Makani, a project of X
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Whereas Prandtl’s lifting line sheds a continuous trailing vorticity from the wing’s 1/4-chord (1/4-c) line the VSM
approximates the resulting vortex sheet with a finite number of horseshoe vortices. The bound portion of the horseshoe
vortex lies along the 1/4-c line with the trailing arms aligned with the freestream direction. One other difference is in the
control-point locations. The lifting-line method calculates induction along control points at the 1/4-c whereas the VSM
places control points at the 3/4-c but in the direction of the freestream.

Fig. 1 Horseshoe vortices distributed following the adopted convention for the VSM. Ai , Bi are the generic
start and end points of the 1/4-c-bound segment of the generic horseshoe vortex. P is a generic control point
located at the 3/4-c.

III. KiteVSM: A New Vortex Step Method
In this section, the fundamental theory of KiteVSM is discussed.
Normally, techniques based on Weissinger’s method assume either a simple array of unknown values or some

Fourier-modal representation with unknown coefficients for the circulation (Γ(y)=Γ(θ), where y is the spanwise
coordinate and θ is its transformed value from y = −

span
2

cos θ). To attain the unknowns, those methods impose a
slip, nonpenetrating wall condition at the 3/4-c control points that translates into solving the resulting linear system of
equations. The choice of the 3/4-c condition derives from Pistolesi’s theorem, which states that the zero-lift angle of
attack is approximated by the tangent to the camber line at the 3/4-c location. Therefore, the incidence angle at the 3/4-c

point is equal to αinc = αG − arctan
(
dx
dy

���
3/4−c

)
(assuming an airfoil local-reference frame, where αG is the angle of

attack of the generic wing section).

Fig. 2 Representation of Pistolesi’s theorem at the generic spanwise wing section. Note the local airfoil
coordinate system (x̂air f , ŷair f ) is displayed.

The induced velocity at the control point location (Pj) can be obtained by summing the contributions from all
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horseshoe vortices with associated circulation Γi . The velocity induced by the generic i-th horseshoe vortex (AiBi , A∞,
B∞) of circulation Γi on the generic Pj can be written, with reference to Figs. 1 and 3, as in Eq. (1):

Uind,i(Pj) = UAiBi
(Pj) +UAi∞

(Pj) +UBi∞
(Pj) (1)

where UAiBi
(Pj) is the contribution to the induced velocity by the i-th bound vorticity segment AiBi ; UAi∞

(Pj) is the
contribution to the induced velocity by the first trailing-vorticity, semi-infinite line of the generic horseshoe vortex Γi;
UBi∞

(Pj) is the contribution to the induced velocity by the second trailing-vorticity, semi-infinite line of the generic
horseshoe vortex Γi .

Fig. 3 Contribution of the generic i-th horseshoe vortex to the induced velocity at the generic j-th control point,
Pj .

A. Computation of Induced Velocities and Vortex Core Correction
The various terms in Eq. (1) can be found by using the Biot-Savart law and can be expressed as in Eq. (2) [ref. 9]:

UAiBi
(Pj) =


Γi

4π
r1 × r2��r1 × r2

��2 [
r0 ·

(
r1
r1
−

r2
r2

)]
if

��r1 × r0
��

r0
> ε2��r1 × r0

��
r0ε2

UAiBi
(P′j) otherwise

UAi∞
(Pj) =



Γi

4π

1 +
r1 · ξ

r1���r1 × ξ
���2 r1 × ξ if

���r1 × ξ
��� > ε1���r1 × ξ

���
ε1

UAi∞
(P′j) otherwise

UBi∞
(Pj) =


−
Γi

4π

1 +
r2 · ξ

r2���r2 × ξ
���2 r2 × ξ if

���r2 × ξ
��� > ε1���r2 × ξ

���
ε1

UBi∞
(P′j) otherwise

(2)
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where r0 is the position vector from Ai to Bi; r1 is the position vector from Ai to Pj ; r2 is the position vector from Bi to
Pj ; and ξ is the unit vector along either the relative freestream velocity or the local chord direction (as selected by the
user in the KiteAD input file); the vortex core radius ε1 for the trailing vorticity is given by Eq. (3) [10] (see also Fig. 4):

ε1 =

√
4αoν

��r
⊥

��
U∞

(3)

where ν is the air kinematic viscosity; αo is the Oseen parameter equal to 1.25643; and r
⊥
is the position vector from

either Ai , Bi , or Ci to the projection of P′j onto the respective vortex centerline as shown in Eq. (4):

r
⊥
= (r · ξ)ξ (4)

where r is the generic position vector from Ai , Bi , or Ci to P′j .

Fig. 4 Diagram showing the relative location of Ai , Bi , Pj , P′j for the trailing-vortex core correction. Other
symbols defined in the text.

