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1) Evaluating tailored MgO nano-catalysts

Presentation Outline

2) Determining active surface and mechanism

3) Assessing the impact of water exposure



Why methyl ketone condensation?
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Biojet Hydrocarbons Tailored Metal Oxides

Evaluate MgO basic
catalysts for their activity
and stability under
catalytically relevant
conditions

Methyl ketones can be catalytically upgraded to
cycloparaffins for low-sooting aviation fuels

Sacia (2015) ChemSusChem. 8, 1726-1736
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Remaining research challenges

0 0 +H,0 L +H,0
Synthesize tailored MgO catalysts S m ' ﬁw/\

and compare initial activity for J

methyl ketone condensation

Assess the working MgO
catalytic surface and associated
reaction mechanism

Solvent, ketone, H,O
- Dimer and }
.-fi\-. heavies[[

SPT HDO

Determine surface and
morphological stability with
continuous water exposure

Drain H,0 IZ —

Catalyst regeneration
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Part 2

Evaluating reactivity and
working catalytic surface
for ketone condensation



Synthesis of nano-MgO catalysts @€*
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Ryan Richards Group

MgO(111) Nanosheets

Propert CP Nano Nanosheet
perty MgO(100) 2b MgO(111) ©

Synthesis water addition R-OH addition

Method thermal anneal thermal anneal
Morphology/ 100-300 nm 5 x 200 nm
Dimensions particles sheets

Surface area

e o) 143 181

Pretreatment Conditions: 500°C under flowing inert for 6h

Prepared MgO nanomaterials with comparable surface
area to evaluate impact of (111) vs (100) surface facet

a Choudary (2004) JACS. 126, 3396-3397 b Koper (1997) Chem Mat. 9, 2468-2480 °Zhou (2006) Angewandte. 188, 7435-7439



Evaluating base sites by CO, TPD Lo

CP MgO MgO111 Gauss deconvolution
-
- —
@© 3
N \tEr
C —
S 5
© n
s g
c 8
(] [ o
o | a
8 0 100 200 300 400 500
O Temperature (°C)
N =
@)
@)

@\Weak @intermediate O Strong

40 140 240 340 440
Temperature (°C)

. CP Nano Nanosheet
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Mass (umol CO, g 351 461
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Base sites (umol m?2)
—
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Area (umol CO, m2) 2.5 2.5 CP MgO MgO(111)

Pretreatment Conditions: 500°C under flowing inert for 6h

Area normalized base site quantity and distribution
are comparable for both MgO catalysts up to 500°C

Cosimo et al. (2014) Catalysis. 26: 1-28. Xiangchen Huo, Davis Conklin NREL



MgO(111) DRIFTS characterization @

Isolated H-bonded Surface CO, or Carb ~ 800
-OH -OH from synthesis arbonates o °
o i
{_L\ I_k_\ ‘_A_\ /{_x_\J g 600 e
2
[ .
_f\/\ § 400 o
e
500°C S 200 -
)]
©
- ORY . ;
< O 0 5 10 15
= Pretreatment time at 500°C (h)
3
= MgO(111) Surface area
Pretreatment (m2 g)
No pretreatment 215
Static air 350°C, 4h 184 (-14%)
40°C Static air 500°C, 4h 123 (-43%)
' ' ! ! ' Flowing inert 350°C, 4h 205 (-5%)
4000 3500 3000 2500 2000 1500

Flowing inert 500°C, 4h 185 (-14%)

Wavenumber (cm )

MgO(111) surface and morphology highly sensitive to
pretreatment and environmental exposure

Mutch et al. (2018) JACS. 140, 4736-4742.  Chowdary et al. (2018) NJC. 42, 14194-14202.  Xiangchen Huo, Davis Conklin NREL



Initial ketone condensation activity
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Rxn conditions: 20 mL of 0.01M 2-pentanone in toluene, 0%

catalyst loading for equivalent surface area, 150°C, inert
atm, 800 rpm. Catalyst pretreated at 500°C inert 6h.

3 4
Reaction Time (h)

Batch reactor screening shows initial higher
condensation activity with MgO(111) than MgO(100)

Xiangchen Huo, Davis Conklin NREL



Surface termination for MgO(111)

Historically, MgO(111)
proposed as alternating cation
and anion layers with
concerns of surface stability

Pal and Paly (2015) Nanoscale. 34, 14159-14190.
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Recent experimental and computational efforts suggest MgO(111)
octopolar surface termination may be the most stable

Bajdich (2015) Physical Reviews B. 91, 155401.



