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Hierarchical Management of Distributed Energy Resources Using
Chance-Constrained OPF and Extremum Seeking Control

Yue Chen, Yashen Lin

Abstract— Distributed energy resources (DERs) are becoming
an important part of distribution systems, because of their
economic and environmental benefits. Although their inherent
intermittency and volatility introduce uncertainties into the
electric power system, they have the potential to provide
controllability to the system under proper coordination. In
this paper, we propose a hierarchical control algorithm for
distribution systems with DERs so that they have controllability
similar to a generator bus. The upper level scheduler solves
a chance-constrained optimal power flow (OPF) problem to
plan the operation of the DERs based on forecasts, and the
lower level distributed DER controllers leverage the extremum
seeking approach to deliver the planned power at the feeder
head. The proposed algorithm is tested on a modified IEEE
13-node feeder, demonstrating its effectiveness.

I. INTRODUCTION

Increasing integration of distributed energy resources
(DERs) provides multiple challenges and opportunities to
improve the reliability, resilience, and cost-effectiveness of
future electric grid operations [1], [2]. Traditionally, trans-
mission system operators view generator buses as primary
controllability providers and DERs as sources of uncertainty.
Properly coordinated DERs in the distribution systems, how-
ever, have the potential to make the load buses a major player
in providing the controllability system operators need.

In this paper, we propose a hierarchical control algorithm
for distribution systems with DERs. The overall objective
is to control the DERs, so that the power injection at the
distribution system feeder head can be scheduled, similar to
a generator bus. This is achieved by an upper level scheduler
that plans the operation of the DERs based on the forecast
and the lower level real-time controllers that deliver the
planned power at the feeder head. One challenge in achieving
this objective is handling the uncertainties in the distribution
system. This is addressed at both control levels. The upper
level scheduler solves a chance-constrained optimal power
flow (OPF) problem, which ensures there is enough reserve
to compensate for the uncertainties. The chance constraints
are reformulated into deterministic form, and the OPF can be
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reformulated as a second-order cone programming problem,
which can be solved efficiently by established solvers. The
scheduler is updated regularlyunder the model predictive
control (MPC) framework to further improve robustness. In
the lower level real-time control, the extremum seeking (ES)
control is adopted [3]. This lower level control uses DER
reserve in response to noise to maintain the scheduled feeder
head power.

Substantial work has been done to operating distribution
systems with DERs. OPF is a fundamental tool for planning
and operation [4], [5]. A variety of OPF approaches have
been proposed to account for uncertainties, which include
robust- and scenario- based method [6], multistage stochastic
programming techniques [7], and chance-constrained formu-
lations [8]–[12].

In this paper, we adopt the chance-constrained formu-
lation, which provides an intuitive way to quantify the
system security level. In addition to the common objective
of minimizing the operating cost with a certain level of
reserve, we introduce the noise distribution factor as a control
variable to optimally specify each DER’s responsibility to
handle system uncertainty. Another highlight of the proposed
chance-constrained OPF formulation is that it considers both
the spatial and temporal correlations of bus noise.

The distributed control algorithm for DERs has been
studied in a number of research works, for example, [13]–
[15]. Many studies focus on voltage control. In this paper,
we adopt the ES control algorithm [3]. The algorithm can
be leveraged to modulate the power output of DERs to
minimize the difference between the delivered power and a
reference signal at the feeder head [16]. This naturally fits the
proposed hierarchical control algorithm so that the scheduler
can provide the power reference signal for the DERs to track
using the distributed ES controllers.

Overall, the main contributions of this paper are: (i)
we propose a hierarchical control algorithm for distribution
systems with DERs so that they have controllability similar
to generator buses; and (ii) we develop a chance-constrained
OPF for the upper level scheduling problem, which considers
both spatial and temporal correlation among the noises at
different buses and times.

