
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Contract No. DE-AC36-08GO28308 

Conference Paper  
NREL/CP-5D00-73359 
August 2019 

A Flexible Framework for Building 
Occupancy Detection Using 
Spatiotemporal Pattern Networks
Preprint
Sin Yong Tan,1 Homagni Saha,1 Anthony Florita,2 
Gregor P. Henze,3 and Soumik Sarkar1

1 Iowa State University  
2 National Renewable Energy Laboratory 
3 University of Colorado 

Presented at the IEEE American Control Conference 
Philadelphia, Pennsylvania  
July 10–12, 2019 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5D00-73359 
August 2019 

A Flexible Framework for Building 
Occupancy Detection Using 
Spatiotemporal Pattern Networks 

Preprint  
Sin Yong Tan,1 Homagni Saha,1 Anthony Florita,2  
Gregor P. Henze,3 and Soumik Sarkar1 

1 Iowa State University  
2 National Renewable Energy Laboratory  
3 University of Colorado  

Suggested Citation  
Tan, Sin Yong, Homagni Saha, Anthony Florita, Gregor P. Henze, and Soumik Sarkar. 
2019. A Flexible Framework for Building Occupancy Detection Using Spatiotemporal 
Pattern Networks: Preprint. Golden, CO: National Renewable Energy Laboratory. 
NREL/CP-5D00-73359. https://www.nrel.gov/docs/fy19osti/73359.pdf..  

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 

 

https://www.nrel.gov/docs/fy19osti/73359.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E). The views 
expressed herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government 
retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains 
a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or 
allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


A flexible framework for building occupancy detection using
spatiotemporal pattern networks

Sin Yong Tan Homagni Saha Anthony R. Florita‡ Gregor P. Henze† Soumik Sarkar 
tsyong98@iastate.edu hsaha@iastate.edu Anthony.Florita@nrel.gov gregor.henze@colorado.edu soumiks@iastate.edu

Department of Mechanical Engineering, Iowa State University
Department of Civil, Environmental and Architectural Engineering, University of Colorado†

National Renewable Energy Laboratory‡

Abstract— This paper presents a reliable, scalable, and
transferable framework to predict occupancy in a building
utilizing diverse, multi-modal information. We propose a new
methodology for learning-driven occupancy detection built on
the concepts of probabilistic graphical modeling and observable
Markov chain modeling. To capture the relationship between
multi-sensor data and occupancy, we propose this Occ-STPN
framework that is flexible to support both multivariate and
univariate formulations. While the multivariate Occ-STPN per-
forms feature-level fusion of multiple predictors and occupancy
time-series data, the univariate Occ-STPN involves decision
fusion of occupancy predictions using individual predictors
based on a mutual information weighted fusion scheme. We
also propose a new metric to evaluate the performance of
occupancy prediction algorithms. Two popular datasets are used
to validate our approach and demonstrate that our framework
is scalable in terms of the number of information sources (e.g.,
sensors) as well as it is possible to transfer trained models
from one building to another without significant reduction
in performance. Reliability of the algorithm is also tested by
injecting noise into the datasets.

1. INTRODUCTION

Buildings contribute roughly 41% to the world’s energy
consumption [1]. Due to the increasing need for sustainable
energy consumption and reduction of carbon footprint, there
has been an increasing focus on the concept of smart building
energy systems [2]. One way to optimize performance, or
reduce building energy waste, is to leverage information
about existing indoor environmental conditions to regulate
the HVAC system adaptively in response to prevailing levels
of occupancy. Techniques used to detect occupancy in the
building will thus play an important role towards this goal.

RELATED WORK: In [3], the authors use online sequen-
tial extreme learning machines (ELM) to detect occupancy
in a large-scale multi-functional lab. In [4], the authors com-
bined statistical and probabilistic methods to detect whether
a building was occupied or not. The authors in [5] use
linear regression and decision trees to detect occupancy in
a commercial building by collecting data from context rich
sources. A point extraction algorithm was used in [6] to
detect occupancy inside a building from particulate matter
concentration. [7] used particle filters and support vector

machines (SVM) to detect occupancy in a non-residential
building.

A major limitation in many of these algorithms is the lack
of scalability and transferability. When the spatial/temporal
aspects of the sensor data get changed, these algorithms
may fail to produce correct occupancy result. Different
considerations for feature selection or machine learning
models may need to be used for different settings, some of
which might involve costly computations that may require
expensive embedded systems to run on. Hence, we propose
a unique framework that is transferable, scalable, and modest
in terms of computational cost.

