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ABSTRACT This paper addresses a major utility and regulator concern of characterizing customer net
electricity consumption profiles to realize integrated distribution system planning. This is pivotal in assessing
the capability of the power system to accommodate net load variability and its impacts on the grid such as
voltage rise, narrowing peak demand duration, and reducing the cost of energy storage. Although the extant
literature has focused on load clustering, this paper uses a symbolic aggregate approximation-based (SAX-
based) dimensionality- reduction and k-means techniques to cluster net consumption of smart meter data for
more than 3500 residential customers in a month at different temporal resolutions. This study proposes
the use of cumulative explained variance in the principal component analysis to determine the optimal
number of segments and dimensionality of the transformed space during discretization while retaining the
data integrity instead of using intuition, as proposed by the extant literature. Also, this paper describes a
screening methodology to determine the distribution of high-voltage customers among the resulting clusters
of customers with and without on-site solar photovoltaic generation at different time resolutions.

INDEX TERMS Symbolic aggregate approximation, clustering, net electricity consumption, principal
component analysis.

I. INTRODUCTION
The integration of distributed energy resources (DERs), such
as wind and solar photovoltaic (PV) systems, with the electric
power system is projected to increase at an unprecedented
rate [1], [2]. This is largely driven by increased taxation of
greenhouse gas emissions, DER technology improvement,
and business model innovations [3]–[5].

The penetration of DERs into the electric power system,
however, introduces a changing paradigm because the
demand that utilities need to plan for is no longer only
the consumption of residential and commercial loads-, but
also the difference between the loads consuming power and
the generation of customer-sited DERs, which is called the
‘‘net load’’. The net load, defined here as the total normal
load demand minus the DER generation, gives the demand
that must be met by the traditional, dispatchable generation
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and incorporated into the evolving, integrated distribution
system planning. Managing power system dynamics requires
the consideration of the net load profile and variability cou-
pled with its impacts, such as voltage rise, reducing the cost
of energy storage, shifting and narrowing the system peak
demand period [6]–[8].

A more active distribution system is increasing the need
to perform electric distribution studies with more realis-
tic characterization of customer loads to study the effect
of load diversity with DERs. A key component in com-
ing up with representative load profiles is the application
of clustering techniques to load data from smart meters.
The extant literature reports load time-series data clustering
using widely studied techniques such as hierarchical clus-
tering [9], self-organizing maps and K-means [10], [11],
fast search-and-find of density peaks [12] and the orthog-
onal wavelet transform [13]. Further, such time-series data
are high-dimension data sets often affected by the curse
of dimensionality, resulting in performance degradation of
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clustering algorithms, high-biased estimates, and computa-
tional expense [13]. A variety of dimensionality-reduction
techniques for time-series data exists in the literature, such
as the symbolic aggregate approximation (SAX) [12], [14],
discrete wavelet transform [15] and discrete Fourier
transform [16].

Further, the recently developed SAX-based dimensionality
method for electricity consumption data representation has
been implemented in recent studies [12], [14] without a clear
definition of how to determine the optimal size of the segment
and dimensionality of the transformed space in the lower-
dimensional patterns. The number of segments is one key
parameter that determines the effective implementation of
SAX. For instance, a small number of segment sizes will lead
to a compact representation with less information, whereas a
very large number of segments could result in noise in the
load time-series data set [17].

Few studies have highlighted different approaches for
determining the optimal number (or sizes) of segments for
SAX-based times-series approximation. Fotso et al. [17]
proposed a parameter-free heuristic based on intuitive ideas
from time-series classification to determine the optimal value
of the number of segments. Zan et al. [18] used Shannon
sampling theorem and adaptive hierarchical segmentation to
determine the optimal size for SAX-based discretization of
the time-series data; however, this article proposed the use
of cumulative explained variance in the principal component
analysis (PCA) to determine the optimal number of segments
and dimensionality of the transformed space during dis-
cretization while retaining the data integrity, instead of using
intuition, as proposed by the extant literature. The cumulative
explained variance, obtained from the PCA eigen values, pro-
vides the number of principal components that retain signifi-
cant portion of the full time -series data. Because this metric
provides a measure of how much variance of the data can
be retained, it can be used to determine the optimal number
of segments for a SAX-based dimentionality-reduction tech-
nique. For smart meter data sets with high-dimensional space,
it is pivotal to have a methodology that can be efficiently used
to determine the optimal number of segments to produce a
compact representation of the time-series data without noise
and the loss of critical inherent information.