UAi∞
(P′j) is the UAi∞

(Pj) calculated at the radial projection of Pj on the vortex core edge while UBi∞
(P′j) is the

UBi∞
(Pj) calculated at the radial projection of Pj on the vortex core edge, respectively, which can be calculated as

shown in Eq. (5):

UAi∞
(P′j) =

Γi

4π

1 +
r ′1 · ξ

r ′1���r ′1 × ξ���2 r ′1 × ξ

UBi∞
(P′j) = −

Γi

4π

1 +
r ′2 · ξ

r ′2���r ′2 × ξ���2 r ′2 × ξ

with r ′ = r
⊥
+ ε1η

(5)

where the r ′ is the position vector from either Ai or Bi to P′j (i.e., either r ′1 or r ′2) and the radial unit vector η can be
calculated as in Eq. (6):

η =

r��r �� − ξ����� r��r �� − ξ
�����

(6)

For the bound vorticity, the core radius is fixed as shown in Eq. (7) [11] and Fig. 5:

ε2 = 0.05 ∗ r0 (7)

UAiBi
(P′j) is the UAiBi

(Pj) calculated at the radial projection of Pj on the vortex core edge, calculated according to
Eq. (8):

UAiBi
(P′j) =

Γi

4π
r ′′1 × r ′′2��r ′′1 × r ′′2

��2 [
r0 ·

(
r ′′1
r ′′1
−

r ′′2
r ′′2

)]
with r ′′ = r ′

⊥
+ ε2η2

(8)

4

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



Fig. 5 Diagram showing the relative location of Ai , Bi , Pj , and P′′j for the bound-vortex core correction. Other
symbols defined in the text.

where the r ′′ is the position vector from either Ai or Bi to P′′j (i.e., either r ′′1 or r ′′2 ) and the radial unit vector η
2
can be

calculated as in Eq. (9):
η

2
=

r1 × r0��r1 × r0
�� (9)

The r ′
⊥
is the position vector from either Ai , Bi to the projection of P′j onto the respective vortex centerline as shown in

Eq. (10):
r ′
⊥
= (r · r0)

r0
r02 (10)

B. Solving for the Circulation Distribution
The typical VSM enforces the slip condition Urel · n|3/4−c = 0 at the 3/4-c point location on the camber line (i.e., the

thickness is reduced to zero in the approximation of thin airfoils).
In our method, however, we make use of the more generic lifting-line fundamental equation as in Eq. (11) [e.g., 12]

to create a constraint (f=0) for the circulation distribution Γ(y):

f = ρ
��U
∞
× Γ(y)

�� − 1
2
ρ
��Urel × ẑair f

��2cCl

(
α, δf

)
= 0 (11)

where ρ is the air density, U
∞
is the free-stream air velocity vector, Γ(y) is the circulation vector, Urel is the relative air

velocity, ẑair f is the unit vector along the airfoil z-axis, c is the chord length, Cl

(
α, δf

)
is the 2D lift coefficient as a

function of α and δf , α is the effective angle of attack seen by the airfoil, δf is the airfoil’s flap or aileron deflection.
The nonlinearity stems from Cl

(
α, δf

)
and from the Urel

2 term. Eq. (11) represents an array of constraints, one per j-th
element in the VSM model ( j = 1..Nelms).

In Eq. (11), the unknowns are Γ(y), Urel , and α. The latter two can be expressed as a function of the induced
velocity and thus Γ(y). By specifying a control point Pj , one can write:

Urel(Pj) = U
∞
(Pj) +Uind(Pj)

Uind

(
Pj

)
=

∑
i Uind,i(Pj) =

∑
i

[
UAiBi

(Pj) +UAi∞
(Pj) +UBi∞

(Pj)

]
αj = arctan

Urel, j · x̂air f , j
Urel, j · ŷair f , j

(12)

where Urel is the relative air velocity, Uind is the induced velocity, x̂air f is the unit vector along the airfoil x-axis, ŷair f
is the unit vector along the airfoil y-axis. All these quantities are calculated at the local airfoil station identified by the
control point, Pj .

Eq. (11) has the great advantage of incorporating the generic polar curve of an airfoil through Cl

(
α, δf

)
, thus

accounting for nonlinear effects of actual airfoils (beyond the simple flat plate of the lifting-line method) and for the
presence of flap or moving-surface deflections. Other methods exist in the literature to account for nonlinear polars, but
they introduce more complications with multiple solving loops and with mixed success [13, 14].

