

The Technical, Demand, and Economic Potential of H2@Scale within the United States

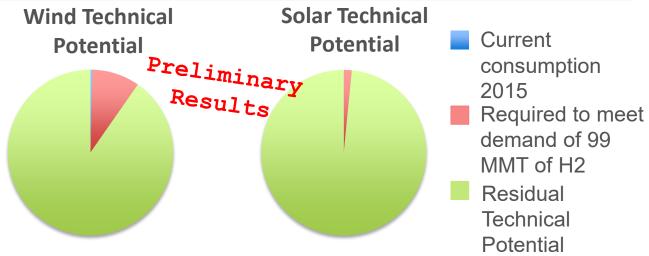
NREL (Lead): Mark F. Ruth, Paige Jadun; ANL (Co-lead): Amgad Elgowainy; INL (NE Partner): Richard Boardman Contributors: Nicholas Gilroy (NREL), Elizabeth Connelly (NREL), Suzanne Singer (LLNL), Jarett Zuboy (Independent Contractor)

H2@Scale Workshop at the Fuel Cell Seminar November 5, 2019 Long Beach, California

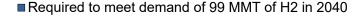
Demand Potential

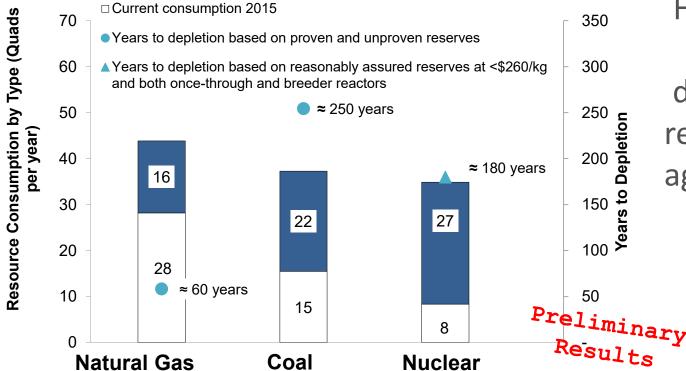
Demand potential of hydrogen market by 2050 is >9X.

Other applications are possible based on technology and policy growth as well as smaller applications

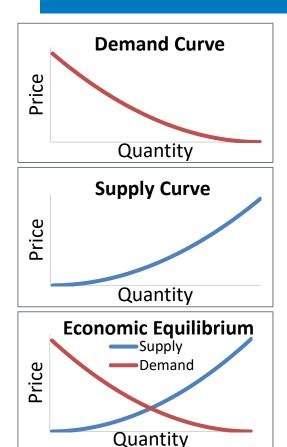

Application	Demand Potential (MMT/yr)	2015 Market for On- Purpose H2 (MMT/yr)	
Refineries and the chemical processing industry (CPI) ^a	8	6	
Metals	12	0	
Metals Ammonia Preliminary Biofuels Results	4	3	
Biofuels	4	0	
Synthetic fuels and chemicals	14	1	
Natural gas supplementation	10	0	
Seasonal energy storage for the electricity grid	15	0	
Industry and Storage Subtotal	67	10	
Light-duty fuel cell electric vehicles (FCEVs)	21	0	
Medium- & Heavy-Duty FCEVs	11	0	
Transportation Fuel Subtotal	32	0	
Total	99	10	

Definition: The demand potential is the estimated market size constrained by the services for which society currently uses energy, real-world geography, system performance, and by optimistic market shares but not by economic calculations.


Technical Potential Supply from Renewable Resources


	EIA 2015 current consumption (quads/yr)	Required to meet demand of 99 MMT / yr (quads/yr)	Technical Potential (quads/yr)
Solid Biomass	4.7	24	19
Wind Electrolysis	0.68	16	170
Solar Electrolysis	0.17	16	1,000

Total demand including hydrogen is satisfied by ≈10% of wind, 2% of solar, and ≈150% of biomass technical potential


Technical Potential of Fossil and Nuclear Resources

Hydrogen can be produced from diverse domestic resources to meet aggressive growth in demand

Economic Potential Methodology: Market Equilibrium

Demand Curve: how much are consumers willing and able to pay for a good?

Supply Curve: threshold prices showing how much are producers willing and able to produce at each?

Economic Equilibrium: Quantity where demand price is equal to the supply price.

