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a b s t r a c t

The Localized Actual Meteorological Year File Creator (LAF) application provides web-based access to
real meteorological data and processes it into a weather file suitable for building energy modeling.
Building energy consumption is affected by what is inside the building (such as occupants, appliances,
HVAC systems, etc.) and by what is outside: the weather conditions the building is exposed to.
However, freely available weather data files are limited to a number of specific locations, usually
airports, which are often located away from city centers where buildings are concentrated. The
authors have developed a new tool that supports the investigation and quantification of micro-climate
conditions on building energy consumption. LAF is built on the Python open-source programming
language and has a Graphical User Interface (GUI) that allows users to create custom weather data
files for building energy simulations. Many sets of actual meteorological year weather data for long
time periods are publicly available online (such as the MesoWest database) for thousands of locations
in the US. LAF selects weather data according to user specifications and automatically processes it
through an API across multiple weather stations and multiple time periods. The user may easily select
a specific location, time frame, and time step that best meets their needs. This article presents a useful
tool for energy modelers, building designers and operators to assist with building performance analysis
and optimization.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

In 2018, commercial and residential buildings accounted for
about 40% of the energy use in the United States [1] and in
previous years buildings have accounted for 21% of primary
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energy consumed in the world [2]. Buildings are also respon-
sible for a substantial share of the emissions in urban environ-
ments, contributing to air quality issues and consequent health
implications.

Building energy simulations play a crucial role in improving
the energy and environmental performance of actual buildings.
According to Raftery et al. [3], building energy simulation is con-
sidered the best practical approach for performance analysis in
the building industry. By taking advantage of ever more powerful
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computational resources and having more exact building models,
it is possible to have increasingly precise predictions of building
energy loads.

Accurately predicting a given or proposed building’s energy
load has important economic and environmental consequences
for those who will be managing the building’s energy use, but
increasingly accurate predictions resulting from more highly re-
solved weather data are also of great interest to the research
community as well [4,5], due to their relevance to addressing
questions relating to large-scale adaptation to climate change and
management of peak electricity demands. We propose here a
novel, customizable tool that provides widespread access to the
use of actual observed weather data within building simulations.

Building energy modeling (BEM) or building performance sim-
ulation consists of using computer software to predict building
energy loads. An example of a BEM platform is EnergyPlus [6],
a free, open-source software package developed by the U.S. De-
partment of Energy (DOE). It requires two basic inputs to start the
simulations: the building model, in Input Data File (.idf) format,
and the weather data, in EnergyPlus Weather (.epw) format as
illustrated in Fig. 1.

The IDF file contains the information about the building itself
(including its geometry, material construction, and type of HVAC
system). The DOE, in collaboration with many national laborato-
ries and US colleges, has been financing and developing building
models and building energy simulation packages intended to
progress toward a more accurate representation of the American
building stock [7,8].

The EPW file contains the weather data, including temper-
ature, humidity, solar radiation, wind speed, and rainfall. For
U.S locations, the weather data for EnergyPlus simulations are
typically taken from Typical Meteorological Year (TMY) files [9].
They provide an annual data set that contains hourly weather
values that represent typical conditions for a specific location,
considering a more extended time interval, such as 30 years.
Although they were created to represent a typical meteorolog-
ical year, TMY weather data are not site-specific to most U.S.
commercial buildings or to a given calendar year. The weather
file represents only one location per city, typically an airport
weather station, while most commercial buildings are located
near densely populated areas that are geographically separated
from the airport.

The weather influences building energy consumption on mul-
tiple scales. On one hand, macro-climate conditions influence the
regional weather. Different urban areas are located in regions
with unique geographic features that will affect the weather
differently at a regional scale.

On the other hand, microclimate conditions are also important
in terms of building energy consumption. A building’s energy
demand in urban environments is influenced by multiple phe-
nomena, driven by the urban physics in that area. Structures
are subjected to: (i) increases in ambient air temperature due
to urban heat island effects, (ii) reductions of wind speeds due
to wind-sheltering effects, (iii) reduced energy exchanges during
night due to reduced sky view factors, (iv) altered solar radi-
ation gains due to shadowing effects and reflections, and (v)
altered radiation balances due to interactions with surrounding
structures [10–12].

