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Multifidelity Uncertainty Quantification with Applications in
Wind Turbine Aerodynamics

Julian A. Quick∗ and Peter E. Hamlington†

Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309

Ryan N. King‡

Computational Science Center, National Renewable Energy Laboratory, Golden, CO, 80401

Michael A. Sprague§
National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO, 80401

The propagation of input uncertainty through engineering models allows designers to
better understand the range of possible outcomes resulting from design decisions. This could
lead to greater trust between modelers and stakeholders in the wind energy industry. In
this study, we apply multilevel-multifidelity Monte Carlo sampling to flow over an airfoil,
assuming uncertainty in the inflow conditions, and characterize the associated computational
savings compared to standard Monte Carlo approaches. The “truth” model is provided by an
airfoil simulation with a very fine computational time step, and auxiliary lower-level models
are provided by simulations with coarser time steps. Reynolds-averaged Navier Stokes and
detached eddy simulations are used to obtain two different model fidelities. The primary
quantity of interest for this analysis is the lift force, which is examined for a range of angles
of attack. We launch an initial set of “trial” samples to determine the optimal allocation
of model evaluations, and these trial evaluations are used to inform a larger sampling effort.
Using themultilevel-multifidelity approach, we achieve roughly an order ofmagnitude variance
reduction in expected lift as compared to the standardMonteCarlo approachwith an equivalent
computational cost.

I. Nomenclature

α = blending parameter for detached eddy simulation model
αl = multilevel-multifidelity control variate associated with level l
α∗
l

= optimal multilevel-multifidelity control variate associated with level l
Cb
a = evaluation time associated with fidelity b at discretization a

C̃ = computational budget
Cov = covariance operator
δi j = Kronecker delta
dV = differential volume
dS = differential surface
ε = sampling error tolerance
E = expected value operator
f = quantity of interest
f ba = quantity of interest associated with model fidelity b at discretization level a
f i = body force
F = wall blending function
g = gravity vector
h = enthalpy
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K = turbulence kinetic energy
l = discretization level
L = finest discretization level
N = number of model evaluations
Nl = number of model evaluations associated with discretization level l
N ip
k

= interpolation point for node k
n j = standard normal vector
ν = uniform, nonnegative, and constant viscosity
µti j = turbulent viscosity
φ = generic interpolation variable
φ = generic uncertain input
P = pressure perturbation from the thermodynamic pressure
QMLMF = multilevel-multifidelity Monte Carlo estimator
ρ = air density
ρ0 = ambient air density
ρl = Pearson correlation coefficient between low- and high-fidelity models using discretization l
rl = difference between the number of low- and high-fidelity samples associated with discretization l
Si j = rate of strain tensor
t = time field
τ

sgs
i j = subgrid turbulent stress

ui = velocity vector
Var = variance operator
xi = spatial vector
y = distance from nearest wall
Y b
a = multilevel correction function associated with model fidelity b at discretization level a

II. Introduction
Wind energy systems are incredibly complex, spanning a wide range of spatio-temporal scales and involving

interactions between atmospheric boundary layer physics, blade aerodynamics, turbine structural dynamics, and wake
flow physics. In the face of this complexity, supercomputing resources are required to numerically predict the flow
through a wind power plant using a high-fidelity model. Directly quantifying the effects of uncertainty in material
properties, flow measurements, and operating conditions in such high-fidelity models introduces an additional, currently
prohibitive, computational cost.

Consequently, it is not currently feasible to evaluate a high-fidelity wind power plant model enough times to
characterize the range of possibilities arising from the myriad of uncertainties associated with the physical system.
Several techniques have been proposed for overcoming this difficulty, including stratified sampling techniques [1] and
polynomial approximations of the response surface [2–4]. Despite these advances, however, efficiently propagating
uncertainty through complex systems described by partial differential equations with high-dimensional uncertainty
remains a challenging problem.

As a solution, computationally cheaper and less accurate (i.e., lower-fidelity) models may be fused with a
computationally demanding but more accurate (i.e., high-fidelity) model to produce an estimate of a statistic of a
quantity of interest [5]. One example of the multifidelity uncertainty quantification approach is to use a surrogate model
to approximate the discrepancy between low- and high-fidelity models [6–8]. Multifidelity Monte Carlo sampling using
the control variate approach has recently emerged as a new method of variance reduction, which is not plagued by the
curse of dimensionality [9, 10]. Geraci et al. [11, 12] introduced the multilevel-multifidelity Monte Carlo approach,
which allows for simultaneous fusion of different discretization choices and models with different fidelities.

