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Short-Term Forecasting Across a Network
for the Autonomous Wind Farm

Jennifer Annoni, Christopher Bay, Kathryn Johnson, Paul Fleming

Abstract— In an autonomous wind farm, turbines will use
information from nearby turbines to achieve wind farm-level
objectives such as optimizing the overall performance of a wind
farm, ensuring resiliency when other sensors fail, and adapting
to changing local conditions. In this paper, the wind farm can
be modeled as a network within which turbines (nodes) share
information across designated communication channels, with a
focus on turbines at the outside of the wind farm capturing
local effects and sharing that information with downstream
turbines. Understanding of varied inflow conditions can be
especially important in complex terrain. This information
can be used to monitor turbines, self-organize turbines into
groups, and predict the power performance of a wind farm.
In particular, this paper describes an autonomous wind farm
that incorporates information from local sensors in real time
to predict wind speed and wind direction at each turbine over
a short-term horizon. Results indicate that the estimate of
wind direction can be used to improve the knowledge of the
wind speed and direction over the persistence method on a 10-
15-minute time horizon. These short-term forecasts can also
be used to facilitate advanced control methods such as feed-
forward control within a wind farm.

I. INTRODUCTION

As wind energy continues to provide more and more of the
electricity on the grid, new control methods and techniques
for wind plants are required. The autonomous energy grid
of the future will require autonomous energy plants that
can self-optimize and provide accurate forecasts of their
available power, as well as other ancillary services. Control
systems can enable autonomous wind plants that can self-
organize turbines into groups, monitor turbine status, and
control turbine performance to maximize profit and reliability
of large-scale wind plants [1].

In pursuit of real-time solutions to enable this autonomous
wind farm, a limited number of distributed optimization
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methods for wind plants have been proposed [2]–[4].
Soleimanzadeh et al. [3] presented a linearized flow field
model and a distributed H2 optimal controller to minimize
turbine structural loads and provide the requested wind farm
power. However, constraints on the states and inputs had
to be added after the main problem formulation, resulting
in a computationally complex problem that grows as the
wind plant becomes larger. Others have proposed distributed
methods that minimize loads and provide power reference
tracking, but still require a centralized problem to be formu-
lated to facilitate the distributed optimization [2]. We have
previously proposed a distributed model predictive control
solution for power tracking in wind farms [4]. The proposed
model requires a linearization and does not currently leverage
local measurements taken by turbine supervisory control and
data acquisition (SCADA) systems.

Furthermore, short-term forecasting for wind farm power
and wind conditions has been of great interest to both the
wind and grid communities. Accurate near-term forecasting
of wind plant power enables grid operators to better balance
the grid and can alleviate the demand placed on traditional
providers of ancillary services. Additionally, forecast infor-
mation of the wind state across a wind farm can be leveraged
by control systems to more efficiently operate turbines and
their response to changing environmental conditions. Short-
term forecasting can be leveraged in the electricity markets to
increase revenue of a wind plant if wind plants are allowed to
participate in ancillary services markets. Accurate estimates
of short-term wind forecasts can be used to determine the
amount of power a wind plant can generate in the near-term
future, allowing wind plants to more confidently bid into the
electricity market [5]. Other studies have looked at machine
learning, or statistical, approaches to improve very short-
term forecasting over 10-minute horizons [6], [7]. These
approaches require significant amounts of data to accurately
predict future events. Hybrid statistical and physics-based
models have been proposed; however, it is difficult to beat
persistence forecasting —that is, assuming a constant power
output —for short timescales [8], [9].

The method proposed in this paper is an algorithm that
continues the work of [10] and takes advantage of the topol-
ogy of a wind farm while incorporating local measurements
from nearby turbines to determine wind direction and wind
speed at an individual turbine. This approach demonstrates
short-term forecasting using a physical model of the wind
farm where atmospheric information is propagated along
network edges to provide a short-term prediction of the
wind farm power. To provide a short-term forecast, first the
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wind direction needs to be determined. This is discussed in
Section III-A. After the wind direction is determined, the
upstream and downstream turbines can be identified and the
wind speeds across the wind farm can be propagated from
upstream turbines to downstream turbines at 10-15-minute
time horizons (see Section III-B). Finally, we compute the
power of the wind farm and compare the results to persis-
tence forecasting (see Section IV). Conclusions and future
work are presented in Section V.

