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Abstract. Wind lidar technology is being extensively used in utility-scale wind turbine wake
measurements because of its capabilities to capture the dominant structures of interest in the
near-wake region. However, wind lidar devices provide only line-of-sight (LOS) measurements,
and retrieval of horizontal wind speed from the LOS measurements of a single lidar in the wind
turbine wake could introduce errors due to the assumptions used in the retrieval process. With
that in mind, the goals of this paper are to estimate the errors associated with the retrieval
processes and provide guidelines for best practices. To achieve these goals, virtual lidar samples
are obtained with large-eddy simulations (LES) by sampling the flow field with a model of
the Technical University of Denmark (DTU) SpinnerLidar. LES is chosen to simulate the
neutral and unstable atmospheric boundary layer (ABL), a benchmark case of the International
Energy Agency Wind Technology Collaboration Programme (IEA Wind TCP) Task 31. The
precursor ABL simulation is validated with the reference data provided by the IEA Wind Task
31 benchmark case. The data from the precursor simulation is used to drive a simulation of a
wind turbine submerged in the ABL. A weighting function is applied to the LES data to mimic
the real DTU SpinnerLidar measurements. In the end, the virtual lidar data are processed and
compared with the original LES data to estimate the errors. Results show that lidar captures
mean ABL profile without any noticeable error, whereas turbulence intensity is underpredicted
≈ 15% at hub height for the neutral case. Volume averaging by the lidar technology has a
significant effect in the shear layer of a wind turbine wake.

1. Introduction
Conventional meteorological towers (“met masts”) are equipped with cup and sonic anemometers
and therefore can only provide in situ measurements of wind speed. However, wind in the
atmospheric boundary layer is dynamic and three dimensional, warranting measurements not
only at a single point but along multiple dimensions. When it comes to wind turbine wakes,
understanding complex turbulence patterns becomes critical, as they ultimately affect the
performance and reliability of wind plants. The need for remote, multipoint observations has
driven remote-sensing technology, particularly lidars, to increased levels of popularity in the
wind industry in recent years. Lidars are able to perform multipoint measurements remotely
without affecting the flow by their presence. This multipoint measurement technique can be used
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to measure the evolution of the wind coming to a turbine or of its wake at different downstream
locations.

Despite the clear advantages of lidar over conventional anemometry, lidars also have
limitations of their own. Lidar technology is based on the Doppler effect and uses backscattered
signals from aerosols in the atmosphere to estimate the wind speed parallel to the laser beam.
Therefore, it is only able to estimate the wind speed along the “line of sight” (LOS) of the laser.
This wind speed is proportional to the frequency of the Doppler shift in the returned signal.
Calculating the peak frequency requires a considerable number of backscattered signals and, as
a result, the LOS velocity is approximated over a larger volume as opposed to a fixed point, as
provided by a sonic or cup anemometer. Because lidars cannot measure the three-dimensional
wind vector, inflow and wake measurements performed with lidars cannot be directly used to
validate wake models. Multiple lidars might provide a solution toward obtaining more velocity
components from LOS data, but this application faces some challenges related to the speed of the
lidar scanning head and its ability to change the measurement location, as well as synchronization
among different lidars [1] and intersections of measurement volume from different instruments.

Retrieving horizontal wind speed from LOS measurements obtained with a single lidar
requires some assumptions [2], which lead to additional measurement uncertainty. When using
lidar measurements for model validation, it is important to understand how these and other
sources of uncertainty (e.g., volume averaging [3, 4]) affect the estimated velocities. Work has
been done to quantify these uncertainties relative to cup and sonic anemometers measurements
when lidars are used to measure atmospheric boundary layer (ABL) profiles [5]. However, lidar
measurements of wind turbine wakes have not been well-examined in that regard, mainly due to
the unavailability of the traditional reference instruments and to the additional challenges that
lidars face when measuring wakes, such as higher vertical velocity values. Projection of vertical
velocity equal to zero might introduce a substantial error in the retrieval process.

Lidar measurements might have errors associated with the changes in wind direction and
turbine operating conditions due to the lower rate of movement of the scanning head compared to
the atmospheric turbulence. Errors resulting from the retrieval process and the lidar technology
itself cannot be easily separated in real-world measurements, as wind direction and turbine
operation data have their own uncertainties. The solution is to perform a computational fluid
dynamics (CFD) experiment: an ideal flow field with known turbulence and wind direction is
generated and sampled by a “virtual lidar” that sees both the actual velocity components and
the LOS equivalent [6]. Through a detailed study with a virtual lidar, biases and errors of the
physical measurement technique can be determined [7].

