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Abstract
In Europe, offshorewind farms have a capacity of 16GW,with 71% installed at theNorth Sea. These
wind farms represent an additional source of turbulence andmay influence the stratification of the
marine boundary layer.We present aircraftmeasurements and simulations showing an impact on
temperature and humidity at hub height in the order of 0.5 K and 0.5gkg−1 even 60 kmdownwind of
awind farm cluster.We extend these simulations to explore a realistic future scenario, suggesting
wakes in potential temperature andwater vapor propagatingmore than 100 kmdownwind. Such
impacts of wind farms are only observed in case of a strong stable stratification at rotor height,
allowingwind farms tomixwarmer air downward.

1. Introduction

The offshore wind energy market grew rapidly in the
year 2017—compared to the year 2016, 2.6 timesmore
wind farms were installed offshore in Europe. Almost
85% of these wind farms were installed in the North
Sea (WindEurope 2017). These investments are moti-
vated by the stronger and steadier winds in the North
Sea compared to onshore sites (Bilgili et al 2011) as
well as relatively shallow water depth in the North Sea
(WindEurope 2017).

On- and offshore wind farms can affect the micro-
meteorology of the boundary layer. Wakes generated
by single wind turbines reduce momentum down-
wind, resulting in a wind speed deficit (e.g. Lissa-
man 1979, Barthelmie et al 2010, Hirth and
Schroeder 2013, Rhodes and Lundquist 2013, Djath
et al 2018). Christiansen and Hasager (2005) observed
offshore wakes via sythetic aperture radar satellite
images and showed that these wakes can propagate
20 km downwind. These results were confirmed,

recently, by airborne measurements taken downwind
of large offshore wind farms at the North Sea (Platis
et al 2018). During stable atmospheric conditions,
these offshore wakes can be longer than 70 km at off-
shore sites (Platis et al 2018).

Onshore wind farms can impact the boundary
layer (e.g. Baidya Roy and Traiteur 2010, Zhou et al
2012, Rajewski et al 2013, Smith et al 2013, Rajewski
et al 2014, Armstrong et al 2016). For example, Zhou
et al (2012) observed a warming of 0.5 K in the vicinity
of onshore wind farms, especially during nocturnal
stable conditions. Therefore, the implications of
onshore wind farms on agriculture are discussed (e.g.
Baidya Roy and Traiteur 2010, Rajewski et al 2013,
Smith et al 2013, Zhang et al 2013).

Most offshore observational studies have so far
generally focused on the wind and power deficit
observed in and downwind of large wind farms (e.g.
Barthelmie et al 2010, Nygaard 2014, Nygaard and
Hansen 2016) except Foreman et al (2017). Only few
studies have investigated the potential effect of wind
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farms on themarine boundary layer (MBL). These stu-
dies were motivated by visible cloud effects as they
were seen in photos taken at a wind farm at the coast of
Denmark (Emeis 2010, Hasager et al 2013, 2017), indi-
cating fog formation and dispersion due to enhanced
mixing downwind of wind farms. Associated with
enhanced mixing, Foreman et al (2017) reported a
decreased sensible heat flux downwind of a small off-
shore wind farm during stable conditions in the
North Sea.

Modeling studies suggest a change in temperature
and moisture downwind of offshore wind farms.
Vautard et al (2014) obtained increased temperatures
at the North Sea in the area of offshore wind farms in
their simulations. In contrast, Wang and Prinn (2011)
and Huang and Hall (2015) reported a potential cool-
ing effect in the vicinity of offshore wind farms due to
an increased latent heat flux, although Wang and
Prinn (2011) represented the offshore wind farms as
areas of increased surface roughness. Fitch et al (2013)
showed that this roughness approach is not suitable to
investigate climate impacts. However, no field mea-
surements have so far investigated this potential cool-
ing orwarming effect.