- No excess supply or demand.
- Market pushes price and quantity to equilibrium.

escribed in Schwartz, Robert A. *Micro Markets A*

Economic Potential: Five National Scenarios

Scenario Name	Reference	Low NG Resource	Improved Electrolysis	Biomass Resource	Lowest-Cost Electrolysis	
Natural gas price assumption	Reference	Higher				
Low-Temperature Electrolysis						

Not available

Key differences in scenarios: 1) natural gas price assumption, 2) electrolyzer cost assumption, 3) electrolyzers' access to grid service markets, 4) increased threshold price in metals industry, &

Competitive Market

اطمانوس

Available

Premium Available

Improvements

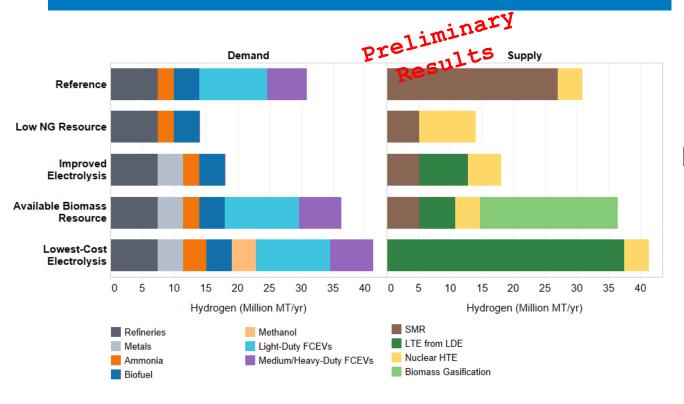
Aggressive

Assumptions

Not Available

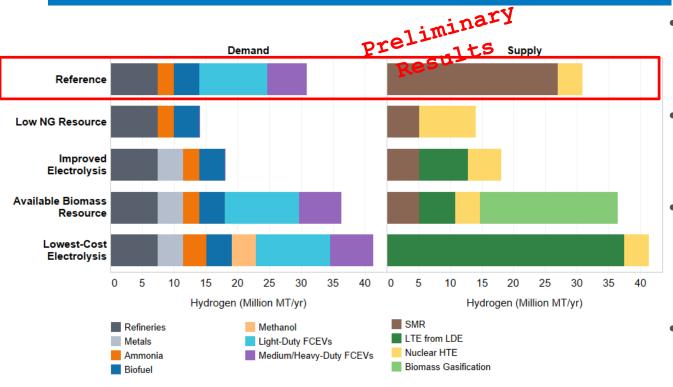
Low-Temperature Electrolysis
(LTE) capital costs