In this work, CFD is used [8] to further the understanding of specific limitations of scanning
lidars when measuring wind turbine wakes [9]. We consider the DTU SpinnerLidar [10], which
uses a continuous-wave laser and has the ability to sample the flow in three-dimensional space
much faster than pulse-based lidars. However, even if they are able to measure fast, the
measurement quality might deteriorate at longer focus distances due to the increase of sampling
with focus distances.

Based on the discussed limitations of lidars, three main questions are asked in this work: 1)
what is the accuracy of continuous-wave lidar measurements in the far wake of a wind turbine,
where the probe volume is larger? 2) can we retrieve horizontal wind speed from LOS data,
while assuming the projection of vertical velocity in the horizontal plane to be zero? and, 3)
how does atmospheric stability affect the wind speed retrieval process? These questions are
addressed by creating a virtual lidar in a CFD simulation that mimics the operation of the real-
world SpinnerLidar. The atmospheric inflow is based on the wake model validation benchmarks
of the IEA Wind Task 31 SWiFT benchmark [11] released by the National Renewable Energy
Laboratory (NREL). Considering these perspectives, this paper is organized as follows: the CFD
simulations for the benchmark cases are discussed in Section 2, and the virtual lidar incorporated
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in the CFD model is discussed in Section 3. Results analysis is provided in Section 4, followed
by the conclusion.

2. CFD simulation
IEA Wind Task 31 has released three different cases for three different atmospheric stability
regimes. In this study, neutral and unstable cases are chosen. The proposed highly-stable case
is not considered in this study due to the numerical complexities in the turbulence modeling
for the stable atmospheric boundary layer. To reproduce the scenarios, NREL’s Simulator fOr
Wind Farm Applications (SOWFA) tool [12] is used. SOWFA is a large-eddy simulation (LES)
tool that can generate an ABL profile with atmospheric stability, and both an actuator disk
model (ADM) and an actuator line model (ALM) are incorporated in the tool to mimic the
wind turbine blades. To generate the precursor flows, the simulations are run with a target
mean wind speed of 8.7 m/s and 6.7 m/s at hub height 32.1 m for the neutral and unstable
cases, respectively. The domain size is 3 km × 3 km × 1 km (x × y × z) for the neutral case
and 4 km × 3 km × 2 km (x × y × z) for the unstable case, representing the x-mean wind
direction, y-transversal direction, and z-vertical direction. Domain sizes are chosen in a way
to accommodate the near-surface transient streaks [12]. Details of the mesh for both cases are
provided in Table 1. The mesh in the vertical direction of the neutral case is generated with a
scaling factor of 2.95 to provide a smaller mesh size that is closer to the surface. A scaling factor
of 2.95 provides the target 5 m grid near the surface with a target number of grid points along
the vertical direction. The precursor simulation is initiated with a temperature fluctuation of
0.1 K and run with a periodic boundary condition wherein aerodynamic surface roughness, z0,
is 0.01 m. The simulation is tracked with friction velocity, u∗, at the first cell center to see
the time requirements for the development of turbulence. The simulation is run up to 16,000
s with a time step of 0.25 s for the neutral case and 12,000 s with a time step of 0.3 s for the
unstable case, where the time steps are chosen based on the grid sizes of the cases. Boundary
data are saved afterward for 3600 s, and these boundary data are forced to the wind power
plant simulation with the pressure gradient calculated from the precursor simulation to have a
target mean wind speed at hub height. The precursor data obtained from the simulation are
compared with the IEA Wind Task 31 benchmark data in Table 2 and are discussed in detail
in Section 4. The domain for the turbine is further refined (Table 2) to capture the wake of the
turbine with a substantial resolution. The refined domain covers 16 rotor diameters total along
the mean wind direction, which accommodates 6 rotor diameters upstream of the turbine and
10 rotor diameters downstream of the turbine. The turbine model V27 of diameter, D = 27 m
is mimicked using the ALM in the numerical simulation.