Further, existing studies have focused entirely on load
profiling without considering the impact of DERs on
customer load profiles. We propose approaching the cus-
tomer loads as net loads, which now form an integral part
of the evolving power system, with customer-sited resources.
Net load profiling can help system operators identify
customers for demand response programs and provide use-
ful information for generation scheduling, integrated sys-
tem planning, and power system flexibility evaluations [7].
Fig. 1 shows the net consumption behind-the-meter, illus-
trating its different components, such as gross load, net load
(total load - total PV generation), exported and self-consumed
generation, which are pivotal for integrated distribution
planning operations.

FIGURE 1. A typical behind-the-meter net consumption profile.

FIGURE 2. Net consumption profiles at 15-minute resolution.

Apart from the variability inherent in these net consump-
tion profiles, the utility need to deal with different peaks
occurring at various times of the day. Another consideration
for integrated planning, is the shifting of the peaking periods
caused by the presence of on-site PV generation. Figs. 2 and 3
show net consumption profiles for the residential customers
used in this study at 15-minute and 1-hour resolutions respec-
tively. Net consumption profiling is, therefore, necessary to
identify typical profiles among these varying patterns that can
be used for integrated distribution planning and operations
and to evaluate the grid-readiness to accommodate back- feed
introduced by customer-sited generation. The contributions
of this paper are as follows:

• The cumulative explained variance in the PCA is pro-
posed to determine the optimal number of segments for
SAX-based discretization while minimizing noise and
maintaining times-series compactness.

• Application of SAX-based dimensionality-reduction
and k-means to perform net consumption profiling at
different resolutions.

• The application of the proposed method for net
consumption profiling is analyzed and discussed.
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FIGURE 3. Net consumption profiles at 1 hour resolution.

• This paper proposes a screening methodology to
determine the distribution of high-voltage customers
among the resulting clusters of customers with and with-
out on-site solar PV generation at different time steps.

II. METHODOLOGY FOR NET CONSUMPTION PROFILING
The proposed methodology for net consumption clustering
is grouped into five steps, as depicted in Fig. 4. In the first
stage, smart meter time-series data obtained from the data
repository are passed through preprocessing operations, such
as data cleaning, removal of outliers, net load computation,
and normalization for PCA and clustering.

The second step describes a methodology for finding the
number of segments for SAX-based discretization while min-
imizing noise and maintaining times-series compactness at
different resolutions. The third step reduces the dimensional-
ity of the net load profiles using SAX, whereas the next step
uses the k-means clustering technique to identify typical net
consumption profiles. Finally, the last step describes a screen-
ingmethodology to determine the distribution of high-voltage
customers among the resulting clusters of customers with and
without on-site solar PV generation. This articles uses tslearn
package, which is a toolkit dedicated for clustering time series
data [26]. The details of these processes are discussed in the
following subsections.

A. DATA PREPARATIONS
Data preparation performed in this study includes detection
and removal of bad data as a result of movement or tem-
poral disconnection of host meters. Also, outliers were
removed using statistical measures, such as mean and stan-
dard deviation. Data standardization was performed to center
and normalize the data set using standard scaler, which trans-
forms the net consumption profiles by removing themean and
scaling to the unit variance as given in (1):

z =
X − X̄
Xstd

(1)

FIGURE 4. Net consumption profiling procedures.

where z represents the standard score of a sample X, and X̄
and Xstd are its mean and standard deviation [19], [20].

B. SAX FOR NET CONSUMPTION PROFILES
The SAX-based dimentionality-reduction technique is used
to approximate the time-series data via symbolic representa-
tion, with the lower bounding of distance measures defined
in the original time series. The main advantage of this lower
bounding property is that it allows the reduced-size represen-
tation to index the original data without false negatives. SAX
implementation consists of two steps: transforming the net
consumption profiles into a piecewise aggregate approxima-
tion (PAA) and symbolizing the PAA representation into a
discrete string [22], [23], [26].