Current Trajectory
Low-cost, Dispatch-constrained

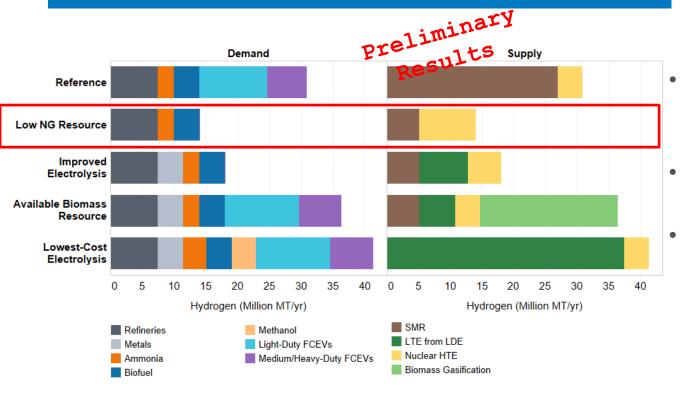

5) competition for biomass resource

Electricity purchase assumption

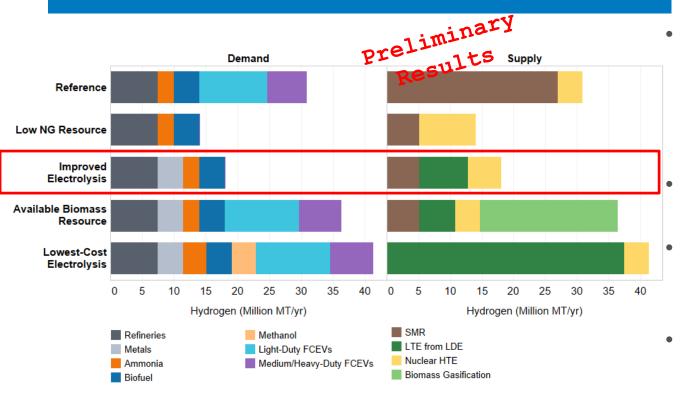
Biomass


Metals demand

Economic Potential Results

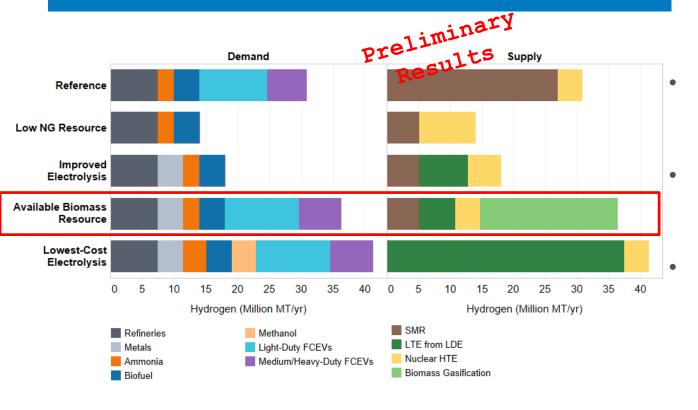

The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.

Reference Scenario


- Lowest natural gas prices; thus, higher penetrations of FCEVs
- About 10% of U.S. nuclear generation to H₂
- Refineries and ammonia demands based on growing markets
- Biofuels demand limited to Renewable Fuels Standard

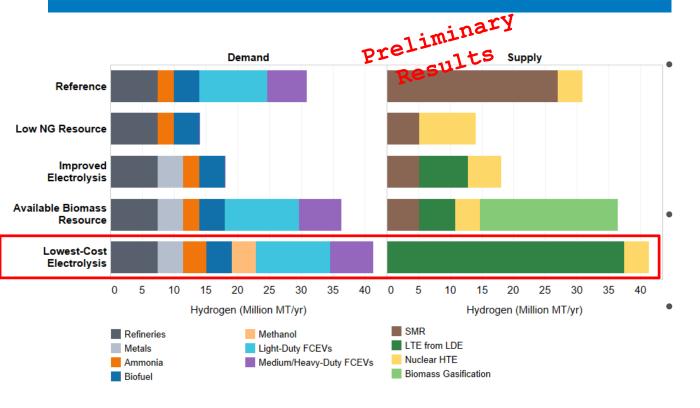
Low Natural Gas Resource Scenario

- Higher natural gas prices than reference scenario
- Thus, negligible growth in hydrogen demand
- Only economic demands: refining, ammonia, biofuels


Improved Electrolysis Scenario

Low-Temperature electrolyzer (LTE) purchase cost reduced to \$200/kW & reduced electricity price adder Supply growth due to electrolytic hydrogen **Increased willingness to** pay for H2 for metals refining

Leads to demand for growing domestic metals refining industry


Available Biomass Resource Scenario

- Only scenario with biomass available for hydrogen production
- Lowest cost biomass resource assumed available
- Lower cost hydrogen allows demand growth

FCEV: Fuel Cell Electric Vehicle

Lowest-Cost Electrolysis Scenario

Low-Temperature electrolyzer (LTE) purchase cost reduced to \$100/kW & no electricity price adder **Electrolytic hydrogen** less costly than steam methane reforming Larger ammonia and chemicals opportunities than other scenarios

FCEV: Fuel Cell Electric Vehicle

Key Conclusions

- The potential demand of hydrogen demand in the U.S. is >9X current annual consumption.
- The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.
 - Range across 5 scenarios developed using a variety of economic and R&D success assumptions
- Up to 20% of current **nuclear power plants could improve their profitability** by producing hydrogen.

For More Details

- Power-to-Gas Technical Session
 - Thursday at 1:30 in room 103 A/B
- Two presentations
 - H2@Scale: Economic Potential of Hydrogen as an Energy Intermediate
 - Electrolysis' Potential Value for Supporting the Electrical
 Grid

Thank You

Mark.Ruth@nrel.gov

www.nrel.gov

NREL/PR-6A20-75337

Additional information on H2@Scale can be found at:

https://www.hydrogen.energy.gov/pdfs/review18/h2000 pivovar 2018 o.pdf https://www.hydrogen.energy.gov/pdfs/review19/sa171 ruth 2019 o.pdf http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