The rest of the paper is organized as follows. Section II
provides an overview of the hierarchical control algorithm.
Section III and IV describe the upper level scheduler and
the lower level real-time ES controllers, respectively. Section
V discusses connecting the two control levels. Section VI
presents the simulation results. Section VII concludes the
paper and discusses future work.
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II. HIERARCHICAL CONTROL

A schematic of the proposed hierarchical control algorithm
is shown in Fig. 1. The upper level scheduler solves a chance-
constrained OPF for a multi-hour look-ahead horizon with
time steps in minutes. The set points for the DERs, as well
as the scheduled feeder head power injection, are passed to
the lower level real-time controller, which operates in the
seconds timescale. The ES control algorithm is implemented
at the DERs, which uses the actual feeder head power
measurement to adjust its power output, so that the scheduled
power reference signal can be tracked at the feeder head.
To increase the robustness of the proposed algorithm, we
adopted the MPC framework, where the DER states and
forecasts are updated regularly in the upper level scheduler.
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Upper level
chance-constrained OPF
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Fig. 1. Schematic of the proposed hierarchical control.

III. UPPER LEVEL SCHEDULER

In this section, we describe the upper level scheduler,
which solves a chance-constrained OPF problem. The idea
is to minimize cost while reserving a certain capacity from
the energy storage devices to compensate for the uncertainty
that occurs at the load and PV buses. For the rest of the
paper, we denote τ as the time index at the upper level and
t as the time index at the lower level.

A. Objective Function

Let P1,τ denote the power at the feeder head, and let cp,τ
denote the electricity price in time horizon τ . We consider
the following objective function:

J =
T∑
τ=1

cp,τP1,τ∆τ + c̄p
∑
i

(SOCi,0 − SOCi,T ) (1)

where c̄p is the average electricity price, ∆τ is the length of
time in one horizon, SOCi,τ represents the state of charge
(SOC) for storage i at time τ , and SOCi,0 is the initial
SOC. The first term in (1) captures the electricity cost of the
distribution system, and the second term captures the cost of
energy storages.

B. Constraints

1) Energy storage limits: The energy storage limits are
formulated as chance constraints so that there is sufficient
reserve to compensate the uncertainty with a predetermined
probability. To represent the uncertainty, a random variable

wi,τ is defined as the power noise injected into node i, in time
horizon τ . The uncertainties are both spatially and temporally
correlated, and we assume all uncertainties are zero-mean
multivariate Gaussian. More details on uncertainty noise
modeling are provided in Section III-E.

Ignoring power loss, the total uncertainty in the system
wΣ,τ can be written as:

wΣ,τ =
∑
i

wi,τ (2)

To ensure good system performance under uncertainties,
energy storage devices are used to handle wΣ,τ . Let Ub be
the power from energy storage devices to correct the noise.
For node i, we have:

Ub,i,τ = −αi,τwΣ,τ , where
∑
i

αi,τ = 1, αi,τ ≥ 0 (3)

The factor αi specifies the portion of total uncertainty
handled by the energy storage at node i.

Let Ui,τ be the real power injection from the energy
storage at node i. The chance constraints for the power limits
of the energy storage can be written as:

P (Ui,τ + Ub,i,τ ≤ Umaxi ) ≥ γ (4a)

P
(
Ui,τ + Ub,i,τ ≥ Umini

)
≥ γ (4b)

Next, we impose chance constraints on the SOC limits of
the energy storage:

P (SOCi,τ ≤ SOCmaxi ) ≥ γ (5a)

P
(
SOCi,τ ≥ SOCmini

)
≥ γ (5b)

The SOC can be expressed as:

SOCi,τ = SOCi,0 +
τ∑
k=1

(−Ui,k + αi,kwΣ,k) ∆τ (6)

These chance constraints can be reformulated as a deter-
ministic form under the Gaussian noise assumption. This is
discussed in Section III-C.

2) Power flow constraints: Consider a radial distribution
system that is described by a node set B and a line segment
set L. The set B = {1, . . . , n} denotes total n nodes, where
node 1 denotes the feeder head, which has a fixed voltage
and flexible real and reactive power. Each element in set L
is a node pair (i, j) that represents a line with power flowing
from node i to node j.