II. AUTONOMOUS WIND FARM

Typically, turbines in a wind farm operate individually
without taking into account aerodynamic interactions within
a wind farm. It has been shown that operating individual
turbines sub-optimally can improve the overall performance
of a wind farm [11]. However, there are many challenges
to developing and implementing real-time wind farm con-
trollers. Wind farms are complex dynamical systems that
are difficult to model with sufficient accuracy without large
computational costs. In addition, wind farms have large time
delays that make traditional model-based control difficult.

The autonomous wind farm was introduced in [10] and
creates a foundation for implementing real-time control al-
gorithms that have the potential to increase the performance
of a wind plant. The autonomous wind farm self-organizes
turbines into groups, monitors, and controls its performance
in real time based on existing SCADA data. In this frame-
work, turbines take advantage of data from nearby turbines
to make more informed decisions to improve controllability,
observability, and predictability. In this paper, we extend
the previous work to use both wind direction and wind
speed measurements from SCADA data, sharing this inflow
information with nearby turbines to improve the short-term
forecast of the power output of a wind plant at timescales
of 10-15 minutes. If we know the short-term forecast in real
time, we can use that information for control to increase
energy capture, decrease structural loads, or optimize across
these objectives.

A. Wind Farm as a Network

To implement real-time algorithms for an autonomous
wind farm, the wind farm can be modeled as an undirected
or directed network, depending on how inter-turbine com-
munication is considered. Turbines in a wind farm can be
considered the nodes, and the edges consist of established
communication links between nearby turbines. Information
is communicated across these edges to determine local atmo-
spheric conditions—such as wind direction or wind speed—
at a particular turbine. In the wind farm case, information
is embedded in the wake of the turbine. The wake has
information about the operation of the upstream turbine.

1) Undirected Network: An undirected network is a net-
work in which information is exchanged in both directions
along an edge. In this paper, this type of network is used
to determine the wind direction across the wind farm. A
wind farm can be modeled as an undirected graph where
turbines are communicating with connected turbines and

Fig. 1: Example of a network drawn to determine the wind
direction consensus, looking down from above a wind farm
with rotors represented by vertical black lines.

information flows both ways, rather than from one turbine
to the next turbine. Modeling a wind farm as an undirected
network allows for relevant spatial information to be used to
determine the local atmospheric conditions.

2) Directed Network: A directed network is a network in
which each edge has a direction and information flows in one
direction from one node to another. A wind farm can also be
modeled as a directed graph with information flowing from
upstream turbines to downstream turbines. This network
type will be used to determine the wind speed. The tur-
bine interactions—that is, their wake interactions—determine
the network topology. Under this paradigm, the network
topology is determined by current atmospheric conditions
including wind direction.

III. SHORT-TERM FORECASTING

This section details the approach to perform a NEwork-
based Short-Term (NEST) forecast across an autonomous
wind farm. Using SCADA data, we will determine the wind
direction across the wind farm. Next, using this information,
we can determine which turbines are upstream and which
turbines are downstream. This information can be used in
propagating wind speeds across the wind farm. Finally,
knowing the wind speed across the wind farm, we can
compute the predicted power 10-15-minutes into the future.

A. Wind Direction Consensus

To determine the wind direction across the wind farm,
we use a consensus-based approach that uses an undirected
graph to robustly determine the wind direction at every
turbine considering both the turbine’s measurements and
those of its nearest 10 neighbors. In this subsection, we
summarize the key elements of [10] that are used in our
forecast; for more details on wind direction consensus, see
[10]. The SCADA measurements recorded at each turbine
are used to determine a robust estimate of wind direction
at every turbine. This approach allows the wind direction
to vary across a wind farm. It is assumed that the wind
directions recorded at the turbines are with reference to true
north and that the wind direction varies smoothly across the
wind farm. This allows for turbines to come to an agreement
on the wind direction in an “almost” consensus way; i.e.,
the wind directions of nearby turbines are close, but not
necessarily the same.
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1) Network Topology: The network topology, i.e., graph
structure, is important for incorporating local information
and taking advantage of the structure of the wind farm
to perform real-time optimizations. In this paper, turbine
communications can be defined by the nearest N turbines
[4], see Fig. 1. This algorithm defines the graph structure
based on the nearest 10 turbines. Alternative approaches can
be used to cluster turbines to optimally exchange information
such as connectivity, hierarchical, or k-means algorithms
[12].