Particularly in cities characterized by warm climates, urban
heat islands can drastically alter the overall urban energy con-
sumption and thus affect health and comfort of the citizens [13].
As illustrated by Yavuzturk [14], the temperature of the asphalt
on highways increases considerably with respect to other ma-
terials within the urban canopy. This effect is augmented due
to a lack of vegetation along many major roads. The asphalt
present on highways can, as a consequence, re-irradiate sur-
rounding buildings and contribute to urban heat island effects.

Buildings can be affected by a number of other site-specific
phenomena, including concentrated air pollution [15,16] or the
presence of dense vegetation or other human structures nearby.
Each of these can alter the building’s surrounding weather con-
ditions, especially the effective ambient temperature and the
amount of radiation a given surface on the building receives.
Furthermore, if the building is at a different altitude than the
location where the weather file being used was created, or if it
is located in an urban canyon, it may experience local weather
patterns that are not represented by a generic weather file.

Many authors in the literature [11,17–20] researched the im-
pact urban microclimate phenomena may have on renewable en-
ergy sources. Additionally, extreme peaks in microclimate-related
weather variables that are not captured by TMY files can substan-
tially affect the performance of renewable energy sources such
as PV and CSP systems [21,22]. As stated by Pyrgou et al. [23]
‘‘experimentally collected weather data taking into account local
phenomena should be used in building simulations instead of the
traditional weather data-sets, i.e. TMY’’.

Currently in both the research and industry communities,
to account for urban microclimate in building energy modeling
and renewable power generation systems modeling, three main
practices are commonly used:

(i) The first option consists of buying weather data, possibly
already formatted for building energy simulations. The data may
just be historical data-sets of weather values in selected locations
or they might be interpolations of historical data-sets, aimed to
represent ‘‘average" weather conditions. Services such as Me-
teonorm [24] and White Box Technologies [25] sell weather data
and there are many examples in the literature of researchers who
took advantage of these services [26–30]. When weather data are
proprietary, the user is only partially aware of the quality and
origin of the purchased data, and the procedures employed to
generate the data are usually not shared with the customers.

(ii) A second option consists of transforming TMY3 data to
incorporate urban microclimate effects. TMY3 is the most recent
version of the TMY data sets [9]. In the literature, multiple studies
show the application of algorithms to adapt weather data in Hong
Kong [11,31], Perugia (Italy) [23], Thessaloniki (Greece) [32], Mel-
bourne (Australia) [12], and Hangzhou (China) [33]. This option
may be more economical, but it relies on the parameterization of
urban features or on detailed computational analysis (i.e. CFD) of
the same, which requires expert knowledge and analyst time. The
methods are mostly tailored to the specific location where they
were developed and may not be transferable.

(iii) The third option consists of using actual meteorological
year (AMY) weather data, taken from active weather stations [11,
12,23,33,34]. Although this practice can be convenient, both eco-
nomically and in terms of accuracy, it is not always possible to
have many weather stations in the same urban area, providing
reliable data for multiple years.

The lack of available and reliable data, therefore, limits the
possibility to study the impact and the variability of microclimatic
effects, as represented by observed weather data.

In prior work, the authors [35] began to address the fol-
lowing questions: how do microclimate conditions vary inside
the same urban environment? Does their variability have the
same impact on the different building energy loads? What is the
relative weight of the discrepancy between weather data taken
in different areas of the same city and TMY3 data? What is the
error associated with using TMY3 data to predict building en-
ergy loads? Site-specific weather data provided by the MesoWest
database [36] were employed to compare the weather from two
stations in the Salt Lake Valley with the TMY3 file for Salt Lake
City, Utah. The previous questions were only partially answered.
The main conclusions of this analysis were: (i) weather boundary
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Fig. 1. EnergyPlus main interface.

conditions negligibly affect electric loads (this was verified for
four building types); and (ii) heating loads are highly affected,
however, the impacts on heating loads are not consistent from
year to year.

A larger range of years of data and more weather stations are
needed to have a broader picture of the spatial and temporal vari-
ability of site-specific weather conditions. However, producing
weather files ready to be used for EnergyPlus simulations (EPW
files) is a technically challenging task that might prove a barrier
to use of weather data outside the standard files provided with
EnergyPlus [37], especially to inexperienced users. Additionally,
MesoWest data often contain missing data-points and need to be
processed before being converted into EPW files.

