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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
H2

• Progress in reducing process cost
o Reducing catalyst cost
o Reducing regeneration time
o Varying upgrading parameters
o Catalyst lifetime
o Changing pyrolysis temperature

• Constraints
o Not increase oxygen in oil
o Not increase hydrotreating requirements
o Not decrease yield

Overview
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• Monday talk (C. Mukarakate, “Performance Comparison of 
three Biomass Catalytic Fast Pyrolysis Pathways…”) and 
Griffin et al. paper (below)
o Hydrotreating (HT) of Catalytic fast pyrolysis oils (CFP) is 

lower cost and more reliable than hydrotreating of raw 
pyrolysis oil

o CFP with Pt/TiO2 and hydrogen gives higher yield (and 
carbon yield) than ZSM-5 upgrading

– Some HDO of oxygenates means less carbon lost as COx
– Hydrogenation of coke precursors reduces carbon lost to coke

Why Pt/TiO2 catalytic fast pyrolysis and hydrotreating?

1. Griffin et al. E&ES, 
2018, DOI: 
10.1039/c8ee01872c

2. Paasikallio et al. Grn. 
Chem. 2014, 16, 3549

Carbon 
Yield

Oxygen 
content

1Pt/TiO2 38% 16%
2HZSM5 24% 22%



4

• Pine

CFP process

BIOMASS PYROLYSIS CATALYTIC 
UPGRADING OIL

AQUEOUS

HYDROTREAT 
(HT) AND BLEND 

TO FUEL

• 500°C
• 0.8 bar H2
• 1.0 bar total

• Pt/TiO2
• Fixed bed
• 400°C

• OIL PRODUCTION

• REGENERATION OF FIXED-BED CATALYST

USED 
Pt/TiO2

OXIDIZE 
O2 /N2

3 h

REDUCE 
IN H2
2 h



5

Experimental System
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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
H2

• Progress in reducing process cost
o Reducing catalyst cost
o Reducing regeneration time
o Varying upgrading parameters
o Catalyst lifetime
o Changing pyrolysis temperature
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• Need to decrease platinum while maintaining 
performance

Process cost is sensitive to catalyst cost

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

Where we were

Techno-economic sensitivity analysis
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Can a lower Pt (cost) catalyst work?  Catalyst properties
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Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

• 2% Pt made by incipient wetness
• 0.5% Pt by strong electrostatic adsorption (SEA)
• Higher dispersion of Pt on 0.5% makes properties of two 

catalysts very similar
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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
H2

• Progress in reducing process cost
o Reducing catalyst cost

o Reducing regeneration time
o Varying upgrading parameters
o Catalyst lifetime
o Changing pyrolysis temperature

• Constraints
o Not increase oxygen in oil
o Not increase hydrotreating requirements
o Not decrease yield

Overview
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• Increasing online : regeneration time reduces 
number of reactors and catalyst inventory

Process cost is sensitive to regeneration time

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

Where we were

5 reactors regenerating
2 reactors operating

Techno-economic sensitivity analysis
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When is regeneration necessary?
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• Remove coke  oxidize in O2/N2 mixture 
– overnight in 1% O2/99% N2 at 450°C

Regeneration Protocols

• Reactivate catalyst  treat in H2
– 2+ h with 85% H2/15% N2

• Overall 17 h
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• Catalyst oxidation shown above
• Also, Reduction time reduced to ~1h in 85% H2

• Online: regeneration 2:3 (0.66)
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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
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• Temperature effects are not significant
• Increasing hydrogen partial pressure

o Decreases oil oxygen content
o Increases gas yield
o Enhances hydrodeoxygenation

Varying hydrogen partial pressure and catalyst temp.
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Impact of H2 Partial Pressure on Gas Yields

Increasing H2 partial pressure
• Increases CH4 and light alkane and alkene formation (increased cracking)
• Increases aqueous mass yield
Consistent with increased hydrodeoxygenation (HDO)
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• As H2 decreases, more methoxyphenols, less 
alkylphenol/phenol

GC/MS composition changes with H2 partial pressure & Tcat
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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
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Catalyst stable past 150 hours
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• Highlighted points are Pine/500C/400C/0.8 bar H2/ B:C = 3
• Each cycle is 2 h
• Stable after initial break-in
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Only slight variations in composition with catalyst aging

• Slight decrease in phenols, increase in methoxyphenols and 
naphthols
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• Status of and motivations for upgrading biomass 
pyrolysis vapors to fuel intermediates with Pt/TiO2 and 
H2

• Progress in reducing process cost
o Reducing catalyst cost
o Reducing regeneration time
o Varying upgrading parameters
o Catalyst lifetime
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Higher pyrolysis temperature gives higher B:C at low O

• Potential for even higher biomass: catalyst than shown
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Higher pyrolysis temperature delays breakthrough
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• Have improved cost substantially

Summary: How much progress have we made?

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c
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• Conclusions
o Lower-Pt catalyst performs comparably to higher-Pt catalyst
o Regeneration shortening improves projected cycle time
o Increasing hydrogen pressure decreases oxygen and 

methoxyphenols, increases phenols
o Increasing pyrolysis temperature 500-550°C delays catalyst 

deactivation while giving comparable yield and oxygen, 
increasing time-on-stream

• Future:
o Decrease catalyst cost 
o Higher B:C through higher pyrolysis temperature
o Identify bad actors in pyrolysis oil
o Lower-cost feedstock

Conclusions& Future
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