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Background

Deacetylation and Mechanical Refining  Process (DMR)
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*

*EH of dilute acid pretreated solids severely inhibited above 17%



• Recycle of black liquor needed:
o Recover pretreatment chemicals 

– Key to success! 
o Reduce water/energy/chemical usage
o Valorize value-added components from biomass

– Acetate, carbohydrate
– Lignin and aromatics
– Potentially potassium and phosphorous

• Current deacetylation is conducted at 8-10% solids
– Titers are too dilute to be economically valorized
– Direct evaporation of the black liquor is very energy intensive and 

may lead to undesired condensation and degradation of valuable 
chemicals!

MotivationMotivation of Black Liquor Recycling 



Counter-Current Reverse Batchwise Black Liquor Recycling

Number of 
Recycles

1 2 3 4 5 6

Biomass Loaded 
(kg)

3.3 3.3 3.3 3.3 3.3 3.3

Dry Biomass 
(kg)

3 3 3 3 3 3

NaOH (kg) 0.165 0.165 0.165 0.165 0.165 0.165
Initial Water 
Added (kg) 

29.6 - - - - -

Makeup Water 
Added in Black 
Liquor (kg)

- 6.3 6 7.1 5.1 5.6

Initial Wash 
Water (kg) 

- - - - - 30

Makeup Wash 
Water (kg)

- 7 7 7 7 -

MWW –Makeup Wash Water
MWL - Makeup White Liquor (NaOH)
WBL     - Weak Black Liquor

Positive outcomes
• Lower water/chemical usages
• Higher concentration streams
Possible negative impacts
• Black liquor gets too viscous
• Reduced deacetylation effect
• Inhibitors may accumulate in 

solids that will end up in 
fermentation



Solids Accumulation in Black Liquor and Wash Liquor
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Accumulation of Inorganics and Spent Sodium in Black Liquor

y = 0.3579x + 0.396
R² = 0.9844

y = 1.6349x + 2.0747
R² = 0.9799
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Accumulation of Biomass Components in Black Liquor

y = 0.13x + 0.20
R² = 0.95

y = 2.0x + 2.9
R² = 0.96

y = 2.8x + 3.2
R² = 0.97
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y = 1.22x + 0.28
R² = 0.9899

y = 1.77x - 0.48
R² = 0.9938

0

5

10

15

20

25

0 2 4 6 8 10 12 14

Co
nc

en
tr

at
io

n 
(g

/L
)

Concentration of Sodium ( g/L)

Acetic acid Lignin Xylan
Galactan Arabinan

o Lignin and acetate removal is not affected by black liquor recycling 
and the number of recycles.

o Xylan dissolution is reduced possibly due to adsorption onto solids or 
oligomer solubility limitations
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Enzymatic Hydrolysis 
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With wash

o Batch 2-6 (where 
washing is available) 
show a reversed trend 
between sugar yield 
and lignin 
concentration

o Batch 1 does not have 
washing and do not 
follow the trend

o Sugar yield is lower 
compared to previous 
study due to refining 
issues (more to read in 
publication)
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Ethanol Fermentation 
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o Fermentation is performed using 
rZymomonas

o Final ethanol titer approximately 
60g/L



Evaporation and Viscosity 
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Key properties of black liquor for conventional 
Kraft recovery process (combustion to produce 
energy)
o Viscosity and boiling point rise (BPR)
o Normally combusted at 65% solids
Black liquor concentrated to 65% solids
• Viscosity at room temperature - 2000cP
• Viscosity at 100° C – 154 cP

Compared to 65% Kraft black liquor in literature
• Viscosity at 100°C – approximately 100 cP



Without Recycle
With 

Recycle
Deacetylation (total solids %) 10% 30% 30% 10%

Water for deacetylation (kg/hr) 666,667 166,667 166,667 166,667

Wash water after deacetylation 
(kg/hr)

0 563,117 0 67,620

Steam for A200 (kg/hr) 58,764 17,266 17,266 14,870

Total water used for A200 (kg/hr) 728,107 748,949 358,054 404,178

MESP ($/gal) $2.32 $2.27 $2.21 $2.17

Techno Economic Analysis

With black liquor recycling, we can reduce water usage by ~50% and 
energy usage by ~75%, thus lowering MESP by 4 to 15 cents per gallon



• Converting p-coumaric acid and ferulic acid in the black 
liquor to muconic acid (Lignin Biological Funneling 
process) 

• By recycling black liquor, we could achieve approximately 
6g/L p-coumaric acid and 1.5 g/L ferulic acid after 6 
recycles

Valorizing Black Liquor (joint effort with Greg Beckham’s 
group at NREL)
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o DMR black liquor 
o Too dilute
o Valuable and underutilized lignin, organic 

acids and sodium
o Conventional Kraft process

o Expensive recovery boiler/lime kiln
o Burns lignin and other organics
o GHG, air pollution and LCA issues

Challenges:

Microbial Electrochemical Technology for Black Liquor Utilization

Chen and Ren et al., Green Chemistry, 2018, in press

Microbial Electrochemical Technology to Recover Pretreatment 
Chemicals, Water and Lignin ( Joint work with Princeton University)
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o MET degrades low conc. waste organics
o Chemical energy -> Electrical potential
o Salt migration and recovery

o MET precipitates lignin with no added acids

Solutions:

Separation stage
pH drop to 7.0 

Cathode stage
pH increase to 8.9

Ca2+, Mg2+, SO4
2-, 

PO4
3- precipitation

H2 generation

Na+, K+, Ac-, Lac-, Prop-

migration and recovery
Lignin precipitation

Organic acid degradation

Anode stage
pH drop to 5.7 

Anode

Cathode

Black liquor

H2

Na+

AC-Lignin

pH >9pH <6
Salt recovery

CEM CEMAEM

Na+, AC -, Lignin

CEM: Cation Exchange Membrane
AEM: Anion Exchange Membrane

Chen  and Ren et al. Green Chemistry, 2018
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o Lignin and salt recoveries of ~61.2±2.7% and 
92.2±1.6%, respectively. 

Results:
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o Near theoretical yields of hydrocarbons were 
produced from lignin model compounds

o Products mostly alkyl-dicyclohexanes (30%) 
from lignin in DMR Black Liquor 
o High energy
o High density

Black Liquor Lignin HDO to Biojet Fuel

Hydrocarbon yields from DMR lignin in HDO conversion under different 
conditions. Reaction conditions: lignin (50 mg), n‐octane 
(1 mL), T=250 °C, t=4 h, P Hydrogen =4 MPa. in 1 mL n‐octane containing 
10 wt % water as solvent.

Challenges:
o Lignin’s intrinsic heterogeneous robust structure

o Upgrade/Recovery to single product is very 
difficult

o Condensation/Repolymerization 
o HDO with acid combined metal as bifunctional 

catalytic system
o Most Brønsted acids: less selective
o Most Lewis acids: water sensitive

Solutions:
o Super Lewis acid- Metal Triflates

o Widely used in organic synthesis
o Water tolerant and thermal stable

Results:

*Wang, Yang and Tucker et al., ChemSusChem, 2018, 11(1)

Black Liquor Lignin to Jet Fuel*
10 mg 
Ru/Al2O3

15 mg 
Hf(OTf)4

10 mg 
Ru/Al2O3+
15 mg 
Hf(OTf)4

15 mg 
Ru/Al2O3+
10 mg 
Hf(OTf)4

No 
catalyst 
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Future work – from batch to continuous reactor 

Continuous Counter Current Inclined Shaftless Screw Reactor 
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• Xiaowen Chen
Email: Xiaowen.chen@nrel.gov

Contact info
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