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ABSTRACT
In this paper, we implement a convolutional neural networks (CNN)-
based autoencoder to investigate occupancy profiles.We usedAmer-
ican Time Use Survey (ATUS) data, which contained 191,558 sched-
ules with binary occupancy information. Our results suggest that
the trained filters provide an important insight into occupancy
profiles (i.e., dominant and distinct patterns), and the latent space
compresses the profiles with representative information.
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1 INTRODUCTION
Occupancy information is essential for building simulation and
control problems [4]. For this reason, researchers have recently
explained the importance of data-driven approaches for occupant
behavior modeling [1]. With a very large data set (e.g., [3]), ex-
tensive manual feature engineering is often required, which is
cumbersome and error-prone. In this paper, we adopt a CNN-based
autoencoder to investigate the ATUS data (191K occupants with
15-minute intervals). Our approach automatically: (1) calculates the
convolution filters, which contain critical information of occupancy
schedule; and (2) compresses the input schedule into a lower di-
mension with informative representations. We visualize the trained
filters and demonstrate the procedure of our autoencoder with a
test occupancy schedule.

2 OCCUPANCY SCHEDULE DATA SET
As noted, we used ATUS data [3], in which respondents reported
their activities (e.g., sleeping, working, cooking, and so on) and
the corresponding timeline (15-minute interval) for the previous
day. We preprocessed the original data set (2013–2017) into an
occupancy profile format. For example, if the responses are related
to home activity, then we considered such activity to be present;
otherwise, we considered responses to be absent. In brief, our data

Table 1: Autoencoder architecture (Decoder is the mirror of
encoder; the last layer uses a sigmoid activation function)

Layer Details Shape

Input - (1,96,1)
First convolution ReLU with same padding (1,96,48)
First pooling Max pooling with (1,4) (1,24,48)
Second convolution ReLU with same padding (1,24,24)
Second pooling Max pooling with (1,4) (1,6,24)
Encoded - (1,6,6)

set contains 191,558 participant schedules as 96 data points with
binary occupancy information (0: absence, 1: presence).

3 CNN-BASED AUTOENCODER
To analyze our large amount of data, we employed a CNN-based
autoencoder. Typically, an autoencoder is used for dimensionality
reduction in an unsupervised manner, and it takes the same input
and output data to learn important representations of data. Table
1 details our autoencoder architecture. It has two encoding and
decoding layers with a bottleneck in the middle to reduce the di-
mension of the input data. This reduction could filter out the noise
and preserve only important feature-related information. Generally,
occupancy profiles have continuous presence and absence patterns,
which can be compressed by the proposed bottleneck layer. Note
that the dimension of the latent space is important and can be
further studied for the various objectives of other autoencoders.

As a learning component, we used CNN [2], which is actively
researched in computer vision. We investigated the trained filters
in the convolution layers to understand the learning process. For
example, we intentionally selected 1d convolution filters (1, 4) to
investigate which subsequences are critical in occupancy schedules.
We used a rectified linear unit activation function (ReLU) to consider
nonlinearity in feature extraction and a sigmoid activation function

Figure 1: Training and validation loss

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
1

https://doi.org/10.1145/3360322.3360989


BuildSys ’19, November 13–14, 2019, New York, NY, USA Park et al.

Figure 2: 48 trained convolution filters in the first layer

in the last decode layer. The RMSprop [5] was used to optimize the
weights of the autoencoder with 100 epochs and a 128 batch size.

4 RESULTS
We assigned 191K schedules to the training (60%) and validation
(20%) set. The rest (20%) are considered to be the final test set, which
is not used in the training phase. Fig. 1 indicates that both the
training and validation loss rates smoothly decreased. In addition,
the overall error rate on the test set (41K schedules) is 0.0119.

Fig. 2 shows all 48 trained filters in the first convolution layer.
The majority have a relatively steady shape. Note that the filter size
is (1, 4), which is a 1-hour subsequence with a 15-minute interval.
This suggests that the occupancy schedules have a number of 1-
hour subsequences (i.e., either continuous presence or absence),
and the autoencoder learns occupancy profiles by such filters.

To demonstrate the autoencoder process, we sampled one occu-
pancy schedule from the test set. As shown in Fig. 3, the encoder
compresses the input into the latent space, and the decoder gen-
erates the output with the same input dimension. The similarity

Figure 3: Input, output, and latent space of the test schedule

Figure 4: Featuremap and pooling result of the test schedule
with the highlighted filter in Fig. 2

between the input and output profile suggests that the latent space
preserves the informative representation of the input.

We also detail the first convolution and pooling layer. The high-
lighted filter (orange) in Fig. 2 is very important, because it activates
significantly to the next layer. Fig. 4 illustrates the feature map and
pooling result from the sample input schedule. The filter has a sharp
down and up shape and convolves similar subsequences in the input
test schedule, resulting in two high peaks and one low peak in the
feature map. Also, the max pooling compressed the feature map
with the informative representation.

5 FUTUREWORK
The autoencoder could be improved by tuning the parameters.
Also, we should evaluate the feature importance systematically. For
applications, we could use the latent space for clustering schedules
and apply the autoencoder to analyze various behavior types.
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