In this study, we explore the computational savings associated with multilevel-multifidelity approaches by sampling
across different turbulence models and different temporal resolutions for flow over an airfoil, assuming uncertainty
in the incoming flow speed and angle of attack. We use unsteady Reynolds-averaged Navier-Stokes (RANS) and
detached eddy simulation (DES) turbulence closures as our low- and high-fidelity models respectively, and identify
sets of different temporal resolutions for each turbulence model to be used as the levels in the multilevel-multifidelity
uncertainty quantification setting. The models are implemented in Nalu-Wind [13], a wind-focused fork of Sandia
National Laboratory’s Nalu [14] code base. Here, we apply the multilevel-multifidelity uncertainty quantification
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technique to two-dimensional flow across the DU 91-W2-250 airfoil. We examine the RANS shear-stress transport (SST)
and DES turbulence models, using the time-step size as a model resolution parameter. We compare the computational
efficiency of the multilevel-multifidelity estimator to the conventional Monte Carlo approach with the expected airfoil
lift force as our quantity of interest. To explore this methodology, we tested the multifidelity-multilevel approach using
unusually wide probability densities. Ultimately, this study is intended as a precursor to the full multilevel-multifidelity
quantification of uncertainty in a high-fidelity model of a wind energy power plant.

It should be noted that there have been similar studies examining stochastic turbulent flow in a multifidelity setting
[15–18]. Pisaroni et al. [8] presented a continuum multilevel approach to quantifying the range of possible outcomes of
stochastic two- and three-dimensional flows using RANS models with different spatial resolutions. Geraci et al. [12]
used multilevel-multifidelity Monte Carlo to quantify a range of possibilities of flow through a nozzle. Witteveen et al.
[2] used stochastic collocation to quantify the response of a transonic airfoil to a range of possible inflow conditions.
Padrón et al. [3] used polynomial chaos expansion to construct a surrogate discrepancy between low- and high-fidelity
wind turbine models to estimate the range of possible impacts of a gust with uncertain inflow characteristics. Recently,
Maniaci et al. [19] used the multilevel-multifidelity approach to fuse the FAST.FARM low-fidelity wind power plant
model with several discretizations of the Nalu high-fidelity wind power plant model, simulating a wind turbine with
periodic inflow/outflow boundary conditions to mimic the wake effect of upstream turbines.

The remainder of this paper is structured as follows. Section III describes the framework used to analyze propagation
of uncertainty using the multilevel-multifidelity approach, turbulence modeling, temporal convergence analysis, and the
numerical experiments performed. Section IV presents the variance reduction achieved with the multifidelity approach
and compares the computational costs and expected errors to the conventional multifidelity estimators using high-fidelity
and reduced-order models. These results and future work are then discussed in Section V.

III. Methodology and Application
In this study, the multilevel-multifidelity sampling approach is applied to two-dimensional flow over an airfoil,

assuming uncertainty in the inflow magnitude and angle of attack. An analysis of the time-step resolution is carried
out to assess the temporal resolution needed to resolve important features in the evolution of the flow field, and this
resolution level is identified as the truth discretization. More coarsely resolved time discretizations are identified as
displaying similar general trends, but with lower computational costs. A temporal convergence analysis is performed
by plotting lift coefficient versus angle of attack for varying time-step sizes. Monte Carlo sampling is performed on
the different models and the resulting sample set is used to inform full sampling efforts for the multilevel-multifidelity
estimator.

A. Variance Reduction Technique
The multilevel-multifidelity Monte Carlo method is used to relate correlated models, reducing variance in the

estimate of the expectation of the more expensive, high-fidelity model. The standard Monte Carlo estimator for an
expectation from a model is given by

E[ f (φ)] ≈
1
N

N∑
i=1

f (φi) , (1)

where f represents a quantity of interest from the high-fidelity model and N represents the number of samples used to
make the estimate. The parameters, φi , are sampled randomly from a prescribed distribution to form the Monte Carlo
estimator. For a situation where the function f is itself not exact and can be constructed using different discretization
levels, we can define the new random variable, Yl , as

Yl (φφφ) =



f1(φφφ) if l = 1 ,
f l (φφφ) − f l−1(φφφ) if l > 1 ,

(2)

where l = 1, . . . L represents the discretization level, with f1 representing the coarsest discretization and fL the finest
discretization. The corresponding expectation for the finest discretization is then obtained from Eq. 1 using a telescoping
sum as

E[ fL (φ)] ≈
L∑
l=1

1
Nl

Nl∑
i=1

Yl (φi) , (3)
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where N1 ≥ · · · ≥ NL represents the number of samples at each discretization level. Note that as (N1, . . . , NL ) →
(∞, . . . ,∞), the estimator approaches the true expectation.