Consider a time-series data X of length n with elements
x1, x2, . . . , xn. SAX approximation reduces the dimension
of the data to m-dimensional time-series Y with elements
y1, y2, . . . , ym, using PAA, where m << n. The ith element
of Y can be expressed as follows [12], [14], [22], [23]:

yi =
m
n

(n/m)i∑
j=n/m(i−1)+1

xj (2)

where i is the index of the transformed PAA net consumption
data, and j is the index of the normalized net consumption
data. According to (2), to reduce the times series data X with
n-dimension to m-dimension, the original data is divided into
m-sized frames. The average value of the data within each
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frame is estimated and a vector of these values represents the
approximation of the original time-series data. This averaging
of the PAA can be used to smooth out large variability inher-
ent in load profiles. The lower bounding property in SAX
ensures the distance measure, D, as given in (3) is satisfied:

D(Y1,Y2) ≤ D(X1,X2) (3)

where D(Y1,Y2), which is the lower bounding distance
measure of the SAX representation data is given as follows:

D(Y1,Y2) =

√
n
m

√√√√ m∑
i=1

(y1i − y2i)2 (4)

D(X1,X2)), which could be an Euclidean distance measure
for the original time-series data is given as follows:

D(X1,X2) =

√√√√ n∑
i=1

(x1i − x2l)2 (5)

The lower dimensional time-series data Y obtained using
PAA is then transformed into a discrete representation
through a number of equiprobable symbols. This is done
using a Gaussian distribution because the normalized time-
series data has a highly Gaussian distribution feature. The
Gaussian curve is partitioned into ‘‘a’’ equal-sized areas using
breakpoints (β1, β2, . . . , βa−1) in ascending order to have
symbols with equal probability [12], [14].

A key parameter that determines the effective
implementation of SAX, is the choice of the number of
segments. A small number of segments will result in a com-
pact representation of the time-series with less information,
whereas a very large number of segments could lead to
noise in the data set. This article proposes a methodology
to determine the optimal number of segments for SAX-based
dimensionality-reduction.

C. EVALUATION OF OPTIMAL NUMBER OF SEGMENTS
The implementation of PCA for dimension reduction of the
time-series data is not the focus of this article, and therefore,
will not be discussed in detail; however, its application for
determining the optimal number of segments is described.
A key parameter that affects the effective implementation of
SAX-based dimensionality reduction is the number of seg-
ments, which the time-series data is partitioned, to produce
a compact representation and reduce data numerosity with
minimal loss of information. The principal components pro-
vide the amount of variation in the data set which decreases
as one moves from the first principal component to the last.
The explained variance, which is the ratio of the eigen values
for each principal component to the sum of the eigenvalues
of all principal components, is an important metric in deter-
mining the quality of reconstruction done by the PCA and
how much information is retained or lost [21]. The cumula-
tive explained variance, which is the cumulative version of
the explained variance, is a measure used to determine how
much of information is retained from the original time-series,

FIGURE 5. Cumulative explained variance at 15-minute resolution.

FIGURE 6. Cumulative explained variance at 1-hour resolution.

and the importance of the components. This metric could
have a maximum value of unity, which represents no loss of
information during dimension reduction in the transformed
space. For the time-series data, Fig. 5 shows that keep-
ing 500 principal components retains 90% of the informa-
tion, whereas 10% is lost for the 15-minute time step net
consumption data.

To determine the optimal number of segments, the num-
ber of principal components is varied iteratively from 500
principal components until the approximated time-series
aligns with the original data. This is done to ensure that the
maximum possible information is retained from the original
time-series. This study uses 1000 components which retains
about 98% of the information in the time-series data as shown
in Fig. 5 for the 15-minute resolution data. The same proce-
dure is applied to the 1-hour resolution net consumption data,
shown in Fig. 6.
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FIGURE 7. Net consumption profile and its SAX representation at 1-hour
resolution.

According to (2), it is required that the number of
m-sized to divide the original time-series into has to be deter-
mined while retaining data integrity in the transformed space.
For 1-hour data resolution, the cumulative variance plot
as depicted in Fig. 6, shows that keeping 300 principal
components would retain about 95% of the information.
Because SAX approximation depends on PAA representa-
tion, the calculated number components is used to determine
the optimal PAA number of segments. For example, as shown
in Fig. 7 with the SAX representation of the net consumption
profile for a particular customer at 1-hour resolution, all the
PAA coefficients that are less than the smallest breakpoint are
mapped to symbol ‘‘a’’, whereas all coefficients greater than
or equal to the smallest breakpoint and less than the second
smallest breakpoint are mapped to symbol ‘‘b,’’ and so on.

The symbolization of the time series data is done in
ascending order of breakpoints, and the concatenation of
symbols is defined as word [14]. The SAX representation for
this profile can be represented as ‘‘abbbddecbaecbcdedca’’
with 5 symbols, 5 alphabet size, and 19 word size. The same
procedure can be repeated for the 15-minute resolution SAX
representation, as shown in Fig. 8.