H,O surface coverage for MgO(111)
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Even with low partial pressure of exposure,
water readily dissociates to cover MgO(111) surface

Vassili Vorotnikov NREL



Competitive adsorption on MgO(111) @*

MgO(111) [] dissociated H,O (i.e. hydroxylated MgO(111))
surface [] dissociated H,O followed by physisorbed H,O
coverage B dissociated H,O followed by physisorbed 2-butanone

» Increasing Ketone Pressure »
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Likewise, even in the presence of ketones water
dissociates to cover MgO(111) surface with hydroxyls

Vassili Vorotnikov NREL



Ketone condensation rxn pathway

Aldol Condensatlon Mechanism Argonne

NATIONAL LABORATORY
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Evaluate ketone condensation reaction mechanism on
MgO(100) and MgO(111) surfaces

Mingxia Zhou, Rajeev Assary ANL
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Role of surface —OH during reaction et

enol
> D 13 intermediate 1 ]
H H H 3
|
R1TC\;R2 Rin ARy R ~%~Rro ﬁ—R4
ads o ads 0
OH H g ) OH OH
_Ml _c|)_ OHH< Surface  OH M OHH HO W
J —Mg—0— mediated —mg—0—— —Mg—0—Mg—0—
H transfer
desorption C-C bond formation H transfer
17
Ra Il?g via 2: Surface mediated 15 F\QZ R,
. i R1TC-—“_-::C_,——R4 dehydration R1Y?\é/R4 aldol
con ezsaton 5 HoH Ho oy addition
poe : i
OHH HO H product
My b thg R oHHITHO
—Mg—0—Mg R, Cer_ R Y SR S
c— N4 Mg—O—Mg—0—
é Z | via 1: Surface -
dehydration on OH mediated H transfer
SEyEEEEEEEEEEEEEEER OHH HO H 4 lllll NEEEEEEEEEEEENE

]
—Mg—0—Mg—60—

Surface hydroxyl groups on MgO(111) may facilitate
proton transfer to lower key transition states

Mingxia Zhou, Rajeev Assary ANL



Potential energy surface for COND @

2-pentanone condensation

“.OH” MgO(111)
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Intermediates would bind excessively strong on “clean”
MgO(111), supporting “-OH” terminated surface

Mingxia Zhou, Rajeev Assary ANL
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Part 3

Surface & morphological
stability of MgO(111)
with water exposure



Continuous ketone condensation

__Solvent, ketone, H,0

Dimer and
L heavies[]
Solvent — et
org -
| coND| SPT
= l E

Drain H,0
Catalyst regeneration

For tailored nano-metal oxides,
facet stability and particle
morphology remain relatively
underexplored with catalytically
relevant conditions

Geysermans (2009) Phys Chem Chem Phys
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AN — | _’/Cé% Catalytic process needs to be

active, selective, and stable
with water generated in situ

Hmj ; and likely present in the feed

Scott (2018) ACS Catalysis. 8, 8597-8599
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Bulk restructuring to form Mg(OH), @

Fresh Steam exposed ® MgO ¢ Mg(OH)2 MgO(100)
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Preliminary steam exposure tests on MgO(100) powder
show dramatic restructuring of bulk to form Mg(OH),

Xiangchen Huo, Davis Conklin NREL



MgO(100) in situ TEM H,O exposure @

%OAK RIDGE

National Laboratory Formation of the

reaction product
(Mg(OH), on the
MgO surface

Clean surface

MgO

crystals

Viaterial: MgO(100)

Temperature: 250°C
Pressure: 16.2 Torr

Environment: flowing H,O vapor

Low levels of water exposure can result in amorphous
Mg(OH), with MgO(100) nano-cubes

Unocic (2019) Microscopy and Microanalysis. Submitted.



MgO(111) in situ XRD with steam @
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Heat sample in 1 hour increments from 150-500°C

Fred Baddour NREL



Neutron scattering for catalysis

Peter Metz, Zhenglong Li, Katharine Page ORNL

Neutrons scattering sensitive
to light atoms (i.e., H,D,C,0),
as well nanomaterials with well
defined local structure
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In contrast to DRIFTS and XRD,
neutrons have ability to...
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Track H content and local structure ‘

Neutron diffraction & Rietveld analysis: hydrogen background, lattice parameter (a),
crystalline correlation length scale (CS_L), atomic displacement parameters (B,,,)

NOM MgO 111 as recieved background
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due to significant H
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0-> ( 20) 0.20 - Incoherent
Parameter value +% as recieved contribution from
~ 04 " o — - / H is reduced after
: alAl -2221(1) ‘ 5 0.15 heated to 500k heating to 500 K
> 0.3 - CS_L [nm] 8.99(3) 0.32 >
G 'G .
5 Mg Biso [A?] 0.66(1) 2.06 S difference
e £ 0.10
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0.0 1 l/’»—-f“f‘\‘——r—«"\w,l\wﬂ P e 0.00 4
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Ability to track degree of surface hydration with in situ
monitor during steam and heat treatment

Peter Metz, Zhenglong Li, Katharine Page ORNL



Preliminary results D,O exchange Lo

Neutron Pair Distribution Function: interatomic distances (r [Ang]) and
number of next-near neighbors (area under curve)
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Ongoing work to evaluate surface hydration/dehydration
during steam exposure/regen, with particle coarsening

Peter Metz, Zhenglong Li, Katharine Page ORNL



Key Take-Aways and Next Steps

Take-Aways

« MgO(111) displays higher initial activity than
MgO(100) for ketone condensation

» Surface hydroxyl groups on MgO(111) facilitate
proton transfer and lower key transition states

« Transition to Mg(OH), over different facets will
be a key consideration for prolonged use

Next Steps EXhaUStr\\lbubbler
* Need to address the continuous stability and M
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Thank you for listening...
Let’s discuss!
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