The control variate approach may be used to further decrease the computational burden of the Monte Carlo estimator.
In multilevel-multifidelity Monte Carlo simulation, the control variate is applied to the differences between coarse and
fine resolutions for low- and high-fidelity models; namely

E[ f HF
L (φφφ)] ≈ QMLMF =

L∑
l=1




1
Nl

Nl∑
k=1

Y HF
l (φφφk ) + αl



1
(1 + rl)Nl

(1+rl )Nl∑
i=1

Y LF
l (φφφi) −

Nl∑
k=1

1
Nl

Y LF
l (φφφk )





, (4)

where QMLMF is the multilevel-multifidelity Monte Carlo estimator, and rl ≥ 0 is the difference between the number of
low- and high-fidelity model evaluations at discretization level l. Typically, NL will be quite small, since the high-fidelity
model is expensive to evaluate, and NL is typically substantially less than N1.

The value of the parameter αl in the above expression for QMLMF is determined by minimizing its variance, which is
given by

Var(QMLMF) =
L∑
l=1

{
1
Nl

Var(Y HF
l [φφφ]) +

rl
(1 + rl)Nl

[
α2
l Var(Y LF

l [φφφ]) − 2αlCov
(
Y HF
l [φφφk],Y LF

l [φφφ]
)]}

. (5)

The minimization is performed by setting dVar(QMLMF)/dαl equal to zero, where

dVar(QMLMF)
dαl

=
rl

(1 + rl)Nl

[
2αVar(Y LF

l [φφφ]) − 2Cov
(
Y HF
l [φφφ],Y LF

l [φφφ]
)]

. (6)

The resulting value of αl that gives the minimum variance is then obtained as

α∗l =
Cov

(
Y HF
l

[φφφ],Y LF
l

[φφφ]
)

Var(Y LF
l

[φφφ])
. (7)

Because d2Var(QCV)/dα2 = 2 rl
(1+rl )Nl

Var(Y LF
l

[φφφi]) is non-negative, we can say that α∗
l
indeed minimizes Var(QCV).

Previous works [19–21] derive the optimal allocation of high-fidelity samples as

Nl =
2
ε




L∑
k=1



Var(Y HF
k

)CHF
k

1 − ρ2
k



1/2

Λk (rk )



√√
(1 − ρ2

l
)
Var(Y HF

l
)

CHF
l

, (8)

where ε is an error tolerance, Λl = 1− rl
1+rl ρ

2
l
, ρl is the correlation between f HF

l
and f LF

l
over the prescribed probability

distribution of φφφ, and rl is calculated as

rl =

√√√
ρ2
l(

1 − ρ2
l

) CHF
l

CLF
l

− 1 , (9)

where CHF
l

and CLF
l

are the costs of the high- and low-fidelity models associated with level l, respectively. It is noted
that this does not take variability in computational cost into account.

The optimal number of level-specific high-fidelity model evaluations may also be expressed as a function of the
number of finest-level high-fidelity model evaluations. With this formulation, the optimal number of model evaluations
is independent of ε and is given by

NHF
l

NHF
i

=

√√
(1 − ρ2

l
)Var(Y HF

l
)CHF

i

(1 − ρ2
i )Var(Y HF

i )CHF
l

. (10)

B. Sample Allocation Strategy
The total computational cost C̃ may be computed as

C̃ = NL

L∑
j=0

Nj

NL

[
CHF
j + (1 + r j )CLF

j

]
, (11)
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where N j

NL
is defined (according to Equation 10) as

Nj

NL
=

√√√
(1 − ρ2

j )Var(Y HF
j )CHF

L

(1 − ρ2
L )Var(Y HF

L )CHF
j

. (12)

Given a computational budget, C̃, we can compute the optimal number of fine-discretization high-fidelity samples,

NL =
C̃∑n

j=1
N j

NL

[
CHF
j + (1 + r j )CLF

j

] , (13)

and the remaining number of high-fidelity samples can be calculated as Nj = NL
N j

NL
. All DES model evaluations were

associated with SST model evaluations that used the same random number generator seed. With the exception of the
coarsest discretization, all model samples were associated with samples performed on the next-coarsest level, using the
same random number generator seed. We ensured that samples were performed using the same seed using a dataframe,
joining the data based on the inflow speed and angle of attack and enforcing that the low-fidelity sets of samples included
the same samples used by the high-fidelity samples considered by the multilevel-multifidelity estimator. We used the
ceiling operator whenever floating point numbers were converted to integers, rounding up.