We adopt the DistFlow developed by Baran and Wu [17].
Because there is no time coupling, we drop the time index τ
in this subsection for the convenience of notation. At node i,
let Pi and Qi be the real and reactive branch power injection,
Pl,i and Ql,i be the real and reactive load demand, Ppv,i
and Qpv,i be the real and reactive PV generation, Ui be the
real power injection from energy storage, vi be the squared
voltage magnitude, and Zij = Rij + jXij be the impedance
of line (i, j). For any (i, j) ∈ L, the branch flow equations
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can be written as:

Pi = Pl,i − Ppv,i − Ui − Ub,i + wi +
∑

j:(i,j)∈L

(Pj +Rij lij)

(7a)

Qi = Ql,i −Qpv,i +
∑

j:(i,j)∈L

(Qj +Xij lij) (7b)

vi = vj + 2(RijPj +XijQj) + (R2
ij +X2

ij)lij (7c)

lij =
P 2
j +Q2

j

vj
(7d)

The power flow equations (7) are nonlinear through the
term lij in (7d). It is linearized by using the first-order Taylor
series expansion at nominal values {Pj,0, Qj,0, vj,0}:

P 2
j +Q2

j

vj
≈ cpPj + cqQj + cvvj (8)

where, coefficients are determined as cp = 2
Pj,0
vj,0

, cq =

2
Qj,0
vj,0

, and cv = −P
2
j,0+Q2

j,0

v2j,0
.

3) Voltage limits: In general form, the voltage limits can
be written as:

vmini ≤ vi ≤ vmaxi , i = 1, . . . , n

Although the actual node voltage is affected by the noises
through the term (−Ub,i + wi), this term is small compare
to others in (7a). Therefore, we neglect the contribution of
the noises to the node voltages.

C. Deterministic Reformulation of Chance Constraints

The following technique is used to reformulate the chance
constraints as deterministic constraints, so that the optimiza-
tion problem can be efficiently solved. This deterministic
reformulation is also seen in related works [8]–[12].

Consider a general chance constraint:

P
(
aTx ≤ b

)
≥ γ (9)

where γ is the required reliable probability, and a is a
multivariate Gaussian random variable, i.e., a ∼ N (ā,Σ).
From the property of Gaussian distribution, we have:

P
(
aTx ≤ b

)
= Φ

(
b− āTx√
xTΣx

)
(10)

where, Φ is the cumulative density function of the standard
normal distribution N(0, 1). Eq. (9) can then be written in a
deterministic form:

b− āTx ≥ Φ−1 (γ) ||Σ 1
2x||2 (11)

Note that the constraint (11) is a linear constraint when x
is known and a second-order cone constraint when x is a
decision variable and γ ≥ 0.5.

With this technique, the chance constraints (4) can be
reformulated as the following deterministic constraints:

Ui,τ ≤ Umaxi − Φ−1(γ)σαi,τ (12a)

Ui,τ ≥ Umini + Φ−1(γ)σαi,τ (12b)

where σ is the standard deviation of the aggregate noise
wΣ,τ .

Similarly, we can reformulate the chance constraints
for the SOC (5) into deterministic form. The time series
{wΣ,τ, τ=1,...,T } is temporally correlated. Denote the auto-
covariance matrix of the vector [wΣ,1, · · · , wΣ,τ ] by Στ . In
addition, let vector αtimei,τ collects the time series of α for
node i up to time horizon τ , i.e., αtimei,τ = [αi,1, · · · , αi,τ ].
Note that the dimension of both αtimei,τ and Στ grows as time
advances. Applying the chance constraint reformulation (11),
we obtain the following constraints on SOC: for the energy
storage at node i:

UΣ,i,τ∆t ≥ SOCi,0 − SOCmaxi + Φ−1(γ)||Σ
1
2
τ α

time
i,τ ||2∆τ

UΣ,i,τ∆t ≤ SOCi,0 − SOCmini − Φ−1(γ)||Σ
1
2
τ α

time
i,τ ||2∆τ

where UΣ,i,τ = Ui,1 + · · ·+Ui,τ . The computation of Στ is
postponed to Section III-E.

