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Waste-to-biofuel upgrading
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4-butoxyheptane

Goal of upgrading low or negative cost feedstocks into targeted bioblendstocks



Ether production process

Iteration on technoeconomic analysis (TEA):
• Major TEA cost drivers include conversion, space 

velocity, selectivity-specifically dibutyl ether (DBE)
• Assumptions on catalyst stability and regenerability

3Collaboration with TEA shows cost drivers and critical assumptions

Cost comparison for DBE-Free (neglecting dibutyl ether formation)
and Best Case (100% selectivity to the target) scenarios relative
to the experimentally based Current Case analysis.

Tornado plot showing impact of various sensitivities on 
MFSP for the “Current Case.”



Reductive etherification
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Continuous flow test: 0.25 mL/min of equimolar 4-
heptanone & n-butanol, 2.2 g Pd/C, 6.6 g A-15, 120 
°C, 1000 psig H2 (3-4 fold excess)

Continuous flow reaction seems to show catalyst deactivation
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Continuous flow reaction:

Dual Catalyst System:
• Pd expected to be fairly stable
• Solid acids are known to absorb 

water and deactivate
• Side reactions on acidic surfaces 

can form inhibitory coking



Solid acid deactivation

5Deactivation can occur through carbon deposition or water adsorption

Comparison of initial etherification rate and  
water concentration over Amberlyst-70
Chemical Engineering Journal 2014, 246, 71–78

Carbon deposition: Water adsorption:

Decrease in reaction rate of dimethylether
over zeolite-based catalysts
ACS Catalysis 2015, 5, 1794−1803



Tailored solid acids

6Water-tolerant acids could lead to increased stability and facile regenerability

ACS Catal., 2018, 8 (1), pp 372–391

Overall goal:
• Improved aqueous stability

• Improved thermal stability

• High acid site density

• Low cost materials

Phosphated metal oxides:
• Reported to be water-tolerant

• Thermally stable

• Varied acidities and material costs
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Metal oxide surface modification with phosphoric acid



Acidity characterization
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Pyridine-DRIFTS spectra showing the relative 
amounts of Brønsted and Lewis acid sites.

NH3-TPD results for total acidity measurements 
(Amberlyst-15 reported to be 4600 μmol/g)

Phosphating procedure increases Brønsted/Lewis ratio and possibly total acidity



Hydrophobicity evaluation
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Thermogravimetric analysis of catalysts after 
treatment in saturated water chamber for 72 h.

Acidity and water adsorption results show little change in hydrophobicity

A-15

Metal 
Oxides

Little effect on acidity vs. hydrophobicity but 
reported to maintain catalytic efficiency



Metal oxide batch testing
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High-pressure batch reactors

Increasing temperature improves ether yield and selectivity but A-15 is limited 

20 mL equimolar 4-heptanone & n-butanol, 231 mg Pd/Carbon, 
681 mg solid acid, 120 or 190 °C, 1000 psig H2,1 h.



Flow reaction tests
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0.05 mL/min of equimolar 4-heptanone & n-butanol, 
0.5 g Pd/C, 1.5 g acid catalyst, 1000 psig H2

C3PO: a high-pressure 
trickle bed flow reactor

Preliminary flow tests show increased turnover and selectivity to diesel targets

Increase in 4-BH Yield of 5%, 
increase in DBE yield of 7.5-fold

Significantly higher turnover (to acid 
sites) from metal oxide catalysts

Metal oxide stability was roughly 
double of the previous A-15 run

120 °C

Nb2O5-PO4Amberlyst-15



Single-phase catalyst

Pd-TiO2-PO4

11Single-phase catalysts show superior results in batch testing

Pd crystallite size from X-Ray Diffraction 
spectroscopy using FWHM of 40° Pd peak

20 mL equimolar 4-heptanone & n-butanol, 231 mg 
Pd/Carbon, 681 mg solid acid, 1000 psig H2, 1 h.

Incipient wetness deposition 
of Pd onto metal oxides

TiO2 TiO2 TiO2



Reaction pathway
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Route A: Reduction, then etherification Route A Route B

Reaction seems to proceed through ketalization pathway of reductive etherification

Route B: Ketalization, then etherification

20 mL equimolar 4-heptanone (or 4-heptanol) & n-butanol, 231 
mg Pd/Carbon, 681 mg solid acid, 1000 psig H2 (or He), 1 h.
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Reaction pathway
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Route A: Reduction, then etherification

Palladium is heavily favored for acetal/ketal pathway of ether formation

Metal & Acid:

Palladium & Acid:

Tetrahedron Letters, 1995, 36 (24), pp. 4235-4236
Journal of Molecular Catalysis A: Chemical 2000, 152 (1-2), 133-140.
Bulletin of the Chemical Society of Japan 2005, 78 (3), 456-463 
Synlett 2006, 20, 3489-3491.
***Green Chem., 2012, 14, 1626
ACS Sustainable Chem. Eng. 2016, 4, 4089−4093
ChemSusChem 2017, 10, 2527 – 2533
Green Chemistry 2018, 20 (9), 2110-2117
ChemSusChem 2018, 11 (21), 3796-3802
RSC Advances 2019, 9 (44), 25345-25350

Applied Catalysis A: General 2000, 191,153–162
Catalysts 2015, 5 (4), 2244-2257
Green Chemistry 2018, 20 (5), 1095-1105
Applied Catalysis B: Environmental 2019, 258, 117793 
Energy Technology 2019, 7 (5), 1801071 
Etc.
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Route B: Ketalization, then etherification



Key takeaways
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• Phosphated metal oxides show 
increased Bronsted acidity but 
similar hydrophobicity

• Nb2O5-PO4 shows increased 
turnover and selectivity in 
flow reaction tests

• Palladium-deposited onto TiO2-PO4 at 7.5 
wt% shows optimized yields enabling stronger 
regeneration conditions

Reductive etherification for targeted bioblendstocks
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Thank you for your time!
Let’s discuss
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