In most settings, the correlation and variance statistics must be estimated. If there are not enough samples,
the variance tends to be underestimated and the correlation tends to be overestimated. So, these statistics must be
approximated in order to calculate the optimal allocation of model samples. In practice, it is unlikely that the optimal
distribution of model evaluations would actually be used, as this calculation changes as more samples are evaluated. In
this study, we mimic the real process by first reporting the results of a small trial set of samples then optimally fusing
model evaluations for a large computational budget, considering the multifidelity-multilevel combination of the DES
and RANS models, using time discretizations of CFL=10,000, CFL=1,000, and CFL=100.

We first launched a set of trial samples across each model to explore the model correlation and variance spaces. We
prescribed five initial evaluations of the most expensive model and evaluated the remaining models in parallel with
similar computational time. The number of trial simulations used are reported in Table 1. All of these trial samples are
also used in the full analysis. For larger studies, the computational budget could start at a prescribed value and gradually
be increased to a prescribed final value, calculating a new value of Nl and rl during each iteration and evaluating the
newly prescribed samples.

We collected enough auxiliary model evaluations to optimally apply the multilevel-multifidelity estimator. We report
time convergence plots, comparing the standard deviation and mean estimate from each estimator to the standard Monte
Carlo approach. Additionally, we plot the estimated error and standard deviation as functions of time. We estimated
the true expectation using the Chaospy package’s stochastic collocation tool [22] using Tikhonov regularization. We
used all samples available from the trial and full sampling stages to inform the αl value used in the analysis, effectively
assuming a priori knowledge about the variance and covariance statistics.

C. Turbulence Modeling
In the present study, we chose two turbulence models for the different model fidelities: the SST unsteady RANS

model (low fidelity) and a DES model (high fidelity), which uses the RANS SST model in regions close to walls and a
large eddy simulation model in free-stream locations. Both models are used to close the low-Mach fluid flow equations,
which are given as [13] ∫

∂ ρ̄

∂t
dV +

∫
ρ̄ũ jn jdS = 0 , (14)∫

∂ ρ̄ũi
∂t

dV +
∫

ρ̄ũiũ jn jdS =
∫ [(

2µS̃∗i j − P̄δi j
)

n j − τ
sgs
i j n j

]
dS +

∫ [
( ρ̄ − ρ0) gi + f i

]
dV , (15)

∫
∂ ρ̄h̃
∂t

dV+
∫

ρ̄h̃ũ jn jdS = −
∫ [

q̄jn j + τ
sgs
h, j

n j

]
dS+

∫ 
−
∂q̄ri
∂xi
+

(
∂P̄
∂t
+ ũ j

∂P̄
∂x j

)
+

(
2µS̃∗i j

) ∂ui
∂x j
+ Sθ


dV , (16)

where ui is the velocity vector, ρ is the density, ρ0 is the ambient density, xi is the spatial vector, t is time, h is the
enthalpy, q is the heat flux by conduction, q̄ is the diffusive heat flux, P represents pressure perturbations away from the
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thermodynamic pressure (Ptotal = Pth + P), ni is the normal vector, ρ∞ is the ambient density, f i is a body force vector,
and Sθ is the energy source term. The thermodynamic pressure, Pth, is given by the ideal gas equation of state as

Pth = ρ
R
W

T , (17)

where R is the universal gas constant, W is the mean molecular weight of air, and T is the average temperature. The
deviatoric mean strain rate tensor, S̃∗i j , is given as

S̃∗i j =
1
2

(
∂ũi
∂x j
+
∂ũ j

∂xi

)
−
δi j

3
∂ũk
∂xk

. (18)

Note that, in the above equations, φ represents an ensemble average of a generic variable, φ, and φ̃ is the Favre-average
defined as

φ̃ ≡
ρφ

ρ
. (19)

Closure of the above equations requires models for the subgrid scale (SGS) terms appearing in the momentum and
enthalpy equations, namely

τ
sgs
i j = ρ

(
ũiu j − ũiũ j

)
, (20)

τ
sgs
h, j
= ρ̄

(
h̃u j − h̃ũ j

)
. (21)

In the following, we describe the RANS and DES models used to close the momentum SGS term. For details about the
enthalpy SGS term, we refer to the Nalu-Wind theory manual [13].