Herein, we present aircraft observations accom-
panied with mesoscale simulations to provide a first
look into spatial dimensions of these important
impacts. Within the research project WIPAFF (Emeis
et al 2016), 26flights were conducted in the far field of
wind farm clusters. During nine flights we observed
differences between potential temperature and/or
water vapor concentration within and outside of the
wake. Herein, we present one case study in detail and
compare this case to the remaining 25 aircraft mea-
surements to identify atmospheric conditions that
favor thermodynamic impacts of wind farms on the
MBL. We present these impacts to constrain maximal
possible impacts of offshore wind farms on the MBL.
Wewant to answer the following questions:

• How large are the micrometeorological impacts of
offshore wind farms on theMBL?

• How is themicrometeorological impact caused?

• What is the influence of existing and planned
offshore wind farms on theMBL at theNorth Sea?

In section 2, we present the model configuration
and the aircraft observations used to determine the
impacts of wind farms on the MBL. In section 3 we
compare the observation to our simulations up- and
downwind of the wind farms. A discussion in
section 4.1 compares cases with impacts on temper-
ature with cases having no impact. Further, we suggest
vertical profiles under which an impact on the MBL
can be expected. Section 4.2 addresses the implications
of our results with respect to existing and planned

offshore wind farms. This study ends with a conclu-
sion (section 5).

2.Data andmethod

2.1.Numerical simulations
The numerical setup and the parameterizations in this
study are the same as in Siedersleben et al (2018); the
reader is referred to this paper for full details. Numer-
ical simulations are performed withWeather Research
and Forecasting model WRF3.8.1 (Skamarock et al
2008) with three domains having a resolution of 15, 5
and 1.67 km (figure 1), resulting in up to six wind
turbines per grid cell. ECMWF analysis data provide
the initial and the boundary condition for the simula-
tion. The model uses 50vertical levels, with a spacing
of ≈35 m at the bottom with the lowest level at 17 m
abovemean sea level, resulting in one level below rotor
height and three levels intersecting with the rotor area
(figure 2).

We use the wind farm parameterization (WFP) of
Fitch et al (2012) to simulate the interaction between
atmosphere and wind farms. TheWFP extracts kinetic
energy from the mean flow and acts as a source of tur-
bulence, depending on the thrust and power coeffi-
cients of the installed turbines in the model (Fitch et al
2012, Jiménez et al 2015, Lee and Lundquist 2017).
Therefore, the WFP interacts with the planetary
boundary layer scheme of Nakanishi and Niino (2004)
that we use in all three domains.

We focus mainly on wakes generated by a wind
farm cluster consisting of the wind farms Meerwind-
Sued|Ost, Nordsee Ost and AmrumbankWest (see
close-up, figure 1). The observations conducted on
10 September 2016 were carried out at this wind farm
cluster. These three wind farms have two turbine types:
SIEMENS SWT 3.6-120 and SENVION6.2, with 90 and
95m hub heights and rotor diameters of 120 and 126m.
The thrust and power coefficients of these wind farms are
not available to the public. Therefore, we use the coeffi-
cients of thewind turbine Siemens SWT3.6-120-onshore
as these are available (http://wind-turbine-models.com/

turbines/646-siemens-swt-3.6-120-shore (30 October
2018)). We have shown in Siedersleben et al (2018) that
the errors introduced by these uncertainties have only a
marginal effect on thewake effect.