Our innovative method, however, does not converge to the correct solution as it is written. The reason is that
Eq. (11) in the lifting-line sense should be enforced at the 1/4-c, whereas we are using the 3/4-c control point location
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to account for the effects of camber. In order to bring the solution back on track, we must account for the effect of a
two-dimensional (2D) contribution to the induction. An approach that is based on and further described in [15], which
builds upon the work described in [16]. The new induced velocity is calculated as in Eq. (13):

Fig. 6 Contribution of the generic i-th 2D bound vorticity to the induced velocity at the generic Pj .

Uind,i(Pj) =UAiBi
(Pj) +UAi∞

(Pj) +UBi∞
(Pj) −UAiBi2D (13a)

UAiBi2D =

{
Γi

2π
r0×r3

|r0×r3 |
2 r0δi j (13b)

where r3 is the position vector from Ci (midpoint of AiBi) to Pj , UAiBi2D is the contribution to the induced velocity by
the 2D bound vorticity aligned with the segment AiBi and it is considered only for control point within the local vortex
element, δi j is the Kronecker’s delta, equal to 0 unless i = j, in which case it is equal to 1.

The induced velocity is therefore calculated as the difference between a three-dimensional (3D) and a 2D contribution.
By doing so, Eq. (11) can be enforced at each control point where Urel , α, and Cl

(
α, δf

)
are expressed in terms of Γi .

The resulting nonlinear system of equations can then be solved with a numerical method (e.g., Newton’s solver).

Uind

(
Pj

)
=

Nelms∑
i=1

Uind,i(Pj) =

Nelms∑
i=1

[
UAiBi

(Pj) +UAi∞
(Pj) +UBi∞

(Pj) −UAiBi2D

]
(14)

The presence of multiple lifting surfaces is simply given by the superposition of the induced velocities (see Eq. (14),
which replaces the second in Eq. (12)), i.e., the induced velocity at the generic Pj is calculated the same way as in
Eq. (13), where the contribution of each i − th horseshoe vortex must be taken into account from all lifting surfaces.

Enforcing Eq. (11) at each control point (one per horseshoe vortex) renders a system of nonlinear equations where
the various terms can be calculated as a function of Γ(y) as shown in Eq. (12) and Eq. (13), with Cl

(
α, δf

)
calculated

from an interpolation of the airfoil polar data. The system of equations can be solved via a Gaussian method (e.g., as
done in KiteAD).

IV. KiteVSM and KiteFAST’s Modularization Framework
The integration of KiteAD in KiteFAST was performed following the modularization framework as described in [2].

KiteAD plays the analogous role in KiteFAST as AeroDyn version 15 (AeroDyn15) in the turbine aero-servo-hydro-
elastic code OpenFAST (https://github.com/openfast) (OpenFAST). KiteVSM is a submodule of KiteAD that replaces
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the blade element momentum theory component used within AeroDyn15 [17]. Here, only a few key aspects of the
implementation are discussed, including KiteVSM’s inputs, outputs, and states.

A. Inputs, Outputs, Parameters, States
The parameters (p) for KiteVSM are:
• VSMmod: flag indicating whether control points and trailing vortices are aligned along the chord (1) or the local
free-stream direction (2)

• δy: finite length of the generic bound vortex segment per wing element
• c: chord length per wing element
• θa: aerotwist per wing element
• AFIParams: airfoil static tables of Cl , Cd , Cm and dynamic stall (DS) parameters
• AFidx: index pointing to the correct airfoil file/table/database
• ν: air kinematic viscosity

The inputs (u) to KiteVSM are:
• U

∞
: free-stream air velocity vector. More specifically, KiteVSM requires the components of U

∞
(including

contributions from structural body motions and wind velocity) in the plane of the local element airfoil (x̂air f ,
ŷair f )

• A,B coordinates in the aircraft reference frame (O, xb, yb, zb) for every (i = 1..Nelms) vortex element. From these
coordinates, the local chord length, and the U

∞
, the C and P coordinates are calculated.

• θ: structural twist deflection plus aerotwist per element
• δf : flap or aileron deflection (control setting per element)

Note that these inputs are for a given node (within a given lifting surface) and chord. Furthermore, the air density value
is used to calculate the dimensional load at each spanwise station.

The KiteVSM states are constraint states (xz):
• Γ(y): circulation

The outputs (y) from the KiteVSM are:
• F̂x : shear force per unit length along the airfoil’s x-axis
• F̂y: shear force per unit length along the airfoil’s y-axis
• M̂z : torque moment per unit length about the airfoil z-axis

Strictly speaking, these outputs are forces and moments per unit length. In order to transfer loads to MBDyn, these will
be converted into actual forces and moments (Fx , Fy , Mz) applied at the various nodes (Ci) along the wings. With
reference to Figure 2, Eqs. (15)–(17) show how these outputs are calculated when plugging in the local values of Urel ,
α, c, δy (finite length of the generic bound vortex segment) and by using Eq. (12) with the calculated state Γi .