Table 1. Mesh for the simulations

Cases Precusor mesh size Turbine domain mesh

Neutral ∆x = 10.0 m, ∆y = 10.0 m, ∆z = 5.0 m to 14.8 m ∆x = ∆y = ∆z = 0.5 m
Unstable ∆x = 10.0 m, ∆y = 10.0 m, ∆z = 10.0 m ∆x = ∆y = ∆z = 0.625 m

3. Virtual lidar
The SpinnerLidar is a continuous-wave lidar that scans in a rosette pattern and takes
approximately 2 s to complete a scan. Each scan provides 984 points in a plane normal to
the rotor axis [13]. The lidar is mounted on the nacelle of the turbine and scans downstream of
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Figure 1. Scan pattern of the virtual lidar placed on the nacelle of the V27 turbine. The lidar
is at x = 0, y = 0, and z = 32.6 m.

Figure 2. Weighting functions for the continuous-wave lidar. Solid lines represent the
Lorentzian weighting function and dashed lines represent the truncated filter function as
described by Eq. 6.

the turbine with an angle of 30 degrees maximum to the rotor axis. Rosette measurements in
different downstream locations of the turbine are shown in Figure 1. The virtual lidar measures
at points in a rosette pattern and provides LOS data according to:

vlos(r) = u cosφ cos θ + v cosφsinθ + w sinφ (1)

vlos(r) = Uh cosφ cos(θ − θo) + w sinφ (2)

where Uh is the horizontal wind speed, r represents the range along the laser beam, φ is the
elevation angle, θ is the azimuth angle, and θo is the wind direction; u, v, and w are the axial,
transversal, and vertical velocity components obtained from the numerical simulation, and vlos
is the LOS data obtained at the corresponding points. Here, the turbine is considered to be
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aligned with the wind direction. Total 984×5 points are created in a two-dimensional plane so
that each point is surrounded by 4 extra points to reproduce the scenarios of aerosol suspended in
the environment and the curvature of the rosette plane (Figure 1). The focus of the converging
lidar beams vary to measure at different distances from the lidar, and measurement volume
increases with an increase of the measurement distance from the lidar. To consider the volume
measurements rather than a point measurement, the weighting function is used for the point
measurements. The weighting function is developed considering the laser beam is very narrow
in the transversal direction.

vlos,eq(F ) =

∫ inf

0
vlos(r)W (F, r)dr (3)

where F is the distance along the beam from the lidar to the intended measured point, and
W (F, r) is the weighting function. The weighting function for the continuous-wave lidar is
described in [14].

The weighting function for the different measured distances is shown in Figure 2. According
to [15], axial weighting functions for a continuous-wave monostatic coherent lidar is described
by a Lorentzian function:

W (F, r) =
1

π

ZR
Z2
R + (r − F )2

(4)

where ZR is the half-width of the weighting function to the −3 dB point (i.e., 50% of peak
sensitivity).

ZR =
λF 2

πα2
o

(5)

where λ = 1565 ∗ 10−6 mm and αo = 24.7 mm are the laser wavelength and effective telescope
radius, respectively.

In addition to the weighting function based on the Lorentzian function, a more physical
weighting function is described with a treatment of truncated Gaussian beam with a Lommel
function in the complex domain [16]. With a truncation coefficient, light distribution near focus
is provided as:

W = Io

(
1 − 0.5ua

πNa

)2 α2

α2 + (0.5ua)2
coshα− cos(0.5ua)

coshα− 1
(6)

Io =

(
πa2A

λF 2

1 − exp(−α)

α

)2

(7)

where A = 1 is a constant, a = 44.5 mm is the aperture radius for the SpinnerLidar, α = ( aw )2 is
the coefficient of truncation, Na is a Fresnel number associated with the radius of aperture, w is

beam radius at lens, Na = a2

Fλ , and ua = 2π
λ ( aF )2 E

1+E/F , E = r−F . See [16] for more explanation

on these parameters. The purpose of showing these two weighting functions is to emphasize
the difference between them. The truncated weighting function is more physical, whereas the
Lorentzian weighting function is much simpler. However, the Lorentzian function is effective
considering the probe volume of the continuous-wave lidar at different focal distances. As data
points are discrete in the considered cases, weighted data are obtained with:

vlos,eq(F ) =

∑np

i=1 vlos(r)W (F, r)∑np
i=1W (F, r)