Additional simulations include all approved off-
shore wind farms under construction at the NorthSea
(i.e. all blue and orange wind farms shown in figure 1).
For these simulations we assume the same wind tur-
bine type for simplicity, the SIEMENS SWT 3.6-120.
To assess the overall impact of these wind farms at the
North Sea, we conducted a second simulation with the
WFP switched off.We refer to the simulations without
wind farms as no wind farm simulation (NWF) and to
the ones using theWFP aswind farm simulation (WF).
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Figure 1.Overview ofwind farms at theNorth Sea, location ofWRFdomains and a close-up on theGermanBight with thewater
depth shownwith gray dashed lines. Bluewind farms are in use, orangewind farms are approved or under construction according to
plans in 2017. Thewind farmsAmrumbankWest,Meerwind Süd|Ost andNordseeOst are plotted in purple, gray and green.Wind
farms plotted as red polygonswere in the application process according to plans in 2015. Black lines in the zoom show theflight path
of the research aircraft at hub height (i.e. 90 AMSL). Themagenta part of theflight track denotes the location of the climbflight,
whereby themagenta dashed line indicates the location of the vertical cross section as shown infigure 4. Themapwas produced on
basis ofmatplotlib (Hunter 2007) andwithwind turbine location data provided by theGerman FederalMaritime andHydrographic
Agency (BSH).

Figure 2.Wind speed (a), potential temperature (b) andwater vapor (c) at 08:00UTC10September2016 asmeasured by the research
aircraft and simulated by themodel upwind of the wind farm cluster. Turbine hub height is indicated by the solid gray line and the
corresponding rotor area by the dashed gray lines. The distribution of the verticalmodel levels is indicated by the blue circles. The
location of the vertical profile is annotated infigure 1with a purple line.
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2.2. Aircraftmeasurements
As part of the research project Wind Park Far Field
(WIPAFF) (Emeis et al 2016), 26flights were con-
ducted in the far field of large offshore wind farm
clusters at the North Sea from September 2016 to
October2017 (Platis et al 2018) (see table 1 for a
overview). During eight flights in this project we
observed a change in temperature and/or humidity
within the wake of a wind farm cluster; one case is
difficult to interpret and will be discussed in section 4.
We will focus on aircraft measurements conducted on
10September 2016 from 08:00 to 11:00UTC and
then compare the results against 25 otherflights.

On 10 September 2016, the aircraft (Dornier DO–
128 of TU Braunschweig) sampled the wind vector,
humidity, pressure and temperature at 100Hz (Platis
et al 2018) along the flight path (figure 1). The aircraft
flew the first flight leg (identical to the location of
cross-section A–B) 5 km downwind of the last turbine
at hub height, followed by four further flight legs, loca-
ted 15, 25, 35 and 45 km downwind of the wind farm
cluster—also at hub height. This horizontal flight pat-
tern started at 08:20UTC and ended at 09:24UTC
(see annotations figure 1).

Besides the measurements at hub height down-
wind, the aircraft conducted measurements along the

vertical cross-section indicated with A, B in figure 1.
The aircraft flew at five different heights, starting at
60 m AMSL followed by measurements at 90, 120,
150, and 220 m AMSL along the vertical A–B. With
these measurements, we investigate the effect of large
offshore wind farms on the stratification of the MBL.
The measurements along vertical A–B started at
10:00UTCand ended at 11:00UTC.

The aircraft probed the atmosphere 5 km upwind
of the wind farm cluster to quantify the upwind condi-
tions at 08:00UTC (see location infigure 1).

3. Impacts on temperature andwater vapor
on 10 September 2016

First themodel is compared upwind of the wind farms
to the aircraft measurements (section 3.1) before the
impact of wind farms on temperature and water vapor
is evaluated in sections 3.2 and 3.3.

3.1. Stratification of the atmosphere upwind of the
wind farm cluster
The atmosphere upwind of the wind farms was stably
stratified at 08:00UTC 10September 2016 (figures
2(a)–(c)). Fromhub-height at 90mto the topof the rotor

Table 1.Overview of flights conductedwithin theWIPAFF project downwind of large offshorewind farms. The numbering of the aircraft
measurements corresponds to the numbering infigures 5 and 6. The letters A andG indicate themeasurement location; A refers the towind
farm cluster consisting of AmrumbankWest,Meerwind Sued|Ost andNordseeOst andG for thewind farmGodewind. The locations of
these wind farms are indicated infigure 1. The column indicatedwithwsp, shows themeasuredwind speed at hub height according to
figure 5. The sixth and seventh column indicate whether thewind farms had an impact on temperature or humidity at hub height
downwind. The atmospheric stability during eachmeasurement is shown in the last column according to the potential temperature gradient
within the rotor area shown infigure 5.Observationswherewind farms had an impact on the atmosphere are listed at the beginning of the
table.