1. RANS Model
The RANS model applies an ensemble average to the governing equations and solves the resulting equations using a

finite-volume formulation. The subgrid Reynolds stresses are modeled as

τ
sgs
i j ≈ µ

t
i j

(
∂ũi
∂x j
+
∂ũ j

∂xi
−

2
3
∂ũk
∂xk

)
−

2
3
ρkδi j (22)

where k is the turbulence kinetic energy and µti j is the modeled turbulent viscosity.
A wall distance marker function is computed in preprocessing. The model uses the k − ω model close to walls and

the k − ε model away from walls. The transport equations for these quantities are∫
∂ρk
∂t

dV +
∫

ρkũ jn jdS =
∫

(µ + σ̂k µt )
∂k
∂x j

n jdS +
∫ (

Pωk − β
∗ρkω

)
dV , (23)

∫
∂ρω

∂t
+

∫
ρωũ jn jdS =

∫
(µ + σ̂ωµt )

∂ω

∂x j
n jdS +

∫ [
2 (1 − F)

ρσω2

ω

∂k
∂x j

∂ω

∂x j
+

(
γ̂

νt
Pωk − β̂ ρω

2
)]

dV , (24)

where β∗ = 0.09 and the production Pω
k
is given by

Pωk := min
(
µti j

∂ũi
∂x j

(
∂ũi
∂x j
+
∂u j

∂xi

)
, 10 × β∗ ρ̄kω

)
. (25)

The coefficients σ̂k , σ̂ω , γ̂, and β̂ are blended using the wall function, F. For a variable, φ̂, the blending is accomplished
as

φ̂ = Fφ1 + (1 − F) φ2 , (26)

where σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, γ1 = 5/9, γ2 = 0.44, β1 = 0.075, and β2 = 0.0828. The
blending function, F is calculated as

F = tanh



min

max *

,

√
k

β∗ωy
,

500µ
ρy2ω

+
-
,

4ρσω2k
CDkωy2



4

, (27)
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where y is the distance from the nearest wall. The CDkω parameter is calculated as

CDkω = max
(
2ρσω2

1
ω

∂k
∂x j

∂ω

∂x j
, 10−10

)
, (28)

and the turbulent viscosity is modeled as

µti j =
a1ρk

max
(
a1ω, S̃i jF2

) , (29)

where the second blending function F2, is given by

F2 = tanh

max *

,

2
√

k
β∗ωy

,
500µ
ρωy2

+
-

2
. (30)

2. DES Model
The DES model is mathematically similar to the SST model. The kinetic energy transport equation is modified to

include a new dissipation scale. The modified equation is∫
∂ρk
∂t

dV +
∫

ρkũ jn jdS =
∫

(µ + σ̂k µt )
∂k
∂x j

n jdS +
∫ (

Pωk − Dk

)
dV (31)

where Dk = ρk3/2/lD , lD = min(lSST , ĉDES lDES ), where lSST = k1/2/β∗ω, ĉDES is a blend between cDES1 = 0.78
and cDES2 = 0.61, and lDES is the maximum edge length scale in contact with the node.

D. Numerical Approach
The equations described in the previous section were solved using Nalu-Wind [13]. This code supports control

volume finite element method (CVFEM) and edge-based vertex-centered (EBVC) discretization approaches. The
Nalu-Wind manual [13] recommends using the CVFEM to solve the continuity equation and the EBVC method for all
other transport equations, which is the setting we used. The CVFEM approach constructs a dual mesh within the input
grid. The current code base supports discretization of unstructured meshes to second-order accurate stencils using the
dual mesh. It allows for higher-order dual-mesh constructions. The EBVC discretization approach uses the dual mesh
to precompute dual mesh nodal volumes and edge-based area vectors to provide a stencil for second-order-accurate
differentiation schemes.

In both cases, time is discretized using a second-order-accurate three-point backward-Euler stencil. A target
Courant-–Friedrichs—Lewy (CFL) number is specified to control the time-step size. The CFL number is the local
velocity multiplied by the timestep size and divided by the characteristic mesh size. It is computed across the domain
and the global CFL number is the maximum CFL number across the domain. The advection, diffusion, and stress tensor
terms are discretized and Green’s theorem is used to balance conservation laws in a large system of linear equations.
The values are interpolated to the control volume surfaces to estimate flux terms. The advection term is stabilized by
balancing a higher-order upwind derivative with an unstabilized central Galerkin differentiation.

The pressure is stabilized by augmenting the continuity equation with residuals from the momentum equation. The
stabilized continuity equation is ∫

∂ ρ̄

∂t
dV +

∫ (
ρ̄û j + τG j P̄

)
n jdS =

∫
τ
∂P̄
∂x j

n jdS (32)

where G j P̄ is an L2 nodal projection of the pressure gradient and Û is the provisional velocity found using the momentum
equation.