We leverage the concepts used in symbolic dynamic
filtering (SDF) [8] and the recently proposed probabilistic
finite state automaton (PFSA) based spatiotemporal pattern
networks (STPN) [9], [10], [11] built on SDF to construct
this framework. There have been several successful appli-
cations of this framework in the past, such as wind turbine
interactions [10], building energy disaggregation [12], and
bridge damage detection [11]. In this paper we will intro-
duce STPN as a robust technique for building occupancy
detection. As opposed to other algorithms which conserve
only either the temporal or the spatial aspect of the data, this
framework conserves both the temporal and spatial aspects
of the input data. With our data driven approach, acceptable
accuracy is achievable without domain knowledge and with
minimal hyperparameter tuning.

CONTRIBUTION:
1) We propose the occupancy detection spatiotemporal

pattern network (Occ-STPN) framework for building
occupancy prediction.

2) We propose two variants of this framework - multivari-
ate Occ-STPN for feature level fusion to achieve high
performance and univariate Occ-STPN for decision
level fusion to achieve scalability and flexibility.

3) For the first time we consider transferability aspects of
a building occupancy prediction method, i.e., train on
one building and evaluate on a different building.

4) We introduce a new causal metric for evaluating per-
formance of building occupancy prediction algorithms
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Fig. 1: Multivariate and univariate Occ-STPN framework for occupancy detection

that explicitly captures time delays in prediction.
OUTLINE: The rest of the paper is presented as follows:
Section 2 gives a brief background on the STPN framework,
Section 3 explains the detailed flow of operations within
STPN framework, Section 4 describes the experimental setup
and the data used in this paper, Section 5 presents the results
and a detailed discussion of the framework’s performance,
and finally, Section 6 states the conclusion for this paper and
future work for enhancing the framework’s performance.

2. BACKGROUND

A. Discretization

After raw sensor data is collected from indoor sensors,
a series of processing steps are performed for efficient
data compression and noise filtering through the use of
discretization techniques. These wide range of techniques
broadly fall into the category of SDF [8] and the D-Markov
machine concept [9] is used here as a basis for our technique.

There are many different discretization techniques pro-
posed in the past, such as uniform partitioning (UP), max-
imum entropy partitioning (MEP), maximally bijective dis-
cretization (MBD) [13], and statistically similar discretiza-
tion (SSD) [14], but for simplicity, in this paper, we use
uniform partitioning (UP) in the discretization process.

B. Markov Machines

After discretization of the time-series data, symbolization
is implemented subsequently for estimating the D-Markov
machines. In SDF, a critical assumption is that we can ap-
proximate the symbolized time-series data as a Markov chain
of order D, which is a positive integer [9]. This Markov chain
is called D-Markov machine, and it can capture temporal
aspects in a time-series and cross-correlation aspects (spatial
relationships) between different time-series.

3. METHODOLOGY AND FRAMEWORK

We now formally define the framework we use for oc-
cupancy detection: Occ-STPN. Our framework draws con-
cepts from the closely related spatiotemporal pattern network
(STPN) [9].

A. Multivariate Occupancy Detection Spatiotemporal Pat-
tern Network (Occ-STPN)

Definition 3.1 Let {A}t = {a1, a2, ...an}t denote dis-
cretized symbol sequences at time t, obtained from n vari-
ables of interest (a1...an). Let {B}t denote the correspond-
ing values of occupancy inside a room denoted as 1 for
occupied and 0 for vacant. Then, a probabilistic finite state
automaton (PFSA) based occupancy network (Occ-STPN) is
a 4-tuple, denoted as Wd ≡ (QA,ΣB ,ΠAB , IAB)

1) QA = q1, q2, ..., q|QA| is the state set corresponding to
the symbol sequence sA

2) ΣB = σ1, σ2, ..., σ|ΣB |−1 is the alphabet set of symbol
sequences sB

3) ΠAB is the state transition matrix of size |QA|× |ΣB |
where the ijth element of ΠAB denotes the probability
of finding symbol σj in the symbol string sB at time
k + 1 while making a transition from state qi in the
state sequence sA = sa1

sa2
...san

at time k. Note that
the state transition matrix is time independent since we
take the expectation over all time points for all unique
transitions.

