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The unique role of biomass

While the growing need for

sustainable electric power can be met
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The unique role of biomass

While the growing need for

sustainable electric power can be met

by other renewable sources. . .

biomass is our primary renewable

source of carbon-based fuels and
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Terrestrial biomass utilization

Biomass Feedstock

Lignocellulosic
• Woody (trees)

• Herbaceous (grass)
• Waste (agri, municipal)

Sugar/Starch
• Corn

• Sugar cane

Plant oils

Utilization

Paper
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• Diesel/gasoline blends

Food

Pulp and paper proc.

Combustion, gasification
Digestion + bioconv; pyrolysis

Bioconversion

Hydrodeoxygenation
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Terrestrial biomass feedstocks

◮ Non-spherical particles
• “Chips” (plates, rods)
• Fibers (flexible)

◮ Heterogeneous (size, shape, and
composition)

◮ Low density

◮ Compressible

◮ Moisture content: 10-50%

Short term goal: model feed-handling oper-
ations of simple biomass (wood chips with
narrow size range)

Image from Jenike & Johanson
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Mathematical models of dense granular materials

Discrete element method (DEM)

◮ Interactions between individual
particles computed and all particles
tracked

◮ State-of-the-art for flows of granular
materials

◮ Limited by computational cost to a
few million particles

Continuum models

◮ Mohr-Coulomb

◮ Drucker-Prager-Cap

• Originally used in solid-mechanics
frameworks (probing structural failure)
• Recent work to implement for dynamic
flow (FEM simulations)

◮ Inertial (“μ-I”) rheology

• Shear and pressure-dependent friction
coefficient
• Implemented in a fluid mechanics
framework

◮ Non-local granular fluidity

• Extension of inertial rheology
• Aims to capture “nonlocal” phenomena

◮ Nonlocal Hypoplasticity, NorSand, Others?
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Inertial (“μ-I”) rheology

Implemented as a generalized
Newtonian fluid 1,2

◮ Navier-Stokes equations

◮ Inertial rheology viscosity:
depends on strain rate and
pressure

◮ Shown to reproduce bulk-flow
phenomena, e.g., Beverloo
scaling in flow from a silo

◮ Ill-posed for some parameter
values (due to pressure term in
viscosity)?3

∇ ·u = 0

ρB

�

∂u

∂t
+u · ∇u

�

= ρBggg − ∇p+ ∇ · (2ηD)

η =
μ(I)p

γ̇

μ(I) = μs +
∆μ

1+ I0/ I
, I =

dγ̇
Æ

p/ρp

DEM (left) and Inertial rheology (right)2

1
Jop, P., et al. (2006). Nature, 441:727–730

2
Staron, L., et al. (2014). The European Physical Journal E, 37:5

3
Barker, T., et al. (2015). Journal of Fluid Mechanics, 779:794–818
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Nonlocal granular fluidity (NLGF)

Extension of inertial rheology4,5

◮ “Fluidity”, g(x), with an evolution
equation: propagation of flow that
depends on particle length scale

◮ Previously evaluated in
steady-state flows and simple
geometries (no dynamic
simulations)

• Shown to reproduce nonlocal
phenomena, e.g., stop height of
flow on an incline

◮ Pressure-viscosity-shear
instability?

∇ ·u = 0

ρB

�

∂u

∂t
+u · ∇u

�

= ρBggg − ∇p+ ∇ · (2ηD)

η =
p

g
, μ =

γ̇

g

t0
dg

dt
= A2d2∇2g−∆μ

�

μs − μ

μ2 − μ

�

g

−
∆μ

I0

√

√

√
ρpd2

p
μg2

4
Henann, D.L., & Kamrin, K. (2013). PNAS, 110:6730–6735

5
Kamrin, K., & Henann, D.L. (2014). Soft Matter, 11:179–185
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NLGF model parameters
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◮ Material properties (e.g., pine chips)

ρB, ρp, d

◮ 3 parameters shared with inertial-rheology

model:

μs, μ2, I0, (∆μ = μ2 + μs)

Can be determined directly from inclined-plane
flow experiments.

◮ 2 new parameters:

A, t0

Can be determined by matching model results
to flow experiments.

