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Computational Characterization of Cel7A

Binding/Association Catalysis

Processivity
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Cel7A is Dissociation Limited

Cel7A used extensively to
hydrolyze cellulose within an
industrial context

With an excess of substrate, the
enzyme is limited by its substrate
dissociation

Rate (uM/s)

How does the enzyme typically
dissociate?

What interactions could be
altered to improve dissociation?
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Clamshell

Dethreading



Mechanism Evaluation Metrics

Measurement Kot (s72)
Technique
Y O >

Biochemical Assay® [1e}!

Dissociation rates have
been determined
experimentally

Use simulation to compute
kinetics along both
pathways

Compare results (including
with new mutants!)

Biochemical Assay* [0X00EY.

®Nakamura et. al. JACS 2014
°Cruys-Bagger et. al. JBC 2012
‘Kurasin and Valjamae, JBC 2011



Computing Kinetic Parameters

Dynamics of reactions involving diffusive barrier crossing
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Reaction Coordinate for the Dethreading Mechanism

» Define contacts between
individual glucose units and the
surrounding enzyme and
cellulose fibril for different
loading states

* Interpolate between loading
states (Ca-Cg)

* Use umbrella sampling to
determine the free energy and
diffusion coefficients
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Dethreading Free Energy Results

 Moving from -1 state to

AG(RMSD;,) (kcal/mol)
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-3 state is rate-limiting

Movement from -1 to +2
state consistent with
previous simulation
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Dimensionality Problem

e Dethreading is fundamentally
one-dimensional

e Clamshell mechanism is two-
dimensional

 Enzyme loop contacts
e Cellulose-enzyme contacts

* Early science allocation on Eagle
used to probe this two-
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Slow Convergence and a Remedy

80C

e Subsets of the total sampling
indicate relatively slow
convergence

* Expected given the fast SMD
pulls to populate the windows

 Extended sampling over the
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Clamshell Free Energy Surface

 Opening Cel7A loops is
low energy

 The large barrier
occurs at intermediate
states where many
interactions must be
broken simultaneously
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Dethreading Consistent with Experiment

i inti _ T 5o-1 _ -1
Dethreading kinetics (Dlssomatlon Kot=0.798" K4=2.0 10°s™ k,=19s
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Mechanism Confirmation

* Experimental collaborators in
Sweden and Estonia can
measure the dissociation rate

for a cross linked enzyme variant B 0 rcutau ks « 132 026x 1025
TrCelTAs.s koo = 1.50 = 027 x 10 8
e Dissociation rates are R i
L 0 TceiThes (568
unperturbed by the crosslinking, g ol :
suggestive of the dethreading E
. . . - 10
mechanism predominating -
0
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Time (s)
Courtesy of Riin Kont and Priit Valjamae 15



What could we mutate?

Given the barrier to
dethreading from the
-1 to -2 state, what
can be changed?

Strongest interactions
to -1 state are
catalytic residues

W367 may be one of
the better options
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Mechanism Caveat

Particular cellulases are
indicative of the
clamshell mechanism

May be related to the
continued closure of the
loops, as connections
between the two halves
of the shell are relatively
few and far between

Schiano-di-Cola et. al.
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Cel7A Summary

e For the wild type, the dethreading
mechanism is clearly preferred

* Matches experimental
dissociation rates

* Robust to mutagenesis
experiments

* Clamshell-type mechanisms may
depend on the loops simply not
being present, as they are in some
endoglucanases
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