2) Node and Edge Objective Functions: For this problem,
each turbine uses its own wind direction measurement as
well as the wind direction measurement from the connected
turbines to determine its local wind direction. The objective
of the individual turbine, i, i.e., the node objective, is to
minimize the error between the wind direction measurement
measured at turbine i and the estimated wind direction. In
addition to the node objective, the edge objective incorpo-
rates information from nearby turbines to ensure a robust
measurement of the wind direction at an individual turbine.
The optimization problem can be written as:

minimize
xi

N∑
i∈V

(xi,measure − xi)2︸ ︷︷ ︸
node objective

+
∑
j,k∈E

wjk|xj − xk|︸ ︷︷ ︸
edge objective

(1)
where N is the number of turbines, xi,measure is the wind
direction measurement recorded at the turbine i, wjk is a
weight placed on the connection between turbines j and k,
xj is the estimated wind direction at turbine j, and xk is
the estimated wind direction at turbine k. In this case, the
node objective function is convex and can be updated with a
closed-form solution [10]. The edge objective minimizes the
differences in estimated wind direction between neighboring
turbines. In this paper, the weights wjk, are set to 1. However,
different weights can be used, including weights that vary
based on distance. Future work will optimize the weighting
between turbine communications to better integrate the data.

3) Alternating Direction Method of Multipliers: To solve
(1), we use the Alternating Direction Method of Multipliers
(ADMM) [13]. This algorithm is particularly useful in this
case, as each individual turbine can solve its own optimiza-
tion in parallel, communicate the solution to neighboring
turbines, and iterate this process until each node within
the wind farm network has converged. In this paper, each
turbine determines the local wind direction at each individual
turbine by only talking to its nearest neighbors as indicated
in Section III-A.1. ADMM is used to solve a network
optimization with connecting nodes such that:

minimize
xi

N∑
i

(xi,measure − xi)2

+λ
∑

(j,k)∈E

wjk‖zjk − zkj‖2

subject to xi = zij , j ∈ N(i)

where zjk is a copy of xj at turbine k such that the wind
farm reaches an “almost” consensus of the wind direction
across the wind farm.

The distributed optimization problem is solved by mini-
mizing the augmented Lagrangian:

Lρ(x, z, u) =
∑
i∈V

fi(xi) +
∑

(j,k)∈E

λwjk‖zjk − zkj‖2

−(ρ/2)
(
‖ujk‖22 + ‖ukj‖22

)
+(ρ/2)

(
‖xj − zjk + ujk‖22 + ‖xk − zkj + ukj‖22

)
where u is the scaled dual variable and ρ > 0 is the penalty
parameter. The following steps are used in an iterative way
to solve for x, z, and u:

xm+1 = argmin
x

Lρ(x, zm, um) (2)

zm+1 = argmin
z

Lρ(xm+1, z, um) (3)

um+1 = um +
(
xm+1 − zm+1

)
(4)

There are closed-form solutions to the above equations that
are shown in [10].

This setup provides an incentive for the difference between
the connected nodes to be zero. For the wind farm exam-
ple, this means that turbines near each other should have
similar wind direction measurements. There are two penalty
parameters, λ and ρ, that can be used to weigh an individual
turbine’s measurement against the measurements of nearby
turbines.

B. Wind Speed

After the wind direction is determined across the wind
farm at each individual turbine, the leading turbines can be
determined and this information can be used to compute the
wind speed at each turbines across the farm. Similar to wind
direction, the network topology of the wind farm must first
be determined.