D. Reformulated Optimal Power Flow
The finite-horizon scheduling problem can now be formu-

lated as the following second-order cone programming:

Minimize
U,α

T1+T −1∑
τ=T1

cp,τP1,τ∆τ + c̄p
∑
i

∆SOCi (14a)

Subject to

Pi,τ = Pl,i,τ − Ppv,i,τ − Ui,τ +
∑

j:(i,j)∈L

(Pj,τ +Rij lij,τ )

(14b)

Qi,τ = Ql,i,τ −Qpv,i,τ +
∑

j:(i,j)∈L

(Qj , τ +Xij lij,τ )

(14c)

vi,τ = vj + 2(RijPj,τ +XijQj) + (R2
ij +X2

ij)lij,τ (14d)

lij,τ = cpPj,τ + cqQj,τ + cvvj,τ , (i, j) ∈ L (14e)

Ui,τ ≤ Umaxi − Φ−1(γ)σαi,τ (14f)

Ui,τ ≥ Umini + Φ−1(γ)σαi,τ (14g)

UΣ,i,τ∆τ ≥ SOCi,T1 − SOCmaxi + Φ−1(γ)||Σ
1
2
τ α

time
i,τ ||2∆τ

(14h)

UΣ,i,τ∆τ ≤ SOCi,T1 − SOCmini − Φ−1(γ)||Σ
1
2
τ α

time
i,τ ||2∆τ

(14i)

vmini ≤ vi,τ ≤ vmaxi (14j)

where ∆SOCi = SOCi,T1 − SOCi,T1+T −1, and T1 is the
initial time of the optimization horizon. The decision variable
U is the planned real power for all energy storage devices
for the following T -horizon, and α specifies how the energy
storage devices partition the aggregate system noise.

E. Noise Modeling and Covariance Computation
In this section, we start with modeling the noise at the

lower level, then we derive the upper level noise covariance
Στ that is used to construct the chance constraints.

Let vector Wt ∈ Rn denote the noise in an n-node
distribution system, i.e., Wt = [w1,t, . . . , wn,t]

T , which in-
cludes the forecast errors in load and PV generation. Assume
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that the noise vector Wt follows a zero-mean Gaussian
distribution, i.e., N(0,Σ), where the covariance matrix Σ
describes the correlation between nodes. To capture the
temporal relation and also maintain the stationary property,
the noise is modeled in the following Markovian fashion:

Wt+1 = βWt +
√

(1− β2)ΣNt+1 (15)

where β ∈ (0, 1), W0 ∼ N(0,Σ), and Nt ∼ N (0, I). The
discount factor β specifies the temporal relation between the
current and next time steps. Note that β can also be a matrix
defining different discount factors for different nodes. For
simplicity, we assume that the discount factor is same for all
nodes.

Theorem 1. The n-node noise Wt ∼ N(0,Σ) for all t ≥ 0;
in addition, its autocovariance matrix:

CW (k) = βkΣ. (16)

Proof. Applying the independence between Gaussian ran-
dom variables Wt and Nt+1, the linear combination Wt+1

is also Gaussian with the following mean and variance:

E[Wt+1] = βE[Wt] +
√

(1− β2)ΣE[Nt+1] = 0

ΣW = E[Wt+1W
T
t+1]− E[Wt+1]E[Wt+1]T

= E[Wt+1W
T
t+1]

= E[β2WtW
T
t + (1− β2)ΣNt+1N

T
t+1]

= β2ΣW + (1− β2)Σ

From the last equation, we obtain that ΣW = Σ. This
completes the proof of Wt ∼ N(0,Σ).

To compute the autocovariance, we represent Wt+k in the
following form by using (15):

Wt+k = βkWt +

k−1∑
i=0

βi
√

(1− β2)ΣNt+k−i

The autocovariance is computed as:

CW (k) = E[Wt+kW
T
t ]− E[Wt+k]E[Wt]

T

= E[(βkWt +
k−1∑
i=0

βi
√

(1− β2)ΣNt+k−i)(W
T
t )]

= βkE[WtW
T
t ] +

√
(1− β2)Σ

k−1∑
i=0

βiE[Nt+k−i)(W
T
t )]

= βkΣ

where the last equation applies the independence between
Nt+s and Wt, for s > 0.