In order to meet these needs and to fully take advantage of the
MesoWest database in the study of the microclimate variability in
urban areas, the authors introduce a new tool here. The Localized
AMY File (LAF) Creator can convert input custom weather data
into EPW files, ready to be used for EnergyPlus simulations.
The output file will be created based on the TMY3 source file
representative of the closest city. Custom weather variables (such
as dry bulb temperature, wind speed and direction or relative
humidity), as selected by the user, will be written over the ones
taken from TMY3 data.

The app will also pre-process custom weather files, checking
their quality performing imputation for missing data points. Fi-
nally, the app will give the user the possibility to automatically
download weather data from the closest MesoWest weather sta-
tion as well as the closest available TMY3 file. In contrast with the
common practices described above, LAF freely provides available
weather data, measured by multiple stations in the same cities
and over multiple years, in a format that is easily usable by the
building energy modeler.
It represents a useful tool to provide site-specific weather data to
building energy system designers and to expand the investigation
of the effects of weather variability to many new locations.

2. Software description

The software is written entirely in Python [38] (version 3.6).
The Graphical User Interface has been developed taking advan-
tage of the library PyQt5 [39]. Additional libraries were em-
ployed to deal with computation and data handling: SciPy [40],
Pandas [41], NumPy [42] and Matplotlib [43].

Fig. 2. Screenshot of the main interface.

The source code has been compiled for MacOSX and Windows
using py2app [44] and PyInstaller [45] respectively.

It is freely available on Github.com (https://github.com/SSESLa
b/laf).

2.1. Software architecture

The software is composed of three separate modules: the
TMY3 module, the MesoWest module and the EPW (weather file
creation) module. Each module is independent and can be used
individually, with no dependence on the others (see Fig. 2).

TMY3 module
Fig. 3.a shows the screenshot of the Graphical User Interface

for the TMY3 module. The operations related to each button are
shown in the flowchart in Fig. 3.b.

A Google Maps interface shows all the available stations in
USA and Canada providing .epw files. The user can choose the
preferred urban location, click on the closest station and directly
download the .epw file for that location.
The stations shown come from a list available on http://climate.
onebuilding.org [46]. It provides coordinates and a web link to
download the TMY3 file for each available location. CWEC files
for Canadian urban areas are also included.
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Fig. 3. Screenshot and flowchart representation of the TMY3 module.

MesoWest module
Fig. 4.a shows the screenshot of the Graphical User Inter-

face for the MesoWest module. The operations related to each
represented button are shown in the flowchart in Fig. 4.b.

Similarly to the previous module, the user will choose the
geographic coordinates to download data accordingly. The user
can select the desired location by moving the marker on the
map. On the map, the active MesoWest stations in the selected
radius in the selected year are shown [36]. The user will select
a radius (5 miles by default) to scan MesoWest stations, which
can be extended up to 30 miles. Clicking on update map, after
the radius and the marker location are changed, will cause a
new group of MesoWest stations to be displayed. Clicking on
each station, the user can inspect the name of the station, its
coordinates, the corresponding Network ID and the available
weather variables and their associated period of record. Multiple
meteorological networks are available to download data from.
With the MesoWest API it is possible to use a flag to specify
the networks to use. Each network has specific features and can
capture specific variables, but a station or network might be
biased due to its location, sensor accuracy, sensor reliability or
sensor drift. As shown by Tyndall et al. [47], some networks are
more reliable than others. The NWS (National Weather Service)
network ‘‘consists of professional grade equipment", while the
CWOP (Citizen Weather Observer Program) network ‘‘frequently
relies on lower-grade sensors sited on residences". On top of that,

it is not possible to know the condition of a station located in
private houses; the stations’ surroundings or any possible bias
effects are not known. However, in some cases the quality of the
data of CWOP is comparable to NWS data [47].

CWOP stations can be highly unreliable, but they also have the
advantage of being the most diffuse network in many urban areas.
The current software was created to provide customized micro-
climate urban weather data to run building energy simulations.
For this reason, the user has the option to choose what networks
to include for each selected weather variable. The CWOP network
is available, along with the NWS network, RAWS (Remote Au-
tomated Weather Stations), the MW (MesoWest) network and
other networks listed in the window accessed through the ‘‘Net-
work" button. Each network could potentially be more reliable
for certain variables rather than others in a given location; the
user has the opportunity to select the most appropriate list of
networks for a particular weather variable. The user is cautioned
to consider the possible biases of the CWOP data, as well as any
bias effect of any given network.

Moreover, by moving the marker and the radius, it is possible
to check which variables are available in each station, which net-
work provides the variables, and what the corresponding period
of record is. The user can select the desired year accordingly. If
more than one year is selected, the output file will contain a linear
average of the data for each selected year.