Index Date Time (UTC) Wind farm wsp (ms−1) Θ Humidity Stability

(a) 6 September 2016 14:13–17:20 A 6–9 Warming Drying Stable

(b) 10 September 2016 07:30–11:15 A 6.5 Warming Drying Stable

(c) 11April 2017 14:04–18:00 G 12 Warming Drying Stable

(d) 8August 2017 08:35–12:35 A 7 Warming Drying Stable

(e) 17August 2017 06:06–10:10 A 10 Warming Drying Stable

(f) 30March 2017 13:57–17:02 G 11.5 None Humidification Stable

(g) 17May 2017 15:16–19:22 A 13.5 Cooling None Stable

(h) 27May 2017 07:57–11:58 A 8.2 Cooling None Stable

(i) 27May 2017 12:39–16:36 A 11 Cooling Drying Stable

(j) 31March 2017 13:36–17:00 G 11 None None Stable

(k) 24May 2017 11:40–09:34 G 7.5 None None Stable

(l) 7 September 2016 07:30–10:45 A 5.5 None None Stable

(m) 7 September 2016 12:00–14:00 A 4.5 None None Stable

(n) 8 September 2016 08:30–12:30 A 7 None None Unclear

(o) 9 September 2016 13:42–17:17 A andG 7 None None Neutral

(p) 10 September 2016 12:15–16:00 A 4.5 None None Stable

(q) 5April 2017 13:42–14:34 G 12 None None Neutral

(r) 6April 2017 13:29–16:22 G 8 None None Neutral

(s) 9April 2017 11:36–14:07 G 4 None None Stable

(t) 9April 2017 14:32–18:12 G 3 None None Stable

(u) 13April 2017 11:35–15:39 G 13 None None Neutral

(v) 23May 2017 09:00–10:30 G 5 None None Stable

(w) 23May 2017 11:18–15:00 A 11.5 None None Unclear

(x) 1 June 2017 06:55–10:54 A 8.0 None None Neutral

(y) 14August 2017 14:40–18:31 A 8.8 None None Neutral

(z) 15October 2017 11:52–15:35 G 8.5 None None Neutral
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disk at 150m, an inversion is visible associated with a
decreasing water vapor mixing ratio from 11.0 to
8.5gkg−1. The model simulates the upwind conditions
reasonably well, showing a clear inversion starting at hub
height and the associated decreasing water vapor con-
centration. However, the model has a constant cool bias
between 0.6 and 1 K. This deviation is mainly caused by
an overestimated nocturnal cooling on the land upwind
(Siedersleben et al2018).

3.2. Temperature
Behind the wind farms, warmer air was observed and
simulated at hub height within the wake even 45 km

downwind of the last turbine (figures 3(a) and (c)).
According to the simulations, potential temperature
in the wake is 0.4 K warmer than the air upwind. This
effect is more pronounced in the observations. At hub
height in the upwind climb flight, a potential temper-
ature of 291.2 K was measured (figure 2) compared to
maximal 291.8 K within the wake, indicating a warm-
ing of up to 0.6 K at hub height. Additionally, the
observations show a stronger horizontal difference
between wake and no-wake region downwind of the
wind farm cluster. At the eastern flank a potential
temperature gradient of 0.8 K was observed, in con-
trast to a difference of 0.4 K in the simulations.