(8)

where np is the number of data points.
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4. Results
4.1. ABL data
Atmospheric boundary layer data obtained from the numerical simulations are presented with
the horizontal wind speed, Uh, and turbulence intensity with a comparison to the IEA Wind
Task 31 SWiFT benchmark data in Table 2. For both cases, numerical simulations underpredict
the turbulence intensity compared to the IEA Wind Task 31 validation data, wherein mean Uh
agrees well (Figure 3 & 4). A virtual lidar is also added on the top of the nacelle to measure
the precursor data at 2.5 rotors upstream distance of the turbine to see the error related to the
volume averaging, εvol, and assumptions on the retrieval, εpos, for the both cases. The error due
to the volume averaging is defined as:

εvol =
vlos − vlos,eq

vlos
∗ 100 (9)

The error due to the retrieval assumption (w sinφ = 0) is defined as:

εpos =
Uh,s − Uh,los

Uh,s
∗ 100 (10)

The total error of the horizontal wind speed retrieved from the virtual lidar is given as:

εtot =
Uh,s − Uh,eq

Uh,s
∗ 100 (11)

where Uh,s is the horizontal wind speed from the numerical simulation directly, and Uh,eq and
Uh,los are the horizontal wind speed retrieved from vlos,eq and vlos, respectively, using Eq. 2 and
w sinφ = 0.

Table 2. Precursor data at hub height

Cases Parameters IEA Wind Task 31 Numerical simulations Virtual lidar

Neutral Uh (m/s) 8.70 8.84 8.85
Turbulence Intensity, TI (%) 10.70 9.01 7.55

Unstable Uh (m/s) 6.70 6.81 6.70
Turbulence Intensity, TI (%) 12.60 10.95 9.52

Volume averaging results in an error of 16.2% and 13.1% in turbulence intensity at hub height
for the neutral and unstable cases, respectively (Table 2), whereas profiles of the horizontal wind
speed, Uh, are well-captured within the considered range of heights. However, there is some
deviation closer to the surface. This might occur due to the presence of zero LOS data near
the surface and propagation of zero value due to the interpolation scheme. In addition, higher
vertical velocity closer to the surface plays a role on it. While the error due to the volume
averaging is negligible, the percentage of mean absolute error due to the retrieval assumptions,
i.e., w sinφ = 0, is comparatively larger due to the scan with higher elevation angles (Figure
3c).



Wake Conference 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1256 (2019) 012008

IOP Publishing

doi:10.1088/1742-6596/1256/1/012008

7

Figure 3. ABL data by virtual lidar with the IEA Wind Task 31 benchmark data. a) neutral
case; b) unstable case; c) error due to the volume averaging and retrieval assumption.

Figure 4. Turbulence intensity data by virtual lidar with the IEA Wind Task 31 benchmark
data. a) neutral case; b) unstable case; c) error due to the volume averaging and retrieval
assumption.

4.2. Wind turbine wake data
Wind turbine simulations are run for 800 s. The first 200 s of simulated time reflects startup
transients of the simulation and not taken into account during the analysis. To capture the wake
of the wind turbine with a lidar, a virtual lidar is set to measure 10 rotor diameters downstream
(x = 10D). While all the data are used to calculate the volume-averaged data at different focal
distances, data analysis is done up to 6D downstream. The variation of wind speed at different
downstream distances is higher in wind turbine wakes compared to the ABL. Therefore, volume
averaging might have a significant effect on the wind turbine wake data, and a less significant
effect in the ABL. A qualitative view of the volume-averaged data compared to the original LOS
data at 3D downstream is shown in Figure 4. In Figure 4c, the difference between LOS data
and volume-averaged data explains that volume averaging plays a significant role in the hub
and shear layer regions where coherent structures most likely exist. Mean wind speed profiles
at x = 3D and y = 0.0D are presented in Figure 7 to show the profiles associated with different
errors.
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Figure 5. LOS data of the neutral case at 3 rotor diameters downstream (x=3D) from the
turbine; a) LOS data; b) weighted LOS data after volume averaging; c) difference between LOS
and volume-averaged data. Circle with dashed line represents the rotor area.

Figure 6. Standard deviation (std. dev.) of the horizontal wind speed in the wake of the
neutral case at x = 3D; a) std. dev. of Uh,s; b) std. dev. of Uh,eq; c) difference between a) and
b). Circle with dashed line represents the rotor area.

Figure 7. Mean wind speed profile by the virtual lidar compared to the original simulation
data at x=3D, y=0.0D; a) neutral case, and b) unstable case.