4) IAB denotes a metric that represents the importance
of the feature in predicting occupancy. Here it is the
mutual information MAB [10].

B. Univariate Occupancy Detection Spatiotemporal Pattern
Network (Occ-STPN)

We propose the univariate Occ-STPN as a special case
of multivariate Occ-STPN, when the number of predictors
is 1. A major difference lies in the way a prediction for
occupancy is performed by both of them. While multivariate
Occ-STPN uses a transition matrix that incorporates the
joint relationships between n information sources and the
true occupancy, univariate STPN uses n transition matrices
each considering pairwise relationship from one variable of
interest to the true occupancy.

C. Occupancy Detection using Occ-STPN

An overview of both frameworks are shown in Figure 1,
where it could take in single or multiple time-series data and
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output the corresponding predicted occupancy at each point
in time. The detailed operations within the framework are
shown below:

1) Training data is collected in the form of a table where
each column represents the time-series sensor data and
the last column denotes the status of occupancy at each
time point along the rows of the table.

2) Time-series discretization using SDF [8] and assign
unique states to sensor values at each time point.

3) A transition matrix representing the state space and
transition properties of the dynamic system is learned
using a recent technique based on cross-markov ma-
chines of depth parameter D [15].

4) Multivariate case: The joint transition probabilities
from {A} to B are estimated.
Univariate case: The n transition probabilities from
ai ∈ A to B are estimated.

5) Retaining important information in the matrix and
eliminates potentially redundant states in transition
matrix by performing state merging [9] as shown in
Algorithm 1.

6) The merged transition probabilities are used to predict
the state of occupancy inside a building.
Multivariate case: We use Equation 3 to predict
occupancy directly.
Univariate case: If n is our total number of informa-
tive sources, then we obtain n predictions for probabil-
ity of a room being occupied at the next time instant.
We call each of the predictions, a decision. We assign
weights wi to each probability based on calculated
mutual information value MadB , d = 1, ..., n. The final
probability of occupancy is calculated as below:

wi =
MaiB∑n
d=1M

adB
(1)

Pr(Occupancyt+1) =
n∑
i

wiPri(st) (2)

E(Occupancyt+1) =

n∑
i

Pri(st)E[Occ|st+1 ] (3)

Here, t is the point in time or instance, st is the unique
state at time t found in the transition matrix ΠaiB , and n is
the number of decisions in consideration. To obtain a binary
prediction of occupancy at time t+ 1, we apply a threshold
of 0.5 on the probability value obtained in Eqs. 2 and 3.

Remark 3.1 Multivariate Occ-STPN and Univariate Occ-
STPN behave the same when there are only 1 predictor or
input to the framework since weights w1 is always 1.

D. State Merging

State merging operation eliminates less informative states
in transition matrix ΠaiB . A detailed mathematical consider-
ation of state merging for STPN is provided in [16]. Here, we

Algorithm 1 State Merging Algorithm
1. Input: Transition matrix from Step (5) in Section 3A
2. Output: Merged transition matrix
3. for each unique state, s in transition matrix:
4. Compute standard deviation, σ
5. if σ ≥ threshold:
6. Keep s
7. else
8. Merge s to closest state
9. return Merged transition matrix

provide a simple pseudocode in Algorithm 1. The threshold
is a small arbitrary value, which we set it to be 0.001.

E. Performance Evaluation

1) Accuracy: Accuracy is a common performance metric
for occupancy detection algorithms and it is computed as the
ratio of the sum of correct predictions to the total number of
predictions.

2) Fading Memory Mean Squared Error (FMMSE):
Comparing accuracies can be tricky for prediction algorithms
as they may have varying time-delays in prediction. In other
words, given an observed state at time instant t, the desirable
prediction may be obtained at a later time instance t + q,
where q is a variable delay. This is often a result of failing
to completely model latent variables of the system or ill-
conditioning of obtained transition matrices due to fewer
observed data for a particular state.

Let {G} = {g1, g2, ...gf} denote the ground truth occu-
pancy data for time points 1 to f . Let {P} = {p1, p2, ...pf}
denote prediction probabilities of a room being occupied
from time instants 1 to f . We let γ denote the parameter
that controls the penalty value due to time-delay detection
that is used to evaluate the effectiveness of the algorithm.
With this setup, our new proposed metric is given by:

T =

f∑
i=1

(gi − pi)2 × (1− γc) (4)

where c = i− x (5)
x = {argmin(i− x)|abs(G(x)−G(x+ 1)) ≥ 1} (6)

Ideally, the best algorithm would have the lowest value
possible for T . In parallel we also calculate T for the same
ground truth for a model that randomly guesses occupancy
for time t+ 1 with probability prand. By varying the prob-
ability prand, we can judge the sensitivity of our algorithm.
Without loss of generality, we can extend this method to
compare sensitivities between any two occupancy prediction
algorithms.