Recall that wΣ,t is defined as the sum of all node noises
at time t, i.e, wΣ,t =

∑
iWt(i) = eTWt, where eT =

[1, 1, . . . , 1].

Corollary 1. The aggregate noise wΣ,t ∼ N(0, eTΣe), and
its autocovariance Cw(k) = βkeTΣe.

The proof is straightforward by using Theorem 1 and the
representation wt = eTWt.

Corollary 2. Suppose one time horizon τ in (14) contains
N time steps, i.e., ∆τ = N∆t, the covariance matrix for
the aggregate noise is:

Στ (i, j) = βN |i−j|eTΣe, 1 ≤ i, j ≤ τ (17)

Proof. We first transform the autocovariance from the time
index t to τ under the relation ∆τ = N∆t:

Cwτ (k) = Cw(Nk) = βNkeTΣe

The result (17) is then obtained from the fact that:

Στ (i, j) = Cwτ (|i− j|), 1 ≤ i, j ≤ τ.

IV. LOWER LEVEL EXTREMUM SEEKING CONTROL

Solving the upper level OPF problem schedules operations
for each energy storage device to minimize the overall energy
cost while maintaining sufficient power/energy reserve. This
solution, however, might not be optimal because of several
factors, including modeling errors in linearized power flow
and node noises, and lossless power flow assumption on
energy storage and node noises. In addition, the solution
provided by (14) addresses ∆τ as one time step, whereas the
system dynamics are updated much faster than ∆τ . Given
these reasons, we propose adjusting the scheduled energy
storage operations according to the feedback from real-time
measurements. This objective is accomplished by a control
technique named extremum seeking.

Objective J

l
s+l

ku
s

cos(ωt)a cos(ωt)

u

û ξ Υ s
s+h

Fig. 2. Extremum seeking control diagram.

Extremum seeking is a model-free optimization tech-
nique that optimizes the objective function through real
time measurements. It can be viewed as an approximate
gradient descent/ascent method. Fig. 2 shows the diagram of
a typical ES controller. The goal is to minimize/maximize the
objective function J(u), whose mathematical representation
is unknown but its real time measurement J(ut) is available.
The gradient is approximated through the modulation signal
a cos(ωt), where a is a small constant. To extract the
component of J that results from the modulation signal, J is
passed through a high-pass filter s/(s+h) to remove its DC
component. The obtained signal Υ is then demodulated using
signal cos(ωt). The gradient is approximated by passing Υ
through the low-pass filter l/(s+l), and we have ξ ≈ ∂Υ/∂u.
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Using the obtained gradient, we update the estimate of
optimal control û through the gradient-based approach: if
the gain ku < 0 (ku > 0), the block ku/s performs as a
gradient descent (ascent) method. More details about the ES
control can be found in [3].

In this work, the control variable u is the real power of
controllable DERs, and the objective function is defined as
a squared tracking error:

Jt = (P1,t − P̄1,t)
2

where P̄1,t is the scheduled feeder head power. Note that
the objective function value Jt is the same for all DERs,
but each controllable DER has a unique ES configuration to
control its power output.

The design challenge lies in determining the parameters:
a,w, h, l, k. Each local ES controller needs a unique pertur-
bation signal frequency, and ωi + ωj 6= ωk, for i 6= j 6= k.
This allows us to distinguish the contribution of each ES
controller during the optimization. The perturbation signal
magnitude a should be large enough so that the contribution
of the perturbation signal is detectable, but not too large to
avoid dragging the input u far from û. For the high-pass and
low-pass filter cutoff frequencies h and l, it is necessary to
ensure that the perturbation is not washed out by the high-
pass filter but attenuated by the low-pass filter, i.e., l < ω
and h < ω. To minimize the objective function, the integrator
gain ku is negative.