Figure 3.Potential temperature (in K) (a), (c) andwater vapormixing ratio (in g kg-1) (b), (d) on 10September2016 at hub height.
The observations are shown in top row (a), (b)whereas the simulations are shown in the bottom row (c), (d). Note that themodel
simulations have a bias of 0.6 K. Therefore, we added this value to the simulations to allow the reader to focus on thewake structure
and not on the bias. The black lines along A–B andC–Ddenote the locations of the vertical cross sections shown infigures 4(a)–(d)
and (e), (f). The black thick line in (a), (b) shows location of the vertical profile offigure 2 appearing as a horizontal line and not as a dot
because the aircraft needed≈10 km in horizontal direction to climb from 60AMSL to 1500AMSL.
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The model has a cold bias of ≈0.6 K compared to
the observations. However, the model is stably-strati-
fied above hub height, corresponding to the observa-
tions (more details in Siedersleben et al (2018)). As we
want to investigate the impact of wind farms on the
MBL and not the bias of the simulations, we add 0.6 K
to all shown potential temperature figures in this
study.

The potential temperature wake was associated
with a mixed layer, as seen in the cross-section 5 km
downwind of the wind farm cluster (figures 4(a) and
(c)). However, both cross-sections from observation
and simulation indicate that warmer air was mixed
downward. The mixed layer extends up to 120 m
AMSL in the observations (figure 4(a)); in the simula-
tion this neutral layer is only 100 m thick.

Mixing warmer air downward corresponds to an
enhanced sensible heat flux downward (figure 4(e)). In
the observations, the atmosphere was stably stratified,
consequently, we expect a sensible heat flux towards
the surface (i.e. a negative sensible heat flux).
Figure 4(e) shows the difference in sensible heat flux
between a WF and a NWF simulation along the cross-
section C–D. The blue contours indicate that the wind
farms caused a greater downward heat flux above and
within the farm, hence, explaining the warming below
≈180 mAMSL (figure 4(e)). The simulations show
cooling aloft right above the farm area and warming
within the farms but starting half-way through the
farm area and extendingmuch farther downwind than
the cooler area figure (4(f)).

3.3.Water vapor
Within the wake of the wind farm cluster the air is
dryer than in the ambient air outside of the wake
(figures 3(b) and (d)). Similar to the wake in the
potential temperature, the dryer air is still visible
45 km downwind of the wind farm cluster. Within the
wake region the air has a minimum water vapor
mixing ratio of 9.8 g kg−1 compared tomaximal values
of 11.8 g kg−1 outside of the wake. Corresponding to
the observations, the model simulates dryer air within
the wake region with values around 9.8 g kg−1. How-
ever, the simulations suggest lowerwater vapormixing
ratios to the west of the wake. The observations show
values up to 11.5 g kg−1 whereas the model predicts
values in the order of 11 g kg−1 (figure 3(b)).

Associatedwith theneutrally-stratified layer, dryer air
is evident in the vertical cross-section A–B(figures 4(b)
and (d)) 5 km downwind of the wind farm cluster. Simi-
lar to the potential temperature, it is most likely that the
dryer air originated from the dryer layer aloft above
150mAMSL. This height corresponds to the upper limit
of the rotor area, emphasizing that air stemming from
above the rotor area is mixed downwards. The mixing
of air above the rotor area seems to be be more pro-
nounced in the model than in the observation. Within
the upper rotor area, the model simulates a water vapor

concentration of 9.5 g kg−1, whereby the observations
show concentrations in the order of 10.2 g kg−1, indicat-
ing that dry air was entrained into too low elevations, due
to enhanced verticalmixing into the farms as described in
(e.g.Abkar andPorté-Agel 2015, PanandArcher 2018).

4.Discussion

This discussion section consists of two parts: the first
part discusses the results of the presented case study
compared to the other 25 aircraft measurements. The
second part estimates the effect of all installed and
planned offshore wind farms (i.e. blue and orange
wind farms in figure 1) on theMBL for the 10Septem-
ber 2016 case.