4. EXPERIMENTS

A. Occupancy Datasets

In this paper, two open source datasets are used to demon-
strate our framework’s performance on occupancy detection.
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The first dataset we used is the University of California,
Irvine’s building occupancy detection dataset [17] (UCI)
which consists of data collected from indoor environmental
sensors such as temperature (◦C), relative humidity (%),
illuminance level (lux), CO2 (ppm) and humidity ratio (kg-
water-vapor/kg-air).

The second dataset is the ECO dataset [18]. The dataset
contained electrical consumption data such as power, current,
and voltage in different phases for many appliances as well
as the ground truth occupancy. For the ECO dataset, we
mainly focus on the raw data obtained from the sum of real
power over all phases for selected appliances. The appliances
that we selected are the tablet, dishwasher, air exhaust,
fridge, entertainment, freezer, kettle, television, and stereo.
At this point, the appliances selection is purely based on its
completeness or amount of missing data.

B. Sensor Scalability and Feature Transferability

In order to demonstrate the scalability and transferability
of this framework, in the following section, we present
some interesting occupancy prediction results for household
1, 3, 4 and 5 in ECO dataset using training data from
household 2 and our univariate Occ-STPN framework. Note
some households may not include all the appliances as we
only took the common appliances from both households for
prediction. This is possible because our framework is not
strictly dependent on the number of predictors.

5. RESULTS AND DISCUSSION

A. Multivariate Occ-STPN

In the first part of our experiment, we use only one time-
series data from ECO dataset on on our multivariate Occ-
STPN, and our framework could achieve a best accuracy of
92% and FMMSE value of 0.0039 (stereo power consump-
tion) on occupancy detection as shown in Table I.

From Figure 2, our multivariate framework detected an
unoccupied event around the 2000 minute mark, but there
was some time lag, and maybe due to the short unoccupied
period, the framework was not able to detect the unoccupied
status around the 550 minute mark. To improve performance,
we combined multiple appliances’ power consumption data
as the framework input for the following experiments.

Table I showcase our framework’s robustness to changing
size and modality, where we have number of predictors
ranging from 1 to 6. The prediction accuracy was around
92% with only single time-series input and will slightly
increase as the number of time-series input increases. In the
last row of the table, we challenged the reliability of the
framework by replacing one of the time-series inputs with
random noise, but even with the disturbance of this noise, we
could still achieve an accuracy of 91.28% and an FMMSE
value of 0.00397.

Furthermore, Figure 3 shows the results of multivariate
Occ-STPN on UCI dataset, which have a prediction accuracy

Fig. 2: Occupancy detection using ECO household 2 stereo’s
power consumption data on multivariate Occ-STPN

of 94%. The framework predicted the first half of the un-
occupied status almost perfectly, though the transition from
unoccupied to occupied is slightly late, it is still around the
950 minute mark. In the second half, our framework detected
the occupied status very well, and it also detected one of
the unoccupied status spikes in the ground truth occupancy
as well. Besides that, in Figure 4, we show the prediction
results using UCI dataset data, each injected with 10% of
white Gaussian noise. Compared to Figure 3, this result is
almost identical, but there are some fluctuations around the
900 minute mark and 1200 minute mark. Nevertheless, we’re
still able to achieve an accuracy of 89.44%.

B. Univariate Occ-STPN

In this subsection, we demonstrate our framework trans-
ferability using univariate Occ-STPN. As mentioned in pre-
vious section, for this experiment, multiple instances of the
framework were pre-trained using each time-series data from
household 2 and the mutual information weighted probability
was used to predict the occupancy in another household.