III. CLUSTERING OF CONSUMPTION PROFILES
AND EVALUATORS
A. K-MEANS CLUSTERING ON SAX REPRESENTATION
Clustering net consumption profiles at different resolutions
is needed to differentiate and identify typical profiles of
customers with andwithout on-site generation to help in plan-
ning operations, such as generation scheduling. In addition,
clustering provide a means to locate a group of customers
causing high voltage, and this can be used by the utility for
further analysis. The extant literature shows that the applica-
tion of the k-means clustering technique on SAX approxima-
tion of the original time series yields a good result [14], [23].
This paper uses this clustering method to identify typical net
consumption profiles.

FIGURE 8. Net consumption profile and its SAX representation at
15-minute resolution.

For example, for n-number of time-series data sets, Xk ,
k = 1, 2, . . . , n to be clustered into C number of clusters.
k-means initializes C number of cluster centroids and defines
an objective function, J, which minimizes the sums of each
data point to cluster centroids distances iteratively over all
clusters, as given in (6) [14], [24]:

J =
C∑
i=1

n∑
k=1

||Xk − mi|| (6)

where mi, i = 1, 2, . . . ,C are C-number of cluster centroids.
C is updated iteratively until the minimum value of J is
obtained.

B. EVALUATORS FOR K-MEANS CLUSTERING
This paper evaluates the quality of k-means clustering on
net consumption profiles at 15-minute and hourly resolutions
using the following metrics:

1) Silhouette coefficient (s): This is usedwhere the ground
truth labels are unknown, and for each sample, it is
defined as follows:

s =
d − e

max(d, e)
(7)

where ‘‘d’’ represents the average value between a sam-
ple and every other point in the same cluster and ‘‘b’’ is
the average distance between a sample and every other
point in the next neighboring cluster. The silhouette
index ranges between the interval [−1, 1], with higher
values indicating better defined clusters, −1, +1, and
scores near zero represent incorrect, highly dense and
overlapping clustering, respectively.

2) Calinski-Harabaz Index (sk ): This metric, also referred
to as the variance ratio criterion (VRC), is defined
as the ratio of the between-clusters dispersion
(SBWm ) and the within-cluster dispersion (SWTm ).
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The Calinski-Harabaz Index, s, for m clusters is defined
as follows [25], [27]:

s(m) =
SBWm

SWTm
∗
N − m
m− 1

, m ≥ 2 (8)

SWTm =
m∑
i

∑
j∈Ci

||(j− yi)||2 (9)

SBWm =

m∑
i

∑
j∈Ck

||(j− yi)||2, i 6= k (10)

where N is the total number of data points in the time-
series data, j is a data point within cluster i, Ci is the ith
cluster, yi is the centroid of cluster i, and ||(j − yi)|| is
the Euclidean distance between j andmi. Better defined
clusters are expected to return a higher index.

3) Davies-Bouldin Index (DBI): This is a measure of the
average similarity, Ri,j, between each cluster Ci for
i = 1, . . . ,m and its most similar one Cj, given as
follows [25], [27]:

DBI =
1
N

N∑
i=1

max
j6=i

Rij =
1
N

N∑
i=1

max
j6=i

Wi +Wj

Bij
(11)

Bij = ||(Bi − Bj)|| =
n∑

m=1

|bm,i − bm,j|(1/2) (12)

Wi =

[
1
Ni

Ni∑
m=1

|Sm − Bi|(2)
](1/2)

(13)

where Bij represents the between-cluster-distance for
centroids i and j, bm,i is the mth element of Bi, Ni,
is the total number of data points in cluster i, and Wi
is the within-cluster-distance for each data point, Sm,
in cluster i and its centroid Bi.
A lower DBI score shows a better defined cluster
separation, with zero being the lowest possible value.

IV. CASE STUDY
The net consumption data set used in this article contains
electricity consumption of 3,569 customers participating in
an advanced metering infrastructure (AMI) pilot project in
Hawai’i, of which 747 customers have on-site solar PV gen-
eration. Among these data, 155 bad load profiles and outliers
were removed, which is a very small sample of the whole
data set. Bad load profiles have zero measurements caused by
meter movement or swapping whereas outliers are data points
less than (mean− 3*standard deviation) and any points more
than (mean + 3*standard deviation).