V. BRIDGING TWO-LAYER CONTROLS

As shown in Fig. 1, the upper and lower level controllers
are operated in different timescales. Techniques to properly
integrate these two layer controllers are presented in this
section.

A. Model Predictive Control

The OPF (14) provides control solutions for the next T
horizons. As time advances, the updated system information
and forecasts become available. In this regard, we apply MPC
in the following steps: suppose we want to solve the problem
for the next T time horizons:

1) Initialize T1 = 1;
2) Collect current system information and future forecasts

over the horizon T ;
3) Solve problem (14) and broadcast {Ui,T1 , αi,T1} to

storage i, for each i;
4) T1 = T1 + 1 and go to 2) until T1 = T .

Step 3) computes the solution for all the following T time
horizons, but it applies control decisions only for the current
time horizon T1. Then, the forecast horizon is shifted by
one time horizon, and system information is updated for the
computation of new control decisions.

B. Algorithm Implementation

The overall control procedure that combines the upper
level chance-constrained MPC and the lower level ES control
is summarized in Algorithm 1. Lines 1–4 implement the
upper level MPC approach, and lines 5–8 implement the

lower level storage operation, where we assume one upper
level time horizon contains N lower level time steps, i.e.,
∆τ = N∆t.

Algorithm 1: chance-constrained DER scheduling
with extremum seeking control.

1: for T1 = 1, . . . , T do
2: Collect current system information and forecasts;
3: Solve the chance-constrained OPF problem (14);
4: Broadcast the solution Ui,T1 , and αi,T1 to

controllable DER i, for all i;
5: for k = 1, . . . , N do
6: t = N(T1 − 1) + k ;
7: for Storage i ∈ {1, . . . , n} do
8: if k = 1 then
9: DER power Ui,t = Ui,T1 ;

10: else if k = 2 then
11: DER power Ui,t = Ui,T1 + αi,τ β w̃Σ,t−1;
12: initialize Jt = 0,Υi,t = 0, ξi,t = 0;
13: else
14: Obtain the objective function value Jt;
15: Update Ui,t from extremum seeking control;
16: end if
17: end for
18: end for
19: end for

One critical step in connecting the two control layers is
proper initialization of the ES controllers when the upper
level schedule is updated. In the scheduler, the total noise
compensation is distributed to each energy storage device
according to the distribution factor αi,τ ; however, the lower
level ES controllers are myopic, where only the tracking error
at the feeder head is considered. This might lead to a different
noise compensation distribution among the energy storage
devices and insufficient reserve in the future. To address this
problem, we pass both UT1 and αT1 to the lower level at the
beginning of each time horizon, so that we can initialize the
ES controllers near the optimal solution obtained from the
upper level. Implementing αT1 requires information about
aggregate system noise wΣ,t. It is estimated as the difference
between the planned and actual results:

w̃Σ,t = P1,t − P̄1,T1 +
∑
i

(Ui,t − Ui,T1) (18)

Because w̃Σ,t in (18) is computable only when the control
Ui,t and output P1,t are given. As shown in line 11 of
Algorithm 1, we use the noise estimation w̃Σ,t = βw̃Σ,t−1

(following the noise model (15)) to update the control signal
Ui,t. Simulation results in Section VI suggest that passing α
to initialize lower level ES control is crucial to the success
of the proposed algorithm.

Line 12 of Algorithm 1 provides another part of initializa-
tion for ES control. The intention is to clear the memory of
the measurements and internal variables that are not caused
by the ES input. After these steps of initialization, ES control
is used to track the scheduled feeder head power.
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VI. SIMULATION STUDY

A. Simulation Setup

Numerical experiments were conducted on a modified
IEEE 13-node feeder [18] to test the performance of the
proposed approach, and results are presented in this section.

646 645 632 633 634

650

611 684 671 692 675

652 680

Fig. 3. Modified IEEE 13-node test feeder: PV and energy storage locations
are labeled by dots and dashed squares, respectively.