A graphical representation of occupancy prediction is
shown in Figure 5. From the figure, our framework accu-
rately predicted the exact number of unoccupied events in
household 1,3, and 5 with only multiple ”false alarms” in
household 4. Besides that, in household 3, the prediction is
able to uncover the transition from occupied to unoccupied

Fig. 3: Occupancy prediction with UCI dataset on multivari-
ate Occ-STPN
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TABLE I: Occupancy detection accuracy with different number of predictors using ECO household 2 dataset on multivariate
Occ-STPN, univariate Occ-STPN, and LDA method

Number of
predictors Appliances power data Multivariate Univariate LDA

Accuracy(%) FMMSE Accuracy(%) FMMSE Accuracy(%) FMMSE

1 Stereo 92.01 0.003941 91.46 0.0139594 91.11 0.013981

3 Dishwasher, Entertainment, Stereo 92.67 0.003156 92.01 0.0139577 91.77 0.01396

6 Dishwasher, Entertainment, Stereo,
Fridge, Freezer, Kettle 93.09 0.003375 91.42 0.0139624 92.25 0.013983

6 Entertainment, Stereo, Fridge,
Freezer, Kettle, Random Noise 91.28 0.00397 91.04 0.0139624 91.07 0.013983

Fig. 4: Occupancy prediction using UCI dataset with 10%
white gaussian noise on multivariate Occ-STPN

in both events very accurately, and in household 5, though
there is delay in the prediction, our framework is able to
predict a certain period of unoccupied status fairly well.

Table II shows both the accuracy metric and FMMSE
metric. It shows that we could obtain decent prediction
accuracy, but we think the accuracy metric does not fully
reflect the prediction performance due to the existence of
a time lag. Hence, we analyze the prediction performance
for transferability using FMMSE as suggested in Section 3-
E. By using random probabilities, we obtained an FMMSE
of 0.2724, which is twice the highest FMMSE among the
households (household 4). Notice for household 4, it has a
huge error due to multiple false alarms in the predictions,
followed by household 1 which was slightly penalized as
it predicts the events but not the time period of the events.
Similarly, for household 3, it was able to predict the events,
but with the correct prediction on the transition, the FMMSE
value is slightly lower than household 1. Lastly, household
5 performs really well by having the good predicted number
and period of unoccupied events as reflected in the lowest
FMMSE value among other household. All in all, household
5 is probably the most transferable option based on the
FMMSE value, and we believe with some tuning of the
framework, we could reduce the delay and enhance the
performance on these transferred framework predictions.

Lastly, Table I provides a complete comparison of uni-
variate Occ-STPN, multivariate Occ-STPN and a common
method linear discriminant analysis (LDA) method. Com-

TABLE II: Performance metrics for occupancy prediction
transferability using ECO household 1,3,4 and 5 dataset on
univariate Occ-STPN

Household Appliances power data Accuracy(%) FMMSE

1 Fridge, Kettle, Freezer 83.99 0.0246
3 Tablet, Freezer 90.66 0.0195
4 Entertainment, Fridge, Freezer, Tablet 88.92 0.1417
5 Entertainment, Fridge, Tablet 70.73 0.0141

paring both tables, in the transfered univariate Occ-STPN
prediction setting, the accuracy will generally be lower and
the FMMSE value will be higher as well. However, in
Table I itself, both multivariate and univariate Occ-STPN
are providing better accuracy and FMMSE values than the
LDA method. In other words, by using only household 2 for
training and predicting, both methods are still comparatively
better than the incumbent method.

6. CONCLUSION

Occ-STPN is a scalable, transferable, and reliable frame-
work for occupancy detection. We proposed two variants of
the framework, multivariate Occ-STPN and univariate Occ-
STPN. Multivariate Occ-STPN considers the relationships
between the predictors in predictions and offers high accu-
racy, while univariate Occ-STPN does not consider and does
not require the relation between predictors and offers good
flexibility and scalability. Besides that, we proposed a new
metric, fading memory mean square error (FMMSE), which
takes into account the time delay in making predictions.
Some noticeable shortcomings from the result can be seen
that the prediction was fluctuating at some part especially
when predicting unoccupied status, and there could poten-
tially be a slight time lag in prediction as well. Another
drawback of Occ-STPN is that the time and space complexity
grows exponentially with increasing number of partitions.
This issue was solved by state merging operation as it
accelerates the performance by merging uninformative states
and tremendously reduces the size of transition matrix. For
future work, we will extend our framework into a forecasting
algorithm by considering longer training sequences, and
develop new approaches that enhances Occ-STPN flexibility
without completely removing the relational patterns between
the predictors.
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Fig. 5: Occupancy prediction of ECO dataset household 1,3,4 and 5 using framework trained on household 2 on univariate
Occ-STPN
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