It is important to understand the implications when selecting
multiple years. The TMY3 data are the most recently released
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Fig. 4. Screenshot and flowchart representation of the MesoWest module.

version of the TMY data, which were constructed taking into
account generally 15 to 30 [9] calendar years. For each month,
a representative month (among the years considered) was se-
lected that had behavior representing as closely as possible the
average weather behavior in the selected month over the years
considered [9]. A particular month in a TMY3 file, though, is
not a linear average of all the variables over the selected time
range. It actually corresponds to a particular set of data from a
specific month from a specific weather station for each urban
area, typically in the closest airport.

Fig. 5 shows the comparison between the dry bulb temper-
ature from the TMY3 data for Salt Lake City, UT and the linear
average of dry bulb temperature between 2004 and 2016 for
the Salt Lake City airport. The plot shows daily average data for
each day of the year. The average dry bulb temperature from
the airport is smoothed out with respect to the TMY3 data. The
latter maintains more of the inherent temperature fluctuations
since the data employed belong to real historical months. The
averaged airport data, because of the arithmetic mean procedure,
do not show the fluctuations visible in the TMY3 data. Even
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Fig. 5. Comparison between TMY3 data and averaged AMY data for the Salt Lake City, UT airport.

though on average the data might show the same temperature
trend, in terms of subsequent building energy consumption, the
locally varying temperature fluctuations could play a major role.
In the literature it is possible to find examples of linear averages
of weather data from multiple years [23]. Nevertheless, if the
weather data are used to perform building energy simulations,
the user is advised not to directly employ averaged data over a
multi-year period when the building’s thermal dynamics are of
interest.

When the ‘‘Download from MesoWest’’ function is called, mul-
tiple iterative loops are nested in it. The first loop is going over
each of the selected variables. Then, for each variable, the second
loop goes through each selected year. Finally, for each variable
and each year, the third loop goes through each identified station
in the radius specified by the user starting from the chosen
location. Before executing the last loop, the MesoWest API is
called to get the number of available stations (for the specific year
and variable) and their distance from the user’s location.

Inside is the third loop, as shown on the right hand side of
Fig. 4.b. The MesoWest API is called again to download the data
for each station, each year and each variable. A full explanation
of the MesoWest API is provided on their website [48].

The data downloaded from MesoWest have a time step of
5 min and may have some missing time steps randomly dis-
tributed in a whole year period. In order to account for this, the
function ‘‘5 min-to-1 h" is called. This function groups the data
into hourly time steps, averaging the available 5-min data in the
same hour. Subsequently, it locates where the missing time steps
are and applies a linear interpolation to fill the gaps. If the missing
data comprise more than 20 consecutive time steps, the quality
of the data is considered to be too low and the data are not taken
into account.

At the end of the third loop, each yearly vector for each station
is averaged. The data from all the considered stations are first in-
terpolated linearly according to the latitude only, then according
to the longitude only, and finally the two interpolated values are
averaged. This means that the values in each station are weighted
geometrically based on their distance from the location chosen by
the user; the stations closer to the chosen location influence the
final interpolated value more than stations further away. It is the
user’s responsibility to consider how far from the chosen location
the available stations are, and to judge their accuracy based on
the local geography. If they are far away, the data probably will
not reliably represent the weather in the selected location. If only
one station is available, the data from that station is assumed to
be representative of the weather in the selected location.

Leaving the second loop, then, each yearly vector has been
averaged over the total year-range declared by the user. This
procedure has been repeated for each selected variable. Finally,
a .csv file is output and saved in the path declared by the user.
The .csv file contains as many columns as the number of declared
variables. Each column is formed by a 1 line header, reporting the
name of the variable, and 8760 values, corresponding to the total
amount of hours in a one year period. The .csv contains either
actual weather data for a specific weather station or the inter-
polation of actual weather data from multiple weather stations.
Therefore, the .csv file represents an Actual Meteorological Year
(AMY) file.

EPW module
Fig. 6.a shows the screenshot of the Graphical User Interface

for the EPW module. The operations related to each button are
shown in the flowchart in Fig. 6.b.

Similarly to the previous modules, the user must indicate the
location of multiple files to perform the requested task. This mod-
ule is independent from the previous two, but the files output
from those two modules can be directly employed to create a
customized .epw file with this module. Initially the TMY3 file to be
modified is required. Once the user selects it, they may visualize
it.

