

Conversion, stability, and selectivity improvements through catalyst development for the reductive etherification reaction

Presenter: Glenn R. Hafenstine, Ph.D.

ACS Fall 2019 National Meeting Division of Catalysis Science and Technology, San Diego, CA August 27th, 2019

better fuels | better vehicles | sooner

U.S. DEPARTMENT OF Energy Efficiency & l∃ನe **Renewable Energy**

Waste-to-biofuel upgrading

Goal of upgrading low or negative cost feedstocks into targeted bioblendstocks

Ether production process

Iteration on technoeconomic analysis (TEA):

- Major TEA cost drivers include conversion, space velocity, selectivity-specifically dibutyl ether (DBE)
- Assumptions on catalyst stability and regenerability

AMFSP (\$/GGE) Current Case \$2.94

Tornado plot showing impact of various sensitivities on MFSP for the "Current Case."

Cost comparison for DBE-Free (neglecting dibutyl ether formation) and Best Case (100% selectivity to the target) scenarios relative to the experimentally based Current Case analysis.

Collaboration with TEA shows cost drivers and critical assumptions ³

Reductive etherification

Dual Catalyst System:

- Pd expected to be fairly stable
- Solid acids are known to absorb water and deactivate
- Side reactions on acidic surfaces can form inhibitory coking

Continuous flow reaction:

Continuous flow test: 0.25 mL/min of equimolar 4 heptanone & n-butanol, 2.2 g Pd/C, 6.6 g A-15, 120 $^{\circ}$ C, 1000 psig H₂ (3-4 fold excess)

Continuous flow reaction seems to show catalyst deactivation

Solid acid deactivation

Carbon deposition: Water adsorption:

Decrease in reaction rate of dimethylether over zeolite-based catalysts *ACS Catalysis* **2015**, 5, 1794−1803

 H_2O

 $H₂O$

 $H₂O$

 $H₂O$

 H_2O

Comparison of initial etherification rate and water concentration over Amberlyst-70 *Chemical Engineering Journal* **2014**, 246, 71–78

Deactivation can occur through carbon deposition or water adsorption metalliers of 5 September 10.5

Tailored solid acids

ACS Catal., **2018**, *8* (1), pp 372–391

Overall goal:

- Improved aqueous stability
- Improved thermal stability
- High acid site density
- Low cost materials

Phosphated metal oxides:

- Reported to be water-tolerant
- Thermally stable
- Varied acidities and material costs

Metal oxide surface modification with phosphoric acid

Water-tolerant acids could lead to increased stability and facile regenerability ⁶

Acidity characterization

 $NH₃-TPD$ results for total acidity measurements (Amberlyst-15 reported to be 4600 μmol/g)

Pyridine-DRIFTS spectra showing the relative amounts of Brønsted and Lewis acid sites.

Phosphating procedure increases Brønsted/Lewis ratio and possibly total acidity

Hydrophobicity evaluation

Thermogravimetric analysis of catalysts after treatment in saturated water chamber for 72 h. Little effect on acidity vs. hydrophobicity but reported to maintain catalytic efficiency

Acidity and water adsorption results show little change in hydrophobicity

Metal oxide batch testing

High-pressure batch reactors

20 mL equimolar 4-heptanone & n-butanol, 231 mg Pd/Carbon, 681 mg solid acid, 120 or 190 °C, 1000 psig H₂,1 h.

Increasing temperature improves ether yield and selectivity but A-15 is limited

Flow reaction tests

C3PO: a high-pressure trickle bed flow reactor

Significantly higher turnover (to acid sites) from metal oxide catalysts

Metal oxide stability was roughly double of the previous A-15 run

0.05 mL/min of equimolar 4-heptanone & n-butanol, 0.5 g Pd/C, 1.5 g acid catalyst, 1000 psig H_2

Increase in 4-BH Yield of 5%, increase in DBE yield of 7.5-fold

Single-phase catalyst

20 mL equimolar 4-heptanone & n-butanol, 231 mg Pd/Carbon, 681 mg solid acid, 1000 psig H₂, 1 h.

Pd crystallite size from X-Ray Diffraction spectroscopy using FWHM of 40° Pd peak

Single-phase catalysts show superior results in batch testing which the state of the state

Reaction pathway

20 mL equimolar 4-heptanone (or 4-heptanol) & n-butanol, 231 mg Pd/Carbon, 681 mg solid acid, 1000 psig $H₂$ (or He), 1 h.

Reaction seems to proceed through ketalization pathway of reductive etherification

Reaction pathway

Route A: Reduction, then etherification

Route B: Ketalization, then etherification

Metal & Acid:

Applied Catalysis A: General **2000**, 191,153–162 *Catalysts* **2015**, 5 (4), 2244-2257 *Green Chemistry* **2018,** *20* (5), 1095-1105 *Applied Catalysis B: Environmental* **2019,** *258*, 117793 *Energy Technology* **2019,** *7* (5), 1801071 Etc.

Palladium & Acid:

Tetrahedron Letters, **1995**, 36 (24), pp. 4235-4236 *Journal of Molecular Catalysis A: Chemical* **2000,** *152* (1-2), 133-140. *Bulletin of the Chemical Society of Japan* **2005,** *78* (3), 456-463 *Synlett* **2006,** 20, 3489-3491. ********Green Chem.,* **2012**, 14, 1626 *ACS Sustainable Chem. Eng.* **2016**, 4, 4089−4093 *ChemSusChem* **2017**, 10, 2527 – 2533 *Green Chemistry* **2018,** *20* (9), 2110-2117 *ChemSusChem* **2018,** *11* (21), 3796-3802 *RSC Advances* **2019,** *9* (44), 25345-25350

Palladium is heavily favored for acetal/ketal pathway of ether formation

Key takeaways

Reductive etherification for targeted bioblendstocks

• Phosphated metal oxides show increased Bronsted acidity but similar hydrophobicity

 $Nb₂O₅-PO₄$ shows increased turnover and selectivity in flow reaction tests

• Palladium-deposited onto TiO_2 -PO₄ at 7.5 wt% shows optimized yields enabling stronger regeneration conditions

Acknowledgements

Team and Collaborators

- PI: Derek R. Vardon
- Nabila Huq
- Xiangchen Huo
- Jim Stunkel
- **Loyal Murphy**
- Stephen Tifft TEA team:
- Matthew R. Wiatrowski
- Mary J. Biddy

NREL/PR-5100-74603

15 Supported by the DOE Bioenergy Technology Office under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Thank you for your time! Let's discuss