L iNREL

Transforming ENERGY

Ultrafast Frequency Response of
Converter-Dominant Grids Using
PMUs

Presenter: V. Gevorgian
Team:  H. Villegas, lowa State University
P. Koralewicz, E. Mendiola, S. Shah, R. Wallen, NREL

18t Wind Integration Workshop
Dublin, Ireland
October 17, 2019



What Is Fast Frequency Response?

An alternative method to achieving faster compensation to load-generation
imbalances resorts to detecting the amount of a disturbance that triggers a
frequency transient.

We propose a control strategy to deploy ultrafast frequency response (FFR)
converter-based assets. The objective is to prevent relatively large frequency

transients by counteracting the impact of sudden imbalances on an electric grid.

FFR: tens of milliseconds.
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Active Power Response of Type 3

Wind Turbine Generator

Measured Response of 1.5 MW Type 3 WTG
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* This test was conducted with a commercial wind power plant controller.
e All plant-level and turbine-level control delays are real.
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Ability of Battery Energy Storage System
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Battery energy storage system (BESS) active
and reactive power in grid-following mode

T T T 1

] MMMWM
j .

P

Q| 4

/
f \ 20 ms ramp

bt

-0.2

272 276 28 284 288 292 296 3 3.04 3.08

pq [MW, MVAI
&£55 ocooccocopee
WN=2DO2a2MnNwWwhMD=~0OWO

BESS active and reactive power
in grid-forming model

p =

Q| ]

1-MW/1-MWh BESS at NREL test site

Photo by NREL

03 06 09 12 156 18 21 24 27 3 33 36 28

NREL | 4



Phasor Measurement Unit Networks
Embedded in Power Systems
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Phasor Measurement Unit-Based

Wide-Area Stability Control Concept
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Total of 12+ MW variable renewable generation currently
) 7-MVA controllable grid interface (CGl)
N R E L F I at| ro n S Ca m p u S Multimegawatt energy storage test facility
2.5-MW and 5-MW dynamometers (industrial motor drives)
13.2-kV medium-voltage grid
1.5-MW total photovoltaic (PV) capacity.
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National Wind Technology Center

Controllable Grid Platform
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Phasor Measurement Unit-Based

System Characterization Test Setup
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CGl voltage, angle, frequency
perturbation injection through
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Synchrophasor data paths

— PMU to RTAC
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Transfer Function: 5% Magnitude Injection
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Transfer Function: 0.5-Hz Frequency Injection
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Transfer Function: 0.1 Rad Angle Injection
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Power System Observability

for Fast Frequency Response
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Bulk transmission system and PMU placement problem
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Constraint Ax > 1 ensures that every bus
voltage becomes observable via measurement
or estimation when placing the PMUs.

Solution ensures that all positive-sequence bus voltages, and the currents leaving a bus,
become available at a phasor data concentrator facility by direct measurement
and/or estimation.

NREL | 14



Load-generation disturbance detection dynamics
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Fast Frequency Response and Backup Option

cyber commands
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FFR response is dispatched to participating wind and
storage plants based on estimated generation or load loss
AP from PMU-based algorithm.

If accuracy of PMU-based measurements is compromised
(communications loss or cyberattack), then local

aggressive droop control will kick in as a backup response.
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10

20

30
TIME (s)

(1)

i \
‘ é \
; 4 )

—No services by BESS and renewables
—WindInertia only
—WindInertia+5% Wind droop

BESS providing inertia and 1% droop

)—WindInertia+5% Wind droop+BESS inertia
5 ) —WindInertia+5% Wind droop+BESS inertia +1% BESS droop
o

—WindInertia+5% wind droop+5% PV droop
—BESS Inertia + FFR with 2s delay

—BESS Inertia + FFR with 1s delay

——BESS Inertia + FFR with 100ms delay

40 50

60



Results of PHIL Experiment Using Fast Frequency

Response by Battery Energy Storage System
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1.5-MW Wind Turbine Generator
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Active Power Modulation (25 kW pk-to-pk)
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* Transfer function for active power has been
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Testing of 1.5-MW Type 3 Wind Turbine Generator
for Power System Oscillation Damping Services
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Ability of DFIG Wind Turbine Generator to Provide
Simultaneous Modulation of P and Q
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Conclusions and Future Plans

Inverter-coupled resources are capable of providing FFR.

PMU-based estimation of needed system-level FFR response is possible,

but:

How can it be done in an optimal way?
How can it address the curtailment issue?

What is the optimal ratio between FFR and conventional droop
resources?

FFR by grid-forming resources—still needs to be studied.

Curtailed inverter-coupled resources have the potential for the provision
of wide-area stability services using PMU-based controls as well.
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Thank you!
Go raibh maith agat!
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