4.1. Comparison to other cases
Given the results from the case study of the 10
September 2016, one could draw the conclusion that
stable conditions are a sufficient constraint to observe
awarming and drying at hub height downwind of large
offshore wind farms However, this assumption does
not hold when analyzing the remaining 25 cases. For
example, in the afternoon of the 10 September 2016,
the aircraft flew a similar pattern as shown in figure 3,
but did not observe any change in temperature and
humidity although the atmosphere was stably strati-
fied at hub height (figure 5(p)). The vertical profiles
taken in the morning and in the afternoon differ
mainly in terms of wind speed. In the afternoon the
wind speed at hub height decreased from 7m s−1 to
values below 6 m s−1 compared to the measurements
in the morning, suggesting that the wind speed has to
be above a certain threshold to generate enough
turbulence to mix the air and induce a warming or
drying. Applying these two constraints—stable condi-
tions and wind speeds over 6 m s−1 at hub height to all
26 cases, eleven cases fulfill both criteria. Indeed, in
eight of the eleven cases we observe a change in
temperature (figure 6). In two of the remaining cases
we cannot state for certain that a temperature change
did not occur. In the first case (figure 6(f)) we have a
strong background gradient in potential temperature
hindering the observation of a change in temperature.
In the second case ((j), not shown) we have only
measurements along the wake and, hence, can not
measure any difference between wake and none wake
air. In the third case ((k), not shown) we did not
observe an impact on temperature, despite the fact that
the wind speed was above our defined threshold of
6 m s−1 and the atmosphere was stably stratified at
rotor height (figure 5(k)). However, themeasurements
were conducted downwind of Godewind (see location
in figure 1), a wind farmwith fewer wind turbines than
the wind farm cluster around Amrumbank West.
Consequently, higher wind speeds are necessary to
achieve the same amount of mixing. Therefore, we

6
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suggest that higher wind speeds would have been
necessary to observe a change of temperature at hub
height in this case. This assumption is underscored by
the observation conducted on the 11April2017
(case (c)), where wemeasured a warming at Godewind
withwind speeds of over 10 m s−1 at hub height.

The height of the inversion (which is partially dri-
ven by SST) determines whether the wind farms warm

or cool the atmosphere at hub height in stable condi-
tions. In the cases shown in figures 6(a)–(e) a warming
is observed at hub height whereby in figures 6(g)–(i) a
cooling of the atmosphere was measured. In the
warming cases, a pronounced inversion occurred
above hub height accompanied by a less stable layer
below, indicating that the enhanced negative heat
fluxes in the wakes were stronger above than below the

Figure 4.A comparison of observed (a), (b) and simulated (c), (d) potential temperature (a), (c) andwater vapor ratio (b), (d) along the
vertical cross-sectionA–Bperpendicular to themeanflow. The simulations are shown at 10:00UTCcorresponding to the start of the
observations. Further, the difference in sensible heatflux (e) and potential temperature (f) between aWF andNWF simulation is
shown averaged from08:00UTC to 09:00UTC. In (e) blue colors indicate an enhanced sensible heat flux downward, whereas in
(f) blue contours indicate a cooling and red contours a warming caused by the existence of wind farms Black lines in (a), (b) denote the
flight trackwhereas in (e), (f) they show the potential temperature isolines of theWF simulation. The black and thick dashed boxes in
(e), (f) show the rotor area of the threewind farms.
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hub height. As a result, mixing of dry and warm air
from above hub height dominates and causes an over-
all warming at hub height, as schematically indicated
in figure 7(a). In contrast, in figures 6(g)–(i) cold SSTs
were accompanied by inversions (figures 5(g)–(i))with
their strongest gradients below rotor height, empha-
sizing that the enhanced negative heat fluxes in the
wakes were stronger below than above the hub height,
thus causing a net cooling at hub height (figure 7(b)).