We used central differencing (as apposed to upwind differencing) in all our simulations. A nonlinear stabilization
term is introduced, with a form similar to a discontinuity capturing operator (an artificial viscosity is computed to
maintain stability, which is different than the turbulent viscosity) [13].
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Fig. 1 Close-up of DU 91-W2-250 airfoil shape and the associated computational mesh.

E. Test Case: DU 91-W2-250 Airfoil
We tested the computational gains associated with the multifidelity-multilevel Monte Carlo strategy using two-

dimensional flow over an airfoil by comparing the computational efficiency of the approach to standard Monte Carlo.
Specifically, we examined the DU 91-W2-250 airfoil, assuming uncertainty in the inflow speed and angle of attack. We
chose this airfoil because it is representative of the midsection of a wind turbine blade. We decided to cast the turbulence
model as simulation fidelity and the CFL number as the level parameter. The problem was solved using the Nalu-Wind
framework [13, 14], as described in the previous section. We chose the average lift force (averaged between 6 and 10
seconds) as the quantity of interest. We prescribed inflow density of 1.177 kg/m3 and viscosity of 1.177x10−5 kg/ms.

The airfoil shape and grid are shown in Figure 1. The mesh was generated with the PointWise extrusion function.
The dimensionless wall distance, y+, was set to a value of 0.3 and the other settings were left as default. The mesh has
100 points along each half of the airfoil and has a diameter of about 40 chord lengths. The mesh has a total of 30,502
degrees of freedom. This mesh was used in all simulations discussed here.

We assumed uncertainty in the inflow velocity and angle of attack to explore the multilevel-multifidelity concept. We
decided to choose wide probability distributions as a test for this methodology. In future work, we plan to examine input
distributions around an operating point. The angle of attack ranged uniformly from 0◦ to 8◦ and the inflow magnitude
was modeled as a Weibull probability distribution with a scale factor of 30 and shape factor of 2.5; Figure 2 shows the
distribution of wind speeds used in this study.

We first simulated a set of trial runs, only using five samples from the fine-discretization models. We sampled the
remaining hierarchy of model discretizations using a similar amount of total computational effort. These trial runs were
used to inform our full sampling efforts. Each set of samples was parallelized across several computational nodes. The
samples were performed in serial on each node using the DAKOTA framework [24]. Increasing the inflow magnitude
increases the amount of fine-scale motion, which corresponds to smaller time step sizes and greater computational
burden. For each discretization and fidelity, we noted the minimum number of completed samples across all parallelized
jobs and only collected that many samples from each completed sampling job, discarding the remaining samples.
Without this step, our approach would naturally favor parameters associated with lower computational costs, and our
samples would not all be identically distributed.

F. Convergence Analyses
A convergence analyses was performed to assess the required time resolution necessary to resolve important features

of the flow field. In this study, we focused on angles of attack between 0◦ and 8◦. Time histories associated with 8◦
angle of attack and Re = 6 × 106 are shown in Figures 3 and 4 for the SST and DES models, respectively. A summary
of sweeps across CFL and angle of attack is shown for Re = 6 × 106 in Figure 5. Based on these results, we decided it
was reasonable to cast CFL = 100 as well-resolved. As a result, we treated the DES model with CFL = 100 as the
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Fig. 2 Probability density of the inflow wind speed magnitudes considered in this study. This is not necessarily
representative of actual uncertainty in practice, but is a useful distribution for testing themultilevel-multifidelity
Monte Carlo approach.
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Fig. 3 Lift coefficient time history associated with the RANS SST turbulence model at 8◦ angle of attack with
Re = 6 × 106.

“truth” case. Flow fields for the DES and SST models are shown for CFL = 100 (Figure 6), CFL = 1, 000 (Figure 7),
and CFL = 10, 000 (Figure 8).
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Fig. 4 Lift coefficient time history associated with the DES turbulence model at 8◦ angle of attack with
Re = 6 × 106.
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Fig. 5 Lift coefficient versus angle of attack for the RANS SST and DES models, exploring a range of CFL
numbers. The simulations were performed at Re = 6 × 106.
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(a) SST Pressure Field (b) DES Pressure Field

(c) SST Velocity Field (d) DES Velocity Field

Fig. 6 Flow fields for CFL number of 100 and Reynolds number equal to 106. The SST (left) and DES (right)
model outputs are qualitatively compared using pressure (top) and velocity (bottom) fields.