Effects of volume averaging are quantified for the simulated wakes as in Eq. 9. Figure 5 shows
LOS velocity from the simulations compared to the virtual lidar, and their difference. Their
difference (Figure 5c) reveals that the virtual lidar measurements are missing the structures
located at the hub and tip of the blades region. An error related to the volume averaging is
dominant and has a magnitude of 1.95% in the hub region. While the effect of volume averaging
does not have a significant impact on the mean velocity profile at x = 3D, the impact of volume
averaging is significant on the fluctuation of wind speed. The standard deviation of horizontal
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Figure 8. Error introduced by the volume averaging at different downstream locations; a)
neutral case, and b) unstable case.

Figure 9. Error introduced by the assumption (w sinφ = 0) in the retrieval process at different
downstream locations; a) neutral case, and b) unstable case.

wind speed is shown in Figure 6. The figure shows that the impact of volume averaging is
considerable. More quantitative analysis reveals that volume averaging reduces the standard
deviation of 31% at x = 3D and 51% at x = 5D for the neutral case.

In addition, the εvol is presented in Figure 8 for the mean horizontal wind speed at different
downstream distances. It is anticipated that an error due to the volume averaging over different
downstream distances will increase due to the larger volumes. While the error is concentrated
in the shear layer for the near wake, it covers the entire wake area in the far wake (x = 5D)
due to the mixing of the wake at far distances. The shear layer and coherent structures are
dependent on the mixing of the wake, and volume averaging has an impact on it. In addition,
wake recovery rate has a significant role in volume averaging due to the variation of wind speed
along the weighting function. This can been seen with a comparison between the neutral and
unstable cases in Figure 8a and Figure 8b. Volume averaging can underestimate or overestimate
the wind speed based on the wake recovery rate and measurement locations of the wake. For
the tip regions of the blades, volume averaging always underestimates the wind speed. However,
for the hub or center region of the wake, it overestimates in the near wake and underestimates
in the far wake region. Sampling volume in the far wake covers a significant portion of the near
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wake and underestimates the wind speed for the far wake. While underestimation of the mean
wind speed starts at x = 5D for the neutral case, it starts at x = 3D for the unstable case.

Projection error is significant in the near wake for both cases (Figure 9a & Figure 9b), and
it decreases with downstream distances. For the same height, the elevation angle decreases with
downstream distances and the projection error becomes negligible after x = 5D downstream.
The projection error is always higher for the unstable case than the neutral case due to a possible
higher vertical velocity in the unstable case. Note that, if the shear layer is thin and coherent,
the spike in the projection error is observed at the shear layer (Figure 9a, at x = 2D and
x = 3D).

5. Conclusion
Large eddy simulations with a virtual lidar are used to study the capabilities of the continuous-
wave lidar to measure horizontal wind speed, Uh, and turbulence intensity, TI, in both the
atmospheric boundary layer (ABL) and wind turbine wake. Two different cases (neutral and
unstable) are chosen based on the IEA Wind Task 31 SWiFT Benchmark and virtual lidars are
placed on the nacelle of the turbine at a hub height of 32.1 m. The virtual lidar captures the
mean, Uh, well from height 10 m to 70 m in the ABL. However, it underestimates the turbulence
intensity for both the ABL and wind turbine wake. The underestimation of turbulence intensity
is significant in the wake, and it could be more than 50% at x = 5D. This reduction is directly
related to the sampling volume considered by the lidar. The mean Uh is well-captured up to
x = 3D in the wake with a projection error less than 2.5%. However, after x = 5D, the error
related to the volume averaging becomes prominent and significant deviations in the mean, Uh,
were observed. At x = 5D, the error associated with volume averaging is significant for the
unstable case due to the faster wake recovery. The faster wake recovery and mixing in the
wake create a larger variation of wind speed in the sample volume. The lidar overestimates the
wind speed in the near wake and underestimates the wind speed in the far wake. The location
of the transition from an overestimation to an underestimation of wind speed in the wake is
dependent on the wake recovery rate. For both cases, projection error in the wake decreases
with downstream distances and an error due to the volume averaging increases with downstream
distances. Volume averaging is dominant in the shear layer of the wake for the mean, Uh, and
all over the wake for the turbulence intensity.
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[16] Zoltán L Horvtáh and Zsolt Bor. Optics Communications, 222(1):51 – 68, 2003.