Fx = 0.5 · ρUrel
2cδy

[
Cl

(
α, δf

)
· cosα + Cd

(
α, δf

)
· sinα

]
(15)

Fy = 0.5 · ρUrel
2cδy

[
−Cl

(
α, δf

)
· sinα + Cd

(
α, δf

)
· cosα

]
(16)

Mz = 0.5 · ρUrel
2c2δy · Cm

(
α, δf

)
(17)

where Cl

(
α, δf

)
, Cd

(
α, δf

)
, Cm

(
α, δf

)
are given by interpolation of the airfoil tables (AFIParams) and δy is the finite

length of the generic bound vortex segment. Note that these forces and moments are considered applied at the 1/4-c
points.

B. KiteVSM Implementation
KiteVSM makes use of the standard framework Init, UpdateStates, CalcOutput, and End routines (refer to [18]). In

addition to local I/O routines that also handle the outputs to files, a few additional local routines solve the VSM system
of equations within UpdateStates. The solution of the constraint system of equations is done by means of LAPACK
library functions (http://www.netlib.org/lapack) that implement an iterative, Gaussian method.

7

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

http://www.netlib.org/lapack


1. KiteVSM_Init Routine
This routine allocates the module’s data structures, initializes the module’s states, and sets the nontime-varying

parameters at initialization (see also Section IV.A).
In particular, Γ(y) is set equal to an elliptical distribution at the first time step.

2. KiteVSM_UpdateStates Routine
In this routine, for a given set of inputs (u), and at the current step in time (ti), Γ(y)i is used as initial guess to solve

for Γ(y)i+1 by numerically solving Eq. (11), together with Eqs. (2), (13), and (12). Inputs are at ti+1.

3. KiteVSM_CalcOutput
Here, the outputs are calculated by using Eqs. (15)–(17), and using Eq. (12) with the calculated state Γi through

Eqs. (2), (5), (8), (13), and (14).

V. Preliminary Verification
KiteAD was verified against XFLR version 5 (http://www.xflr5.com/xflr5.htm) (XFLR5) for several different lifting

surface configurations. XFLR5 is an analysis tool for airfoils, wings and planes operating at low Reynolds numbers.
Among its capabilities is the predicition of lift distributions for finite wing sections using a vortex lattice method. More
details on XFLR5 and its vortex lattice method can be found in [19].

Results for two verification cases are shown below. Fig. 7 shows the lift distribution for a wing with 20 m span and
opposite flap deflections on each end of the wing. This case is particularly telling as it considers three different airfoil
cross sections (NACA1410 with 3° downward flap deflection, clean NACA1410, and NACA1410 with 4° upward flap
deflection) distributed along the wing. The nonsymmetric features in the lift distribution because of the flap deflections
are predicted in a similar fashion by XFLR5 and KiteAD. This verifies the correct consideration of varying airfoil polar
data by KiteVSM (Cl

(
α, δf

)
in Eq. 11).

Fig. 7 Comparison of lift distribution betweenKiteAeroDyn andXFLR for the first verification case: A straight
wing (NACA1410 airfoil) with 2.7 m chord length and flap deflection of −3° on the left and 4° on the right side.

The second verification case shown here involves two lifting surfaces that are arranged in a canard-type configuration
as shown in Fig. 8. This specific case is aimed at verifying KiteAD’s capability to predict the aerodynamic interaction
of multiple lifting surfaces. A canard configuration is also very useful for verification as the strong trailing vortices from
the forward surface interact with the aft surface. Except for minor differences in the predicted lift distribution between
KiteAD and XFLR5 in the middle section of the wing, KiteAD and XFLR5 show very good agreement as illustrated in
Fig. 9.
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Fig. 8 Geometric layout for the second verification case: Two straight wings (flat plates with 10 m and 5 m span
and 2.7 m chord length). Wing 1 (6° constant twist) is located 4 m forward of wing 2 (5° constant twist).

Fig. 9 Comparison of lift distribution between KiteAD and XFLR5 for the second verification case: Two
straight wings (flat plates with 10 m and 5 m span and 2.7 m chord length). Wing 1 (6° constant twist) is located
4 m forward of wing 2 (5° constant twist).
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VI. Conclusion
This paper presented a brief overview on different lift models for finite surfaces and outlined the theoretical

foundation of a novel Vortex Step Method implemented in KiteAD. Results from a verification study against XFLR5
were presented and discussed. The verification results are encouraging and an upcoming publication will cover a
comprehensive verification campaign of KiteFAST. Especially for larger angles of attack where the airfoil polar becomes
increasingly nonlinear, the outlined vortex step method could potentially show improved perfomance as it considers
these nonlinearities in the airfoil polar data. Further model verification studies are currently being conducted at NREL.
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