1) Network Topology: This topology differs from the
wind direction network that is shown in Fig. III-B.1. In par-
ticular, the wind speed network is a directed graph in that in-
formation only flows from upstream turbines to downstream
turbines. The directed network is determined using the local
wind direction established in Section III-A. Specifically, the
wind direction at an individual turbine is used to assess
which turbines are upstream of that specified turbine. The
clusters of turbines can be different sizes than in the wind
direction network. For the wind speed network, information
from all the upstream turbines is used to determine the
wind speed at a particular downstream turbine. Information
is only exchanged in one direction, from an upstream to
a downstream turbine, making this a directed graph. Wind
speed is propagated along the edges of a network using
nonlinear dynamics. Using the wind speed computed at each
turbine, we can compute the expected power of the wind
farm in the 10-15-minute time horizon.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 2: Example of a network to determine wind speed across
a wind farm.

2) Dynamics Across a Network: Using the directed net-
work defined above, the wind speed is projected at a down-
stream turbine using a nonlinear wind turbine wake model
and time delay applied across the edges of the network. Wind
speeds propagate downstream along edges, determined by the
wind direction, based on:

ẋi(t) =
1

N

∑
j

Aijhi (xj(t− τ), uj(t− τ)) j ∈ N (i)

(5)
where N is the number of turbines upstream of turbine i, j
indicates the indices of the turbines upstream of turbine i, x
is the wind speed at turbine i, uj are the control actions at
turbine j, hi is a nonlinear wake model representing impacts
of all of the turbines upstream of turbine i, and τ is the time
it takes for the effects of the upstream turbine to reach the
downstream turbine.

3) Wind Turbine Wake Model: The wind turbine wake
model hi(xj , uj) is used to characterize the aerodynamic
interactions in a wind farm along an edge in the wind speed
network. The model, known as FLORIS [14], was used
for this work and incorporates several models from recent
papers including [15], [16]. In particular, this model uses a
Gaussian wake shape to describe the velocity deficit behind
a turbine and includes the effects of turbulence in the wake
and local atmospheric conditions. An analytical expression
for the three-dimensional velocity deficit behind the turbine
in the far wake can be derived from the simplified Navier-
Stokes equations:

u(x, y, z)
U∞

= 1− Ce−(y−δ)2/2σ2
y e−(z−zh−ze)2/2σ2

z (6)

where u is the velocity in the wake, U∞ is the free-stream
velocity, x is the streamwise direction, y is the spanwise
direction, δ is the wake centerline, z is the vertical direction,
zh is the hub height, ze is the elevation of a turbine in a
wind farm, σy is the wake expansion in the y direction,
σz is the wake expansion in the z direction, and C is the
velocity deficit at the wake center. These parameters are
further defined in [16].

The wind farm investigated in this paper is in complex
terrain. Terrain is taken into account by adding an elevation
variable, ze, to the wake model. This wake model incorpo-
rates some of the effects of complex terrain. Future work
will include improving this model to include more complex

effects of complex terrain such as wakes traversing hills and
other terrain features.

Finally, a turbine model is used in this wake model to
provide a realistic description of turbine interactions in a
wind farm. The turbine model consists of a power coefficient,
CP , and thrust coefficient, CT , based on wind speed. The
exact turbine information was not known for this study.
Rather, the information from the NREL 5 MW turbine [17]
was scaled and used for this study. This approximation
produces some error in the NEST forecast.

4) Time Delay: The time delay used to transport wind
speed, determined by FLORIS, from an upstream turbine
to a downstream turbine is computed using Taylor’s frozen
turbulence hypothesis [18]. In particular, the waked velocity,
u, is used to advect the flow from the upstream turbine to
the downstream turbine:

τ =
d

u
(7)

where d is the distance between turbines. This will provide
a local wind speed estimate at each turbine for future
predictions.

