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Goal: better 
fuels and better 

vehicles
sooner

Fuel and Engine 
Co-Optimization

o What fuel properties maximize engine 
performance?

o How do engine parameters affect efficiency?

o What fuel and engine combinations are 
sustainable, affordable, and scalable?

o Are there fuel and engine combinations that are 
optimal – highest life-cycle efficiency?
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Mixing-Controlled Compression Ignition (MCCI) Engines
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• Diesel engines are heavily utilized in freight 
transport globally.

• They are second only to gasoline in terms of 
liquid fuel demand.

• Diesel demand is expected to increase.
• Low-net-carbon biofuels have the potential to 

significantly reduce the carbon footprint of 
diesel combustion.

• Biofuels could have advantageous properties 
such as high cetane number and reduced 
engine-out NOx and particle emissions.



SAE INTERNATIONAL

Approach to Selection and Screening of MCCI Engine Fuels

• Similar to approach utilized for Boosted Spark Ignition 
(SI) engines: SAE Paper # 2017-01-0868

• Existing publicly available, on-line fuel property 
database was further expanded with input from 
multiple labs

• https://fuelsdb.nrel.gov/fmi/webd#FuelEngineCoOptimization
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Tier I Properties for MCCI:

Tiered approach for boosted SI

1. Melting point (MP)/cloud point (CP) < 0°C
2. Boiling point/T90 below 340°C (biodiesel 

allowed)
3. Flashpoint > 52°C
4. Low water solubility
5. Corrosivity equal to or lower than current fuels
6. Toxicity (eliminate category 1 and 2 

carcinogens or reproductive toxin)
7. Cetane number (CN) > 40
8. Lower heating value > 25 MJ/kg preferred
9. Sooting tendency – YSI  – report

https://fuelsdb.nrel.gov/fmi/webd#FuelEngineCoOptimization
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Tier I Answers the Questions: Can it be Fuel? And Can it be Diesel?
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1. Melting point/Cloud point < 0°C
2. Boiling point/T90 below 340°C 

(biodiesel allowed)
3. Flashpoint > 52°C
4. Low water solubility (< 20g/L)
5. Corrosivity equal to or lower than 

current fuels
6. Toxicity (eliminate category 1 and 2 

carcinogens and reproductive toxins)
7. Cetane number (CN) > 40
8. Lower heating value > 25 MJ/kg 

preferred
9. Sooting tendency – YSI  – report

Determine boiling and melting points 
(diesel range)

Apply flash point criteria

Identify known toxicity issues

Determine fuel handling (diesel 
distribution system is wet)

Apply ignition metric

• 400 + molecules and mixtures 
evaluated. 

• 25 pass into Tier 2.
• 12 available for further 

characterization.

100’s

12

Apply corrosion metric

Christensen, et al. Energy and Fuels, 2011, pp. 4723-4733
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Blendstocks and Mixtures After Tier I Screening
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• Developed by predicting 
what compounds would 
have desirable 
properties

• Compounds were 
synthesized in 
conjunction with 
Bioenergy Center within 
NREL

Multiple functional 
groups represented
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Selected Functional Group Assessment

Alcohols (1):
• Produced from long-chain fatty acids and triglycerides derived from biomass or via microbial routes
• Can have high MP, high viscosity, and low cetane—limits alcohols that can be used as MCCI blendstocks

Alkanes (5):
• Produced from biological or chemical hybrid routes
• Generally have excellent diesel fuel properties as neat blendstocks
• 5-ethyl-4-propylnonane was developed by predicting what compounds would have desirable MCCI properties and 

then developing a route to synthesize it

Esters (3):
• Methyl esters are primary components of biodiesel—a commercial biofuel
• Soy biodiesel has slightly higher CP than our screening criteria, but is used as a large scale

Ethers (3):
• Can be produced from fermentation or other routes
• Have high cetane value, but can have low flash point
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Tier II Screening: Fuel Blending Properties
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1. Effect on distillation curve
2. Conductivity and Lubricity
3. Oxidation stability >1 hr on ASTM D7545 test 

(based on Top Tier diesel requirement)
4. Viscosity between ~0.5 and 5.0 cSt at 40°C
5. Cloud point
6. Blending DCN (in surrogate)
7. Compatible with commercially available 

elastomers
8. Density – report
9. Carbon residue – report

Tier II Properties:

Blended into clay-treated 
diesel fuel at 20 vol%
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Properties of Clay-Treated Diesel and Seven-Component Surrogate

Property ASTM Method Units Value
Flash Point D93 °C 61
Water and Sediment D2709 vol.-% <0.005
Water D6304 µg/g 37
Viscosity at 40°C D445 cSt 2.663
Ash D482 % mass <0.001
Sulfur D5453 µg/g 6.2
Copper Strip 
Corrosion D130 N/A 1A

Aromatics D1319 vol.-% 31.6
Cetane Number (ICN) D8183 N/A 46.8
Distillation T90 D86 °C 330.2
Carbon Residue D524 % mass 0.09
Lubricity D6079 micron 520
Conductivity D4308 pS/m 1
Oxidation Stability D7545 minutes 68
Total Acid Number D664 mg KOH/g 0.08
Peroxide Value AOCS Cd 8b-90 mg/kg 1
Cloud Point D5773 °C -9.7
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Composition Molar % Wt-% Vol.-%
a-Methylnaphthalene 12.39 9.92 8.12
trans-Decalin 20.08 15.61 14.99
2,2,4,4,6,8,8-
Heptamethylnonane 19.00 24.20 26.11

n-Butylcyclohexane 10.50 8.28 8.67
n-Hexadecane 16.61 21.15 22.89
Tetralin 13.78 10.25 8.83
n-Dodecylbenzene 7.64 10.59 10.39
Total 100.0 100.0 100.0
Average Molecular 
Weight 177.78

Cetane Number (ICN 
D8183) 44.5

Density, g/mL 0.8430
Cloud point, °C -10.5
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D86 Results: 20% Blends in Clay-Treated Diesel
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• 2-Nonanol, butyl cyclohexane, dipentyl 
ether, 4-butoxy heptane, and dibutoxy 
methane all show a depression in the 
D86 curve—especially in the 10%–50% 
fraction evaporated region.
• Could be advantageous for increasing 

the pre-mixed burn fraction in diesel 
combustion, which may lead to 
improved combustion efficiency

• Methyl decanoate, hexyl hexanoate, 
5-ethyl-propyl nonane, and farnesane did 
not significantly affect the distillation 
curve.