We suggest that these inversions that cause a cool-
ing can be less than 30 m thick. For example, in
figure 6(i)we observe a cooling of up to 0.6 K although
there is a constant lapse rate within most of the rotor
area. However, the SST at FINO1 (see location in
figure 1) was 284 K compared to a potential temper-
ature of≈294 K at 30 m AMSL, indicating that a shal-
low cold layer close to the ocean surface caused an
inversion through the lower portion of the rotor area

Figure 5. 26 vertical profiles taken by the aircraft corresponding to the 26 aircraftmeasurements used in this study as listed in table 1
with the SSTmeasured at FINO1 (see location infigure 1). Black and blue lines show the potential temperature (K) andwind speed
(m s−1), whereby the potential temperature refers to the x-axis at the bottom and thewind speed to the x-axis at the top (the coloring
of the axismatches the coloring of the data). For better comparison between the profiles, thewind speed limits are kept constant
(0–15 m s−1) and the spread of the potential temperature axis is always 10 K. The dashed and the solid gray lines indicate as in
figure 4 the rotor area and the hub height. Note that the rotor area and hubheight are not always the same because not all aircraft
measurements were conducted at the samewind farm. The vertical light blue linemarks the 6 m s−1 threshold. In (n) the dashed and
solid lines show themeasurements taken on 10 September 2016 in themorning and at the afternoon, respectively. The locations of the
vertical profiles taken in (a)–(i) are shown infigures 5(a)–(i) by a black thick line. The vertical profiles (a)–(k) fulfill the criteria defined
in section 4 and are hencemarked by amagenta numbering.
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and below, thus cooling due to the enhancedmixing of
this cool air within and partly below the rotor area
caused the observed cooling.

The observed warming or cooling is decoupled
from the drying downwind. For example, we see a

warming in figures 6(a)–(e) and cooling in figure 6(i)
but in all measurements we see dryer air downwind,
meaning that the moisture flux is decoupled from the
heat flux—a result in agreement with the findings of
Foreman et al (2017). However, in nine of the cases

Figure 6.Potential temperaturemeasured by the aircraft at hub height (i.e. 90 m for (a), (b), (d), (e), (g)–(i) and 111 m for (c) and (f)).
An exception is theflight pattern shown in (g), in this case the aircraft flew at 200 mAMSL. The potential temperature interval shown
in all subplots is kept constant at 1.2 K for better comparison between the differentmeasurements, except in (f). The corresponding
vertical profiles of these observations are shown infigures 5(a)–(i), whereby the locations of the profiles aremarked by a black thick
line.

Figure 7.A schematic description of the observed (a)warming and (b) cooling at hub height downwind of large offshorewind farms
The dashed and the solid gray line indicate as infigure 4 the rotor area and the hub height. The potential temperature profiles upwind
of thewind farms are shownwith a black thick line, the impact on the potential temperature profiles of thewind farm is indicated in
red (a) and blue (b).
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that fulfill the criteria for a potential change in temper-
ature at hub height we observed six times a drying and
only one time a humidification at hub height. In the
remaining two cases we could notmeasure any change
in humidity (case (g), (h)), whereby in case (g) the air-
craft was flying at 200m AMSL—a height too high to
detect any impact on the humidity (figure 4(b)).

4.2. Future scenario
We have shown that a single wind farm cluster can
cause a warming of up to 0.6 K and a drying of
≈0.5 g kg−1 at hub height in theMBL according to the
observations. Consequently, the overall effect of all
wind farms that are operational, approved or under
construction is, hence, of interest. To answer this
question, we conducted a simulation for 10 September
2016 including all planned and existing wind farms as
they are shown in figure 1 (i.e. orange and blue wind
farms). For this case study we have measurements
along the cross section A–B (figure 3) and could show
that the model simulates the vertical and horizontal
impact on temperature and humidity, increasing the
confidence in the future scenario. Additionally, we had
morewarming than cooling cases.

The difference between the WF and NWF simula-
tions (figure 8) suggests a similar warming response
(within± 0.1 K) to the case of 10 September 2016 in
the presence of more wind farms. For example, down-
wind of the large wind farm cluster around Riffgrund,
a wide area with a warming of up to 0.5 K is found
(figure 8), while downwind of the large westernmost
cluster the warming is less than 0.3 K. However, not
only the size of a wind farm seems to determine the
degree of warming. The wind farm Riffgat with only
30wind turbines causes also a warming of up to 0.5 K.