As mentioned by Bhandari et al. ‘‘The minimum weather data
parameters necessary for whole building simulations accuracy
are: dry bulb temperature; wet bulb temperature and/or rela-
tive humidity, global, direct normal and diffuse solar radiation
(only two variables are required to represent solar radiation);
wind speed and wind direction (for natural ventilation and in-
filtration)" [34]. This is confirmed by other authors as well [11,
12,31,33,49,50], although sometimes the relevant variables are
reduced to dry bulb temperature, relative humidity and wind
speed [12] or to dry bulb temperature and relative humidity
only [33]. The customized .epw file for a specific location in an
urban area will be created starting from the TMY3 file relative
to the same urban area. Only the columns corresponding to 6
weather variables are currently available for customization: dry
bulb temperature, relative humidity, wind speed, wind direction,
atmospheric pressure, and dew point temperature. The rest of
the variables are assumed to be homogeneous throughout the
same urban environment. Although solar irradiation has been
reported to be important for the accuracy of building simulations,
the availability of solar radiation data is limited. Additionally it
is reasonable to assume the distribution of incoming radiation is
more likely to be homogeneous in the same urban area compared
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Fig. 6. Screenshot and flowchart representation of the EPW module.

with, e.g., temperature. Atmospheric pressure and dew point
temperature have been taken into account in order to respect the
proper psychrometric relationships with dry bulb temperature
and relative humidity.

The TMY3 file provides solar irradiation values assuming no
shading effects or reflections on the considered building by the
surrounding urban canopy. If the user is trying to generate a
site-specific weather file that would involve alteration of solar
irradiation, it is necessary to include these effects directly in the
building energy simulation software. For example, in EnergyPlus
it is possible to create virtual surfaces around the building model
in order to simulate the shading effect of surrounding buildings
or trees. The header of the TMY3 file is also read by the module
and can be customized by the user to indicate the geographical
details of the location of the new weather data.

Next, the user is requested to input a .csv file containing the
weather variables to be substituted in the original TMY3 file, and
to indicate what each column corresponds to. The .csv file will
contain as many columns as the number of selected variables.
Each column contains one line for the header with the name of
the variable and 8760 values for each variable. After indicating
the path to save the customized weather file, the user may launch
the function ‘‘Print .epw file". This function accepts the selected
TMY3 file as input, substitutes the header with the one defined
by the user, substitutes the TMY3 columns corresponding to the
variable selected by the user with the new data provided by the
user, and saves the new .epw file in the path indicated by the user.

It is important to emphasize that the psychrometric relation-
ships are preserved. Dry bulb temperature, relative humidity,
dew point temperature and pressure are correlated in LAF, so
that if any of these four variables is customized by the user,
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Table 1
Mean and standard deviation of dry bulb temperature for different
years at the William Browning Building (WBB).

TDB [◦C] σTDB [◦C]

2004 11.78 10.84
2006 12.45 10.80
2007 12.93 11.67
2008 11.79 10.98
2009 11.62 10.76
2011 11.30 10.79
2012 13.72 10.46
2013 11.31 12.11
2014 13.17 10.10
2015 13.67 10.33
2017 12.95 10.90
Mean 12.43 10.88
TMY3 11.87 10.59

it will be used to calculate the corresponding non-customized
psychrometric variable or variables.

The generated file has been tested with BEM simulations and
can be used to run simulations with EnergyPlus. Using the ap-
propriate converter [51], it is also possible to convert the created
.epw file into eQUEST and DOE-2 BIN weather files.

3. Illustrative examples

To demonstrate and test LAF’s capabilities, a simple analysis
was performed for the Salt Lake Valley, Utah, USA, and is shared
here. First, the TMY3 file relative to Salt Lake City was down-
loaded using the TMY3 module. Then, using the MesoWest Module,
weather data for multiple years for the WBB station (Latitude =

40.76623◦, −111.84755◦) on the University of Utah campus were
downloaded. The variables considered were: dry bulb tempera-
ture, relative humidity, wind speed and wind direction. The year
range downloaded is listed in Table 1, as well as the mean and
standard deviation of dry bulb temperature for WBB (William
Browning Building, University of Utah) each year. A .csv file was
output by the MesoWest Module and it was employed by the
EPW module, together with the TMY3 data file for Salt Lake City.
A customized .epw file was therefore created for each year and
employed to run building energy simulations in EnergyPlus.