(a) SST Pressure Field (b) DES Pressure Field

(c) SST Velocity Field (d) DES Velocity Field

Fig. 7 Flow fields for CFL number of 1,000 and Reynolds number equal to 106. The SST (left) and DES (right)
model outputs are qualitatively compared using pressure (top) and velocity (bottom) fields.
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(a) SST Pressure Field (b) DES Pressure Field

(c) SST Velocity Field (d) DES Velocity Field

Fig. 8 Flow fields for CFL number of 10,000 and Reynolds number equal to 106. The SST (left) and DES
(right) model outputs are qualitatively compared using pressure (top) and velocity (bottom) fields.
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Fig. 9 Model evaluation time versus angle of attack versus inflowmagnitude for the DESmodel usingCFL=100.

IV. Results
We examined the DU 91-W2-250 Airfoil in Nalu-Wind and compared the multilevel-multifidelity sampling approach

to standard Monte Carlo. We chose this airfoil because it is representative of the midsection of a wind turbine blade. We
decided to cast the turbulence model as the simulation fidelity and the CFL number as the discretization level parameter.
We performed an initial set of trial samples and used this information to calculate the optimal allocation of model
evaluations. In practice, we would then use this information to inform our full sampling efforts. In this study, since we
had more than enough model evaluations across the different discretization levels and model fidelities, we compared the
sample prescriptions calculated using the trial samples to that calculated using the previously mentioned full set of
samples. We used this new full set of samples to construct a multilevel-multifidelity estimator, allocating the samples
according to the rl and Nl/NL prescriptions for a computational budget of 60,000 CPU-hours. We also ran a separate
set of samples of the truth model as a baseline reference. Each model displayed a wide range of computational cost,
depending on the input parameters (see Figure 9).

A. Trial Results
We first ran an initial set of trial sampling runs to inform our computational efforts. Parallel trial runs were launched

for the SST and DES models, using CFL numbers of 100, 1,000, and 10,000, where each trial used the same random
number generator seed. The trial function evaluations and associated Yl differences are plotted in Figures 10 and 11,
respectively. We applied Eqs. 8 and 9 to our data (see Table 1). Using this information, we calculated the optimal
sample allocation for a computational budget of 60,000 hours (see Table 2).

Table 1 Summary of trial data set.

CFL SST Trials DES Trials E(CLF
l

) (hr) E(CHF
l

) (hr) ρ2
l

Var(Y HF
l

) rl NHF
l
/NHF

L

10,000 195 189 0.28 0.29 0.9993 5,795,409.30 36.75 994.36
1,000 37 30 1.49 1.85 0.9998 19,389.46 88.94 10.42
100 5 5 8.90 9.23 0.9999 2,586.37 138.82 1.00
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Table 2 Prescribed sample allocations for a computational budget of 60,000 hours, based on the trial set of
samples.

Level NLF
l

(C̃ = 60, 000 hr) NHF
l

(C̃ = 60, 000 hr)
10000 164393.0 4473.4
1000 4167.8 46.9
100 624.5 4.5
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Fig. 10 Lift evaluation as a function of trial number, CFL number, and turbulence model.

B. Completed Sampling Results
We collected samples according to the prescriptions in Table 2. We used this collection of samples to re-calculate

the optimal prescription of model evaluations, shown in Tables 3 and 4. We use this sample allocation strategy moving
forward. This allocation strategy is not radically different than the one calculated only using the trial samples.

Table 3 Summary of full data set.

CFL SST Trials DES Trials E(CLF
l

) (hr) E(CHF
l

) (hr) ρ2
l

Var(Y HF
l

) rl NHF
l
/NHF

L

10,000 172,682 62,263 0.27 0.29 0.9999 5,732,626.29 103.74 295.03
1,000 12,053 374 1.47 2.04 0.9999 31,968.50 124.40 7.83
100 2,175 44 8.97 12.61 0.9999 2,912.33 119.28 1.00

We swept the number of high-fidelity fine-discretization “truth” model evaluations from 1 to 5, following the formula
for optimal model evaluations and the ratios in Table 3. The resulting Monte Carlo convergence is plotted with respect
to the number of “truth” model samples in Figure 12. The same data is plotted with respect to measured CPU-Time time
in Figure 13. As expected, the multilevel-multifidelity estimator reduced the variance and computational burden of the
problem.
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Fig. 11 Lift multilevel correction function plotted against trial number, CFL number, and turbulence model.