The simulation suggests a stronger warm air advection
aloft at Riffgat and, hence, the inversion at Riffgat is
evenmore pronounced and that in turn allows an even
more enhanced downward mixing of warm air. In
contrast, the warming at Riffgat is associated with a
cooling on the easternflank of thewake.

While these temperature and moisture changes are
novel andmay seem consequential when considering the
effects of wind farms on local microclimates, it is impor-
tant to recognize that these are limited effects. The
observed local warming and cooling of±0.6 K are small
compared to the warming that is caused globally by land
cover change (LCC) and land management change
(LMC). According to Luyssaert et al (2014) the warming
caused by LCC and LMC is in the order of 1.7 K within
the planetary boundary layer. Out of the 26flights that
occurred over a year, an impact on temperature and
humidity only occurred when a strong stable stratifica-
tion existed at turbine hub height or below rotor height.
In other cases, without inversions orwith inversions loca-
ted well above turbine rotor height, the enhancedmixing
causedbywind farmswouldnothave suchaneffect.

5. Conclusion

This works gives new insights into micrometeorologi-
cal impacts of large offshore wind farm clusters by the
use of aircraftmeasurements conducted from Septem-
ber 2016 to October 2017 and mesoscale simulations.
Themainfindings include:

• Large offshore wind farms can have an impact on
the MBL. During five measurement flights, the
elevation of the inversion in the rotor disk region
was such that the potential temperature increased

Figure 8.All existing and all plannedwind farms at theNorth Sea and theirmicrometeorolocial impact on potential temperature
(a) andwater vapormixing ratio (b) theywould have had on 10September2016. Shown is the difference between a simulationwith
wind farms (WF) and a simulationwith nowind farms (NWF)—shown is only the region affected by thewind farms. Consequently,
warm colors in the potential temperature denote awarming caused bywind farms and gray colors inwater vapormixing ratio indicate
a drying of the air introduced by thewind farms.
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by up to 0.6 K within the wake of a large offshore
wind farm 45 km downwind. This warming was
associated with a decrease in the total water vapor
mixing ratio by up to 0.5 g kg−1. In contrast, a
shallow inversion below hub height associated with
a cold SST causes a cooling of the same magnitude
above and at hub height downwind, as observed
during threemeasurement flights.

• These micrometeorological impacts exist only in
case of an inversion below or at rotor area. Only in
the presence of such inversions can warmer air be
mixed downward by the rotors. Depending on the
height of the inversions this process is causing either
a warming or cooling at hub height. As an inversion
acts as a lid for the water vapor evaporating from the
ocean, the water vapor concentration is higher
underneath the inversion. Consequently, a breakup
of the inversion results in a mixing of dryer air
downward and, hence, in dryer air within the wake.
This process was observed regardless of a warming
or cooling, indicating that the moisture flux is
decoupled from the heatflux.

• The mesoscale model simulated the observed
warming and drying effect of the wind farm cluster
reasonably well. Therefore, we could estimate the
overall effect of all planned and existing wind farms
on the MBL for the 10September2016 case. Even
with an increasing number of wind farms, the
warming and drying effects remain of the same
order of magnitude as in the reference case. The
interaction of several wakes resulted in wakes
exceeding 100 km in length.

These findings demonstrate that, in some cases, large
offshore wind farms can have an impact on the
regional microclimate. However, a pure redistribution
of moisture and heat has no influence on the regional
climate. Only a permanent change in the air–sea
interactions could change the regional climate. For
example, warmer air over a cold ocean would result in
an increased sensible heat flux to the ocean whereby
the latent heat flux would transport more water into
the atmosphere because of the dryer air within the
wake. However, we suggest that these events are rare
because a strong inversion at or below hub height is
necessary to observe this warming and drying within
thewake of large offshore wind farms.
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