A. DIMENSIONALITY REDUCTION OF THE
TIME-SERIES USING SAX
For a 2-day (48-hour) net consumption profilewith 15-minute
and hourly resolutions data, the lengths of the time-series
are 192 and 48, respectively. Using SAX, net consump-
tion profiles can be reduced to a smaller dimension, w,
where ‘‘w’’ represents the SAX word size. The compression

FIGURE 9. Net consumption clustering at 15-minute resolution.

FIGURE 10. Net consumption clustering at 1 hour resolution.

ratio obtained using SAX is defined as the ration of the
length of the original time series, n, and the word size, w.
For the 15-minute and hourly resolution time-series, with
100, and 19-word SAX representations, the compressions
achieved for a 2-day net consumption profiles are 1.92 and
2.52, respectively. A reduced data set requires less computa-
tional resources in clustering, while maintaining significant
characteristics of the original data set.

B. NET CONSUMPTION PROFILES CLUSTERING
Net consumption time-series data were clustered into six
representative load and net load profiles using the SAX-based
k-means algorithm, and the results are presented in
Figs. 9 and 10 for 15-minute and 1-hour resolutions, respec-
tively. Tables I and II provide a detailed analysis of these
clusters for the considered time steps over 1-month.

The clustering results are very similar when comparing
15-minute and 1-hour resolutions in terms of cluster
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TABLE 1. Time-series cluster analysis at 15-min resolution.

TABLE 2. Time-series cluster analysis at 1-hour resolution.

membership and load profile characteristics, such as peak
load, peak-to-average ratio, and energy consumption. What
is mostly affected by the time resolution is the number of
voltage violations above or below 1.05 p.u. and 0.95 p.u.,
respectively. Hourly resolution does not capture as many
voltage violations as the 15-min resolution.

The highest population cluster is Cluster 0, with approx-
imately 40% of the AMI customers. This characterizes very
low consumption users, which are typical of tropical climates
with no heating or cooling, and solely plug-loads, lighting,
and wet appliances as major contributors to the residential
demand. The peak demand driven by lighting occurs very
late, close to 8:30 p.m. in the evening. In fact, Hawai’i has the
nation’s lowest residential sector energy consumption [28].

The next most populated cluster is Cluster 3, with approx-
imately 30% of the AMI meters. It is also a low-consumption
cluster, similar to Cluster 1 with a peak of 1,080 Watts
occurring late in the evening, at 8 p.m. Following the two low-
consumption clusters, with 12% of AMI meters is Cluster 1,
characterizing net load profiles with low consumption that
have installed PV systems that zero out the energy consump-
tion during the course of a day. The peak demand of 1.44 kW
at 8 p.m. is comparable to Cluster 3 but three times higher
thanCluster 0. The negative peak from the PV power exported
(-3 kW) is three times higher than the peak demand. This is
relevant to utilities experiencing high-penetration rooftop PV
because as increasing numbers of users install rooftop PV,

the thermal rating of the distribution service transformer can
be violated as a result of negative power export from net load
profiles, such as the ones in Cluster 1.

Cluster 2, with 12% of the AMI customers, represents
higher energy and power consumption loads, with a peak
demand of 2 kW occurring also late into the evening (8 p.m.
and 9 p.m.). Next is Cluster 5, which is the least populated
cluster, with 3%-4% of the customers, representing higher
consumption houses not that common in tropical islands, with
a peak demand of 3-4.5 kW occurring earlier in the evening
between 5 p.m. and 8 p.m., which is very likely caused by
customers that have heating, ventilating, and air-conditioning
cooling systems that start cooling when consumers get home
from work.

Finally, Cluster 4 is another representative net load profile
of higher end energy consumers that is less common than
Cluster 1 but still represents 6% of the metered customers that
also net zero their consumption daily, with a peak of 3.35 kW
and a negative export peak power of 4.5 kW, so with a
installed.

With regard to undervoltage violations, Cluster 0, which
has very low demand consumption, experiences the highest
number of undervoltage violations at both 15-min and hourly
time resolutions. This could be due to primary voltage reg-
ulation lowering voltages during the day to accommodate
PV voltage rise and/or as a result of neighbouring high-
consumption customers causing undervoltage violations.

With regard to overvoltage violations, the trends are clear
at both 15-minute and hourly resolutions. Higher voltages
are driven by customers with PV systems, and there are
comparable voltage violations in Cluster 1 and Cluster 4,
but Cluster 1 has twice the number of PV customers than
Cluster 4. This leads to the attribute of the larger exporting
profile of Cluster 4, or customers installing larger PV systems
in that cluster to cause more over-voltage violations. Finally,
the lower consumption Clusters 0 and 3 also experience
over-voltage violations. This could be because neighboring
customers with PV systems also drive high voltages for
low-consumption customers, whereas high-consumption cus-
tomers in Clusters 2 and 5 are not effected by neighboring PV
systems. Another explanation could be that high consumption
customers tend to be located in newer neighborhoods that are
often underground, andmore susceptible to undervoltages but
not overvoltages.