• Soy biodiesel showed an increase in 
temperatures across the curve.
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Conductivity and Lubricity Results: 20% Blends in Clay-Treated Diesel
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• Renewable diesel and 2-nonanol increase 
conductivity above the minimum (25 pS/m)

• A conductivity additive could be used to increase 
the conductivity to an acceptable level for the 
other blendstocks

• Farnesane and soy biodiesel showed the largest 
impact on lubricity

• Hexyl hexanoate and methyl decanoate slightly 
improved lubricity

• Lubricity additives could be used to improve 
lubricity
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Oxidation Stability Results: 20% Blends in Clay-Treated Diesel
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• 2-Nonanol, undecane, hexyl hexanoate, and 
methyl decanoate significantly increased 
oxidation stability

• Soy biodiesel and 4-butoxy heptane significantly 
reduced oxidative stability— an antioxidant 
additive would be required to meet 60 min 
minimum– biodiesel is commonly treated with 
antioxidants to ensure stability in commercial 
market

• While not shown, treatment of pure 4-butoxy 
heptane with 100 ppm of the antioxidant 
butylated hydroxy toluene (BHT) and 20 ppm of 
a 20% blend in clay-treated diesel was highly 
effective at preventing oxidation

Oxidation Stability: >1 hr. on ASTM D7545 (based on Top Tier diesel requirement)
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Blending Cetane Results: 10%, 20% and 30% in Seven-Component Surrogate
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• Blends were prepared volumetrically 
in seven-component surrogate

• Values shown in parentheses are 
neat blendstock cetane 

• Cetane was measured using AFIDA

• Blendstocks in general blended 
linearly

AFIDA: Advanced Fuel Ignition Delay Analyzer
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Volumetric Blending Cetane: 10%, 20%, and 30% in 7-Component Surrogate
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Volumetric blending cetane was calculated for all blends 
bCNv = [Blend CN-Vs*CNs]/Vb

where:
Blend CN = CN of the surrogate+blendstock blends
CNs = CN of surrogate
Vs = volume fraction of surrogate
Vb = volume fraction of blendstock

In a few instances, antagonistic blending—the bCNv is 
lower than the pure component—was observed
• Dipentyl Ether
• Renewable Diesel
• Dibutoxy Methane (10% and 20%)
• 4-Butoxy Heptane (10% and 20%)
• Methyl Decanoate (10% and 20%)
We speculate that the surrogate interferes with the 
autoignition of the high-cetane blendstock, acting as a 
radical scavenger, but more work is needed to fully 
understand the chemical kinetic interactions
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Compatibility with Fuel System and Infrastructure Polymers
Assessed using Hansen Solubility Parameter (HSP) Theory: Done by comparison of the HSPs of 
pure MCCI blendstocks versus HSPs of polymers and plastics in various applications 
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Polymer Type Application
Elastomers
Fluoroelastomer (Viton™) Seals, liners, hoses
Fluorosilicone Seals
Neoprene Seals and hoses
Epichlorohydrin rubber Legacy seal material
NBR (HYCAR 1052) Seals and hoses
NBR (Buna-N) Seals and hoses
Plastics
Polytetrafluoroethylene (PTFE) or Teflon™ Liners and seals
Polyvinylidene fluoride (PVDF) Plastic piping
Nylon 66 (PA 66) Plastic piping and seals

Nylon 12 Fuel lines and plastic 
piping material

High-Density Polyethylene (HDPE) Fuel tanks

Polyoxymethylene (POM) or acetal Fuel line valves, pump 
and tank components

• All 11 MCCI candidates evaluated are 
predicted to be compatible with the 
elastomers and plastics listed in the 
table at all blend levels

• Long chain alcohols were the 
exception: they are likely to be 
incompatible with neoprene and NBR 
grades

NBR: nitrile rubber
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Summary
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• Approach for fuel property-based screening of potential MCCI blendstocks was developed
• Over 400 candidates were assessed, leading to 25 that met the basic Tier I requirements; however, only 12 

were readily available
• Several functional groups were represented and include a long-chain alcohol, five alkanes, three esters, and 

three ethers
• Blends with these 12 candidates were prepared, and Tier II criteria were assessed
• 2-Nonanol, butyl cyclohexane, dipentyl ether, 4-butoxy heptane, and dibutoxy methane all show a depression 

in the D86 distillation curve—especially in the 10%–50% fraction evaporated region, while the renewable 
diesel increased the distillation temperatures across the curve

• Most of the blendstocks would likely require the use of lubricity and conductivity improver additives to meet the 
finished fuel requirements

• Most of the blendstocks exhibited linear blending behavior, except in a few cases were antagonistic blending 
was observed. Further work to understand the molecular level interactions is needed

• A Hansen solubility analysis indicates that the candidates will likely be compatible with elastomers and 
polymers; however, the long-chain alcohols may be an issue for NBR and neoprene

• Results suggest that the 12 blendstocks have reasonable potential as commercial diesel fuels based 
on fuel properties
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