A commercial reference building model [8], representing a
small office, was used to analyze the temporal variability of cli-
mate conditions at the WBB station. Building energy simulations
were run for all the selected years and the results were compared
with the results given by employing TMY3 data. The results for
cooling and heating loads, relative to a TMY3 baseline, are shown
in Fig. 7.

The relative difference with respect to TMY3 data can be as
high as 30% for the heating load and as high as 20% for the cooling
load, over the last 13 years at WBB. However, on average the
weather conditions are quite similar to the ones described by
TMY3 data, making it a reliable reference for generalized building
energy simulations even though it cannot capture the expected
behavior in a given year.

Additional analyses have been performed to investigate the
temporal variability of micro-climate conditions in the Salt Lake
Valley. Another station (the Salt Lake International Airport) and
two more building models (a primary school and a restaurant)
have been taken into account. The figures showing the results for
heating and cooling loads, analogous to those shown here for the
small office building example, are available in the supplementary
material.

4. Limitations

When using LAF, the user should be aware of the following
limitations:

• LAF does not provide solar radiation data. They can be quite
important for building energy simulations, particularly. However,
consistent and reliable measurements for radiation are much
more rare than for the variables considered here. The inclusion
of solar radiation data will be part of future developments.

• LAF does not control the availability of weather data, nor the
availability of weather stations in any specific city. In some cases,
the user may not find data for the requested years and/or in the
selected location.

• LAF does not provide data comparable to TMY3 data, which
are designed to be ‘‘representative’’ years rather than actual years.
TMY data were created using multiple months over as many
as 30 years. LAF provides actual weather variable values to be
overwritten on existing TMY3 data. This means the user is making
an implicit assumption that the variables that were not cus-
tomized will not affect their simulation results, or that they are
homogeneous over space and time. LAF allows the user to average
multiple years of data together. As explained in this manuscript,
though, this process may seriously affect the statistical character-
istics of the data and it is not suggested for simulating building
behavior. It is not appropriate to use one specific year as repre-
sentative for a multi-year portion of the building’s lifetime. The
user should be aware of any uncharacteristic weather patterns in
the location chosen that will show up in the weather data in a
given year.

• LAF does not control the quality of the data provided by each
network. Each network can be more reliable for some variables
and less reliable for some others. The user is advised to refer to
the literature [47] for more details about the MesoWest networks.
Using data of poor quality can significantly affect the results
of building energy simulations. In future versions, quality check
algorithms will be implemented. However, the user is always
responsible for evaluating the quality of the downloaded data,
and may choose to compare them with TMY3 data for reference.

5. Impact and conclusions

The Localized AMY File creator has been tested with Energy-
Plus and can produce ready-to-use .epw files for building energy
simulations. It is equipped with a simple GUI that allows the user
to efficiently take advantage of all its capabilities. This innovative
tool allows for multiple types of analyses to study the temporal
and spatial variability of micro-climate effects and their impact
on building energy consumption. It allows for a quick and easy
download of site-specific weather data (AMYs) in multiple sta-
tions in the same urban area. This extends the analysis of Bianchi
et al. [35] to more thoroughly investigate the spatial variability.
Likewise, it also allows for a quick and easy download of site-
specific weather data for multiple years in the same station. This
similarly extends the previous analysis [35] to investigate the
temporal variability of site-specific weather effects. It also allows
any researcher or practitioner to extend the previous analysis to
multiple locations in the United States and Canada, not just to
the Salt Lake Valley in Utah. Finally, it provides the user with
an efficient way of downloading TMY3 data for building energy
simulations.

LAF represents a useful complement to building energy simu-
lations from commonly used building energy modeling software
packages for manipulating, visualizing, customizing and convert-
ing weather data. It provides site-specific weather files that can
increase the accuracy of BEM simulations, thereby promoting
building energy conservation and optimal use of distributed en-
ergy resources. In contrast to other available tools, LAF provides
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Fig. 7. Temporal variability analysis. Relative difference between each year’s (a) heating and (b) cooling consumption and TMY3’s consumption for the WBB station.

free access to observed weather data for thousands of stations
from a variety of sources across the United States and it provides
them in a ready-to-use format for building energy simulations
that is highly customizable by the user.

Additional case studies will more widely investigate the vari-
ability of microclimate conditions in urban areas, in order to
better understand the advantages of using urban weather data
over TMY3 data.
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