Further, in terms of membership for corresponding clusters
(e.g., Cluster 4 in Figs. 9 and 10, respectively), Tables I and II
indicate 5.9% and 6% membership for 15-minute and 1-hour
resolutions, respectively. Also, for corresponding Cluster 1 in
Figs. 9 and 10, respectively, Tables I and II show 12.6%
and 12% membership for 15-minute and 1 hour resolutions
respectively. This shows that the application of k-means on
SAX representation of the net consumption profiles produces
very close and comparable results without the loss of signifi-
cant information in the original data set. This implies that for
some applications with huge data sets and high computational
requirements, down-sampling from 15-minute to 1 hour can
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TABLE 3. Clustering evaluation.

still preserve the integrity of cluster membership; however,
Tables I and II indicate that down-sampling could shift the
peak load time, which has the potential to affect distribution
planning operations, such as generation scheduling.

Table III shows the values for the three internal evaluators
used in this study to assess the quality of clustering at different
time steps. The higher values of the silhouette and VRC
indices for 1-hour resolution show better defined clusters than
the 15-minute time step. Also, the smaller DBI value for
1-hour resolution indicates a denser intra-cluster property and
larger inter-cluster distances, which result in better clustering.

V. POTENTIAL APPLICATIONS OF NET CONSUMPTION
PROFILES CLUSTERING
The extant studies have focused entirely on clustering load
time-series data sets without considering the impact of local
generation on customer demand profiles. As distribution sys-
tem planning gradually evolves using an integrated approach,
it is now pivotal to be able to characterize net load on the
network. This impact is no longer limited to the distribution
network because at high levels of DER penetration, the net
load characteristics can have a significant impact on the
transmission domain and bulk power system operation.

Net electricity consumption clustering can help identify
typical clusters of DER installations that can exacerbate
adverse impacts on the grid, such as voltage rise and reverse
power flow. The ability to localize such impacts can be
used for further network analysis, detailed impact assessment
of integrated DER units, and improved system operations.
A direct application of the clustering net load profiling is to
use the representative cluster load profiles to add load diver-
sity to distribution modeling and simulation studies. Most
distribution modeling and simulation studies currently use
quasi-static time-series power flow simulation techniques,
leveraging SCADA substation data to approximate the load
profile. However, it is increasingly important to capture and
represent the load diversity at the primary and secondary lev-
els to understand the local impact of customer-sited resources
such as rooftop PV in distribution planning and operation
studies. The net load clustering proposed in this paper can
be used to better represent customer loads with and without
PV in distribution power flow models.

Also, clustering net demand can help system operators
and planners identify customers for demand response pro-
grams and provide useful information for generation schedul-
ing, integrated system planning, and net load forecasting.
The output of net electricity consumption clustering can be

a useful resource in ensuring load diversity for performing a
more realistic integration studies.

VI. CONCLUSION
As the power system continues to evolve through integrated
network planning considering the impact of local generation,
there is an increasing need to have a more realistic character-
ization of customer load for effective system operations, such
as generation scheduling. The net load provides the amount
of demand that is visible to system operators and must be met
by the traditional, dispatchable generation.

This paper uses SAX-based dimensionality-reduction and
k-means techniques to cluster the net consumption of smart
meter data for more than 3,500 residential customers in a
month at different temporal resolutions. This study shows
that the application of k-means on the SAX reduced rep-
resentation of the original time-series data can be used to
cluster net demand profiles. This study proposes the use of
cumulative explained variance in the principal component
analysis to determine the optimal number of segments and
dimensionality of the transformed space during discretization
while retaining the data integrity, instead of using intuition as
proposed by the extant literature.

The clustering results are very similar when comparing
15-min and 1-hour resolutions in terms of cluster membership
and load profile characteristics, such as peak load, load factor,
and energy consumption. What is mostly affected by the time
resolution is the number of voltage violations because the
hourly resolution does not capture as many voltage violations
as the 15-min resolution. The results of the methodology pre-
sented in this paper can be used to determine the distribution
of high-voltage customers among the resulting clusters of
customers with and without on-site solar PV generation at
different time steps.
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