C. Power Calculation

Once the wind direction and wind speed at each turbine
have been calculated using the network theory methods
described in Sections III-A-III-B, the turbine power is com-
puted using [19]:

Pi =
1

2
ρACP (ui)u

3
i (8)

where ρ is the air density, A is the rotor swept area, CP
is the power coefficient of the turbine, which is a function
of the local wind speed, ui. For this study, only SCADA
data were used and therefore the air density was set to
a constant ρ = 1.225 kg/m3, which introduces another
source of error into the NEST forecast in addition to the
CP scaling mentioned earlier. However, the results shown in
Section IV are promising, indicating that SCADA data can
be used to compute the forecast of a wind farm in the near
term with limited knowledge of the wind turbines in the wind
farm. Further information about atmospheric conditions from
meteorological towers, including air density, and information
about the specific turbine can improve the NEST forecast in
future work.

IV. RESULTS

A. Simulation Setup

The NEST forecast was demonstrated on a subset of
wind turbines in a wind farm used in the Wind Forecasting
Improvement Project, also known as WFIP2 [20]. Some of
these turbines are shown as the black dots in Figures 3
and 4. Note that the scale has been removed for proprietary
reasons in both figures. SCADA data were used at 1-minute
time intervals from individual turbines over approximately
8 months. The data channels of interest were the measured
wind direction, wind speed, and measured power at each
turbine.
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Fig. 3: Wind direction network where each turbine is con-
nected to the nearest 10 turbines.

Fig. 4: Wind speed network where each turbine is connected
to the turbines upstream of it based on the local wind
direction.

B. Network Topology

As described in Section III-A.1 and III-B.1, the network
topology was constructed to determine the wind direction
across the wind farm by connecting each turbine to the
nearest 10 turbines as shown in Fig. 3. The wind direction
was then computed using the consensus approach discussed
in Section III-A. Once the wind direction was determined
for a particular time step, the wind speed network could
be defined as shown in Fig. 4 where upstream turbines
are connected to downstream turbines. The network looks
more linear rather than the web-like appearance of the wind
direction network. For this example, the wind direction was
determined to be approximately 270◦ with 7◦ of variation
across the wind farm. The wind speed dynamics are propa-
gated along the edges of the wind speed network to determine
the approximate wind speed at some future time.

C. Forecasting Errors

To demonstrate the NEST forecast, 830 hours of SCADA
data were evaluated by this algorithm. The algorithm takes
0.75 s to analyze one time step of data. The NEST fore-
cast will be compared to a persistence forecast. Persistence
forecasting assumes the conditions have not changed over

Case 10-minute 15-minute
NEST Persistence NEST Persistence

Down-ramp 3.6% 5.7% 5.6% 9.2%
Up-ramp 4.7% 4.8% 6.4% 7.8%
Overall 3.8% 4.3% 4.6% 6.0%

TABLE I: Short-Term Forecasting Results. The percentages
represent the mean absolute error between the forecast and
the actual power produced by the wind farm.

the last time interval. As the time interval becomes smaller,
the persistence forecast becomes more accurate. Fig. 5 (top)
shows the time series of 1400 minutes comparing the actual
data, shown in black, with the estimated power output
from the NEST forecast, shown in red, and the persistence
forecast, shown in blue. The bottom plot shows the percent
error between the estimated power output using the short-
term forecasting method and persistence. Qualitatively, in the
time period of 2400-3000 minutes, the NEST forecast has a
consistently lower error than the persistence forecast. During
the period between 1600-2100 minutes, the wind farm is
experiencing curtailment. The NEST forecast as described
in this paper does not have the necessary inputs to predict
curtailment. However, during periods of curtailment, the
NEST approach can be used to compute the possible power
in the wind (1675-2100 minutes). This predictive capability
might be useful for future wind plants bidding into ancillary
services markets to determine the amount of power a wind
farm can produce. In addition, it can be used to compensate
wind farms for what they would have produced had they not
been forced to curtail power.

Finally, the NEST forecast was compared to a persistence
forecast in up/down ramp events and overall accuracy. Up
and down ramps were characterized as 1% changes over
the 10- or 15-minute intervals. The overall accuracy was
determined after excluding curtailment events. If a wind farm
is caught in an up or down ramp, persistence forecasting is
not sufficient. The results are quantified in Table I. Table I
shows that the NEST forecast can outperform persistence
forecasting in each of these categories. The percentages
represent the mean absolute error between the forecast and
the actual power produced by the wind farm. As expected,
the differences between accuracies decreases as the time
scale decreases from 15-minutes to 10-minutes. With a better
forecast on up and down ramp events.