Table 4 Total number of samples used in the full analysis from CFL=10,000 and CFL=1,000. These include
the trial runs, plus additional runs selected according to the model allocation ratios reported in Table 3.

CFL SST Trials DES Trials
10,000 138,724.6 1,337.2
1,000 4,417.9 35.5
100 540.6 4.5

C. Comparrison of Estimated Errors
We compare the estimated error and estimator standard deviation against the total computational burden for the

multilevel-multifidelity estimator and compare it to standard Monte Carlo. We estimated the true expectation value
using chaospy’s stochastic collocation tool. We plot the estimated truth versus polynomial degrees in Figure 14. We
decided to use fourth degree polynomials, as that is where this curve seems to saturate before it diverges.

The error plot is shown in Figure 15, which reflects the total computational cost due to increasing the number of truth
runs from 1 to 5, along with the associated lower fidelity and other level model evaluations. The multilevel-multifidelity
estimator is about one order of magnitude more accurate than the standard Monte Carlo approach. The estimators’
standard deviation may be interpreted as a confidence interval. The error for each estimator is less than or is the same
order of magnitude as the associated standard deviation, so we conclude that the estimators are not overconfident and
that the error bounds interpretation is valid here.
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Fig. 12 Estimate of the average lift as a function of “truth” model evaluations. The clouds show two standard
deviations using the estimator variance.
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Fig. 13 Estimate of the average lift as a function of CPU time using the full set of samples. This reflects the
total computational cost due to increasing the number of truth runs from 1 to 5, along with the associated lower
fidelity and other level model evaluations. The clouds show two standard deviations using the estimator variance.
The dashed lines show two standard deviations of the final expectation estimated with the MLMF approach.
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Fig. 14 Expected lift coefficient calcualted using stochastic collocation with Tikhonov regularization versus
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Fig. 15 Estimated error and estimator standard deviation plotted against time elapsed for the different Monte
Carlo estimators considered. This reflects the total computational cost due to increasing the number of truth
runs from min to max, along with the associated lower fidelity and other level model evaluations.
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V. Discussion and Future Work
It is well known that the error associated with Monte Carlo sampling is inversely proportional to the square root of

the number of queried samples. It is natural to conclude from this that the error will scale with the inverse square root of
the computational time because the computational demand for a simulation is proportional to the number of queried
samples. To overcome this challenge, correlated models may be fused together to allow for very large numbers of Monte
Carlo samples in relatively small computational time. In this study, we showed that the multifidelity approach can be
used to fuse RANS and DES models of various temporal resolutions to reduce the computational burden of Monte
Carlo simulation in a way that was formally independent of the number of dimensions. After our initial trial runs, we
discovered that the optimal model allocation ratios strongly favored evaluating the low-fidelity model.

Our results are encouraging, indicating that standard Monte Carlo is not the most computationally efficient random
sampling approach available when different model discretizations and fidelities are available. We spent on the order
of 300 CPU hours during the trial phase, where we estimated covariance and variance terms and constructed the
difference functions. After the trial phase, we did not do any more high-fidelity fine-CFL model evaluations, spending
the remainder of our computational budget evaluating lower-order models. We found that our multilevel-multifidelity
estimators were not overconfident or biased. Using the full multilevel-multifidelity approach, we obtained an order of
magnitude reduction in computation cost to achieve an equivalent estimator standard deviation as a traditional Monte
Carlo approach.

The simulations displayed a wide range of computational time requirements. We launched several parallel jobs
to each perform several samples, intending to collect all the samples after the jobs finished. However, this creates a
natural filter; parameters associated with smaller evaluation times will be sampled more using this method. So, if we
collect all samples from each queue, less computationally demanding models (i.e., lower-resolution ones) would not be
sampled identically to the more computationally-demanding models because this time-filtering effect would be more
extreme for more computationally demanding models. To counter this issue, we only used the first N samples from
every parallelized sampling program, where N is the minimum number of completed samples across all parallelized
programs.

It is interesting to note that the “multifidelity” control variate aspect of this approach relies on a large difference
between the number of low- and high-fidelity model evaluations, whereas the “multilevel” aspect of the approach has no
such assumption. The difference in computational cost between the SST and DES models was of order one while the
difference in computational demand between the different CFL numbers was about one order of magnitude. In practice,
it would have been more practical to discard the SST model in this case, using a purely multilevel approach, or selecting
a different model like XFOIL, Euler equations, or a coarser grid as the low-fidelity model. In future work, we plan to
apply this technique to efficiently propagate realistic uncertainties in operational conditions when modeling wind power
plants.
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