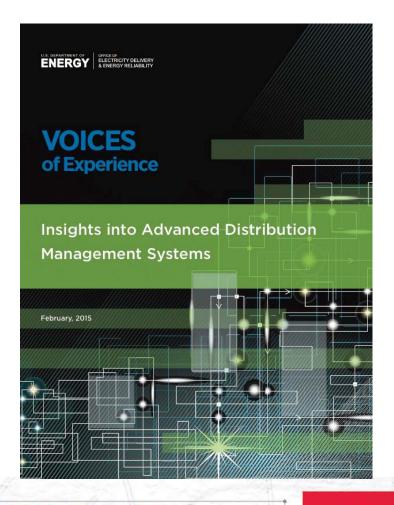
DISTRIBUTECH CONFERENCE & EXHIBITION

FEBRUARY 5-7, 2019 • #DTECH2019



Annabelle Pratt, Principal Engineer, National Renewable Energy Laboratory (NREL) Brian Amundson, Director, Grid Modernization, Xcel Energy Santosh Veda, Group Manager, NREL

Motivation: why an ADMS test bed?

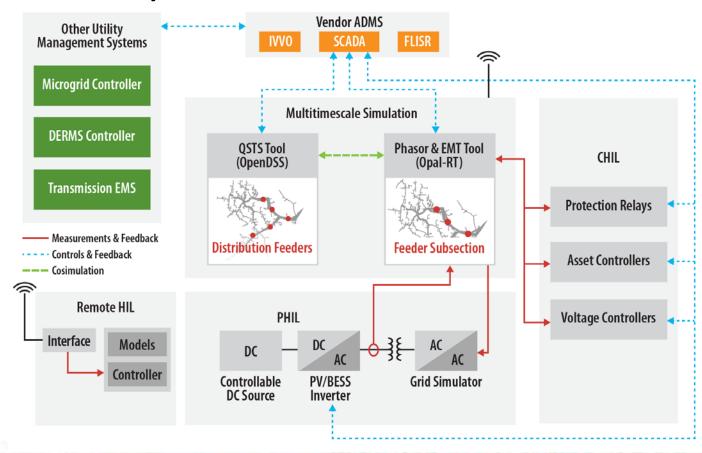
To accelerate the adoption of advanced distribution management systems (ADMS)

- ADMS are expected to deliver:
 - Increased reliability
 - Improved power quality
 - More renewable energy sources
 - Data security
 - Resilience to natural disasters and other threats.

Motivation: why an ADMS test bed?

ADMS deployment requires:

- Significant investment
- Solid business case
- Well-understood benefits.



What is the ADMS test bed?

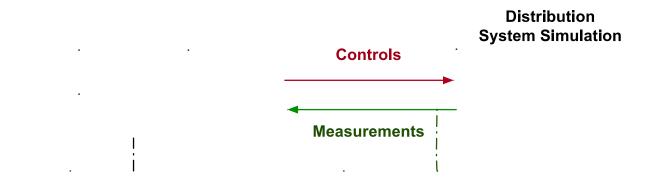
Realistic laboratory test environment with standard interfaces

What questions can the test bed address?

- What is the impact of improved forecasting?
- How much peak load management can be achieved?
- Does a distributed energy resource management system significantly improve load management performance?
- How do grid-edge technologies impact ADMS performance?

Xcel Energy ADMS test bed use case

- Xcel Energy is deploying ADMS across its footprint of approx. 3,000 feeders
- Data needed: impedance, connectivity, real-time, and load profiles
- How accurate does the ADMS model need to be?
- Can additional sensors offset model accuracy?
- Is there a "sweet spot" of sensor deployment v. model improvement?



Model improvement use case

Evaluate the performance of the ADMS volt/volt-ampere reactive optimization application for different levels of data remediation and different levels of measurement density.

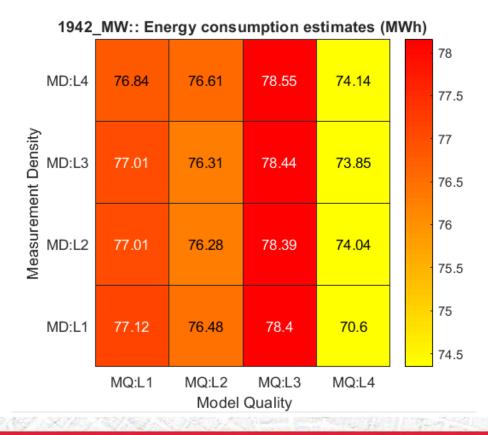
Model improvement use case

Model quality levels:

- Q1: Base-level geographic information system (GIS) data
- Q2: Field verification at select locations. Confirm step transformer attributes, and collect capacitor, regulator, and recloser attributes
- Q3: Tap-phase verifications.
- Q4: Field-confirming each primary pole line by circuit to obtain distribution transformer attributes, phasing, and using Xcel Energy GIS data.

Measurement density levels:

- D1: Feeder-head measurements
- D2: D1 + voltage regulators, capacitor banks, reclosers, and 1 tail-end voltage sensor (advanced metering infrastructure [AMI] sensor) per feeder
- D3: D2 + a total of 10 AMI sensors per feeder
- D4: D2 + a total of 20 AMI sensors per feeder.

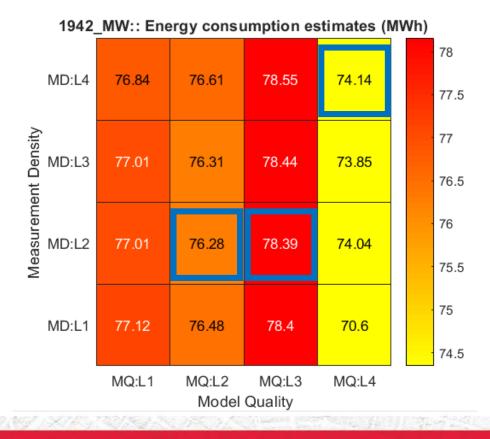


Model improvement use case

Summary of findings:

- Long feeders show difference in performance for varying measurement density
- Rural feeders show greater improvement with increasing levels of model quality
- Higher measurement density results in fewer violations.

Semirural feeder



Next step: ADMS test bed evaluation

- Select two to three test cases.
- Simulate in real time using the test bed.

Semirural feeder

Thank You

Annabelle Pratt

annabelle.pratt@nrel.gov

DISTRIBUTECH CONFERENCE & EXHIBITION

FEBRUARY 5-7, 2019 • #DTECH2019