V. CONCLUSIONS

This paper presents a short-term forecasting algorithm to
predict power in a wind farm on a network over the time
horizons of 10-15 minutes. This method was demonstrated
on a subset of turbines in a wind farm in complex terrain. It
was shown that the NEST method out-performs the persis-
tence algorithm especially on down ramping events.

The NEST approach relies on only SCADA data in a
wind farm. Future work will include improvements to this
approach, including: 1) using a more realistic wind turbine
model derived from data, 2) incorporating real-time data into
the FLORIS model to better account for changing conditions,
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Fig. 5: (Top) This figure shows a time series of the actual power output of the wind farm, shown in black, the estimated
power output from the short-term forecast, shown in red, and the persistence forecast, shown in blue, (Bottom) This figure
shows the percent error computed by persistence, shown in blue, and the short-term forecasting approach outlined in this
paper, shown in red.

and 3) using nearby atmospheric measurements (within a few
kilometers) such as air density and turbulence intensity to
better inform the NEST forecast. Lastly, this approach can
be integrated with statistical approaches to provide a more
robust hybrid approach to short-term forecasting.
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[2] V. Spudić, C. Conte, M. Baotić, and M. Morari, “Cooperative dis-
tributed model predictive control for wind farms,” Optimal Control
Applications and Methods, vol. 36, no. 3, pp. 333–352, 2015.

[3] M. Soleimanzadeh, R. Wisniewski, and K. Johnson, “A distributed
optimization framework for wind farms,” Journal of Wind Engineering
and Industrial Aerodynamics, vol. 123, pp. 88–98, 2013.

[4] C. Bay, J. Annoni, T. Taylor, L. Pao, and K. Johnson, “Active power
control for wind farms using distributed model predictive control and
nearest neighbor communication,” in American Control Conference
(ACC). IEEE, 2018.

[5] R. Barthelmie, F. Murray, and S. Pryor, “The economic benefit of
short-term forecasting for wind energy in the uk electricity market,”
Energy Policy, vol. 36, no. 5, pp. 1687–1696, 2008.

[6] J. Dowell and P. Pinson, “Very-short-term probabilistic wind power
forecasts by sparse vector autoregression,” IEEE Transactions on
Smart Grid, vol. 7, no. 2, pp. 763–770, 2016.

[7] P. Pinson, “Very-short-term probabilistic forecasting of wind power
with generalized logit–normal distributions,” Journal of the Royal
Statistical Society: Series C (Applied Statistics), vol. 61, no. 4, pp.
555–576, 2012.

[8] X. Wang, P. Guo, and X. Huang, “A review of wind power forecasting
models,” Energy procedia, vol. 12, pp. 770–778, 2011.

[9] H. Holttinen, P. Meibom, C. Ensslin, L. Hofmann, J. Mccann, J. Pierik
et al., “Design and operation of power systems with large amounts of
wind power,” in VTT Research Notes 2493. Citeseer, 2009.

[10] J. Annoni, C. Bay, K. Johnson, E. Dall’Anese, E. Quon, T. Kemper,
and P. A. Fleming, “A framework for autonomous wind farms: Wind
direction consensus,” Wind Energy Science, Submitted September
2018.

[11] S. Boersma, B. Doekemeijer, P. M. Gebraad, P. A. Fleming, J. Annoni,
A. K. Scholbrock, J. Frederik, and J.-W. van Wingerden, “A tutorial
on control-oriented modeling and control of wind farms,” in American
Control Conference (ACC), 2017. IEEE, 2017, pp. 1–18.

[12] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE
Transactions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends R© in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[14] J. Annoni, P. Fleming, A. Scholbrock, J. Roadman, S. Dana, C. Ad-
cock, F. Porte-Agel, S. Raach, F. Haizmann, and D. Schlipf, “Analysis
of control-oriented wake modeling tools using lidar field data,” Wind
Energy Science, Submitted February 2018.
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