Fig. 3 shows the modified IEEE 13-node test feeder, where
three PV systems were added at nodes 646, 671, and 611,
and two energy storage devices were added at nodes 645 and
671. Table I provides the configuration of these DERs. The
voltage and power base values considered were 4.16 kV and
0.5 MVA, respectively. The feeder head voltage was 1.03
p.u. in the simulations.

TABLE I
CONFIGURATION OF DERS (PER UNIT).

Node PV generation Storage limits
SOC Power

611 0.3 + 0.2i N/A
645 N/A [0 1] [-1 1]
646 0.16 + 0.1i N/A
671 0.2 + 0.12i [0 1] [-1.5 1.5]

Noises at the load and PV nodes were generated using
(15) with β = 0.9996, corresponding to the simulation time
step ∆t = 1 second. Considering the temporal correlation
in the node noises, we constructed the covariance matrix Σ
so that closer nodes have a higher correlation. Fig. 4 shows
a realization of the noise signal. The forecast horizon is 2
hours, and ∆τ = 10 minutes in the upper level OPF planning.
Fig. 5 shows the 4-hour electricity price signal used in the
simulation, where the last 2-hour prices were used as future
information for the MPC.
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Fig. 4. One example of the noise signal.
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Fig. 5. Electricity price signal.

Two ES controllers for energy storage devices at node 645
and 671 were configured as shown in Table II.

TABLE II
EXTREMUM SEEKING CONTROL PARAMETERS.

Node f (Hz) h(rad/s) l(rad/s) ku a (p.u.)
645 0.2 0.0001 0.1 -15 0.004
671 0.17 0.0001 0.1 -15 0.004

B. Simulation Results

In this section, we present the simulation results for several
scenarios with different control algorithms. We first studied
the control performance when system uncertainty was not
considered in the planning (Στ = 0) but appeared in the
simulation. Then we tested different information exchanges
between the two control levels. Finally, we added the MPC
to further improve the robustness of the algorithm.

The dashed lines in Fig. 6 show the planning results
without considering the system uncertainty. Driven by the
cost-saving intent, energy storage devices were scheduled
to precharge in the first 40 minutes and then to discharge
using their max power during the high-price time period.
For 80–120 minutes, the storage devices were scheduled to
charge again because the price was lower than the average
price. This resulted in no reserve of storage power/energy,
and the system is vulnerable to the noise. The solid lines
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Fig. 6. Power planning (no chance constraints) and tracking results.
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Fig. 7. Chance-constrained power planning and tracking results with and without broadcast the noise distribution factor α to lower level ES controllers,
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Fig. 8. Chance-constrained power planning and tracking results with and without MPC, in regard to the noise in Fig. 9.

in Fig. 6 show the actual results when the noise signal
in Fig. 4 was considered. To compensate for the negative
noise injection, the energy storage devices were fully charged
before the scheduled time t = 40 minutes and then failed
to consume the scheduled power, which resulted in a large
feeder head power mismatch. During 40–80 minutes, because
both energy storage devices were operated at their max
discharge power, they were unable to compensate for the
positive noise injection.

The planning results with chance constraints included are
presented as dashed lines in Fig. 7, where the reliability
factor γ = 0.99. We studied two scenarios distinguished
by whether the noise distribution factor α was broadcast to
the lower level controllers. The plots on the left-hand-side
show the results when the α information was available to
lower level controllers. In the planning results, energy storage
devices were not scheduled to charge/discharge fully because
of the reserve requested by the proposed chance constraints.
This strategy resulted in the feeder head power shown as
the dashed line in the top-left of Fig. 7. Results against the
stochastic noises (Fig. 4) are presented as solid lines. With
the help of the storage reserve, the scheduled feeder head
power was well tracked. The resulting node voltages are
similar to those shown on the bottom of Fig. 6. Because
of space limitation, they are not presented.

Results when the noise distribution parameter α was
not broadcast to the energy storage devices are shown on
the right-hand-side of Fig. 7. Without information about
α, the energy storage devices managed the system noise
merely by the ES control, and the long-term performance
will be degraded because the ES optimizes the objective

function without looking into the future. As shown in Fig.
7, one storage device was fully charged before t = 40
minutes and became unavailable to consume power from
the grid. Because of insufficient controllable power capacity,
the scheduled feeder head power was not well tracked until
the storage devices were requested to supply power after
t = 40 minutes. In addition, missing information of α made
it difficult to properly initialize the ES controllers (recall line
11 of Algorithm 1) and took longer to track the scheduled
feeder head power.

All above simulation results are based on the one-time
planning solutions through (14), without MPC. We next
consider the MPC framework (Algorithm 1) that regularly
updates the storage states and price signals at each upper
level time step. To compare the performance with and
without MPC, the atypical noise signal in Fig. 9 was used
in the simulation. This noise remains positive and would
request that energy storage devices provide more power than
scheduled values.

The left-hand-side of Fig. 8 shows results without MPC.
When t ≈ 78 minutes, the storage at node 671 ran out
of energy and failed to supply power. This resulted in a
nearly 1.5 p.u. power shortage during 78–80 minutes. When
MPC was applied, it updated the system information every
10 minutes and was able to adjust the scheduled controls.
As shown on the right-hand-side of Fig. 8, when MPC was
performed at t = 70 minutes, it reduced the power injection
from the energy storage devices, and instead it requested that
amount of power from the feeder head.

The reliability parameter γ determines the success rate
only for a single chance constraint. Considering that the dis-
tribution system consists of multiple constraints that evolve
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Fig. 9. A noise signal used in MPC simulation.

with time, the joint success rate is likely less than that
of a single constraint. To quantify the performance, we
consider two metrics: namely, success event rate and feeder
head power tracking root mean square error (RMSE). We
define a successful event based on two criteria: voltage limits
([0.95 1.05] p.u.) and feeder tracking error (< 5% for the
entire 2-hour simulation), where the tracking error is defined
as the percentage of the feeder head baseline power 3.22 p.u.

Table III summarizes the success rate and RMSE for dif-
ferent scenarios, where each was tested with 1000 simulation
runs that were distinguished by system noises. The algorithm
scenario is named in the ‘A + B’ form, where ‘A’ describes
the algorithm used in the upper level OPF, and ‘B’ describes
the information broadcast to the ES controllers. In the table,
CC refers to the chance-constrained OPF with γ = 0.99;
MPC refers to the MPC-based CC; No CC/MPC refers to the
OPF without chance constraints; U and α are corresponding
OPF solutions and ᾱ = [0.5 0.5]T is a flat noise distribution.

TABLE III
COMPARISON OF DIFFERENT ALGORITHM SETTINGS

Scenario Success rate RMSE (p.u.)
No CC/MPC + U 0.1% 0.2222
CC + U 4.2% 0.0873
CC + {U , ᾱ} 58.9% 0.0521
CC + {U ,α} 95.6% 0.0179
MPC+ {U ,α} 96.4% 0.0162

The MPC-based approach (Algorithm 1) achieved a 96.4%
success rate and 0.0162 p.u. RMSE, which is the best
performance among all algorithms considered. The scenarios
‘No CC/MPC + U ’ and ‘CC + U ’ have extreme low success
rates because the magnitudes of noise signals are usually
larger than the 5% tracking error threshold and the local ES
controllers lack the noise distribution strategy α. Using the
flat noise distribution factor α̃ improves the performance, but
the results are still far from satisfactory. The last two rows
of Table III show good results when both the upper level
solutions U and α are broadcast to the ES controllers.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a hierarchical control archi-
tecture for distribution systems. At the upper level, a finite
horizon chance-constrained OPF formulation is developed to
minimize energy cost and address system uncertainty. At the
lower level, the ES control is applied to controllable DERs
to meet predetermined OPF schedules under a noisy envi-
ronment. The proposed hierarchical control is demonstrated
on a modified IEEE 13-node test feeder.

The relation between the individual reliability factor γ and
the joint success rate has been studied in simulation, but
the analytical solution remains an open question. It will be
investigated in future work.

Another future research direction is to extend current work
to broader DERs with controllable real and reactive power
for both feeder head power tracking and voltage control.
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