◮ Limits needed on values for fluidity, friction
coefficient, and pressure to prevent divide by
zero:

gmin = 10−6, μmax = 0.98μ2, pmin = 10 Pa
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CFD implementation

◮ Open-source CFD software OpenFOAM

◮ Incompressible Volume-of-fluid (VOF) method

◮ Implemented custom rheology model for NLGF

• Viscosity model with pressure
• Evolution equation for fluidity

◮ Simple meshes were developed directly

(blockMesh)

• At least 10k cells (for 2D geometries)

◮ Boundary conditions for fluidity? Both fixed and
zero gradient suggested in literature. Small
fixed value is logical for zero slip:

g(x = ∂Ω, t) = gmin

◮ Initial condition:

g(x, t = 0) = 10
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Materials

Hammer-milled loblolly pine to pass
through 1/4 in screen:

ρp = 500 kg/m3

ρB = 236 kg/m3

d50 = 0.8mm
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Materials

Hammer-milled loblolly pine to pass
through 1/4 in screen:

ρp = 500 kg/m3

ρB = 236 kg/m3

d50 = 0.8mm

Some simulations used properties of
glass beads to compare to literature
results:

ρp = 2500 kg/m3

ρB = 1500 kg/m3

d = 1mm
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Experimental methods: Inclined plane

◮ Storage-box filled with material

◮ Laser-scanner used to measure
material position and velocity on
ramp

◮ Gate opened to sufficient height to
initiate flow, 75− 200mm

◮ Flow observed and front velocity
measured

◮ Gate closed when ∼ 1
2
of material

has exited

◮ Stop-height profile measured

1
2
2
0
m
m

76
0m

m
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Experimental methods: Ring-shear tester

◮ Schulz Ring-Shear Tester (RST-01)

◮ Mohr-circle analysis of shear
stresses vs. compressive stresses

◮ Standard measurement of
cohesion and internal friction

https://www.gfz-potsdam.de/en/section/lithosphere-
dynamics/infrastructure/heltec-helmholtz-laboratory-for-tectonic-
modelling/lab-infrastructure/
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Inclined-plane, experimental results

animations/29’5deg_14in_open.mp4 NREL | 14



Inclined-plane, experimental results

animations/29’5deg_14in_open.mp4 NREL | 14



Inclined-plane, experimental results (cont’d)

Glass beads

Pouliquen (1999) Phys. Fluids 11:542

hstop(θ)

d
=
L0

d

�

μ2 − μs

tan(θ)− μs
− 1

�

L0/d ∼ 2 for glass beads

Milled pine
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2
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L0
p

ϕ cos(θ)

β ∝ 〈v〉/h ∼ 0.1, glass beads NREL | 15



Inclined-plane simulations

animations/biomass_fullCov_crop_short.mp4

animations/biomass_baffle_crop.mp4

◮ Biomass parameters for ρB, ρp, d, μs,
μ2, and I0

◮ Presumed values for A and t0

◮ θ = 27◦
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Ring-shear tester

Experimental results, biomass
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Ring-shear tester

Experimental results, biomass

Simulations, qualitative results
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Flows from a silo

◮ Simple 2D rectangular silo with a centered
bottom outlet

◮ Flow is steady between startup and
formation of hollow center

◮ Static piles remain in the corners of the silo

◮ Flow profiles obtained for different outlet
widths (L) and particle diameters (d)

animations/p14_mov1_silo-refined

animations/p14_mov2_silo-refined

Fluidity NREL | 18



Flows from a silo, Beverloo scaling

◮ The steady flow rate correlates
with L/d

◮ 2D equations:

Q = Cg1/2(L− kd)3/2

Q̂2/3 = C2/3(L̂− k)

Q̂ = g−1/2d−3/2Q, L̂ = L/d

◮ Our simulation results confirm
Beverloo scaling when changing
either L or d
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Flow onto a pile

animations/p17_mov1_alpha-pile.mp4

1m

◮ Another classic test of granular
behavior

◮ Qualitatively correct results with
pile angle between static and
dynamic friction angles (21◦ and
33◦)
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Flow from a hopper (3D)

animations/p19_mov1_nlgf_3d_hopper.mp4

◮ 3D conical hopper flow
successfully performed using
HPC

◮ 1.5m tall, θ = 40◦

◮ 220,000 cell mesh

◮ Simulation took 3 h on 32 cpus
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Summary and future work

◮ Dynamic NLGF model successfully
implemented in a general CFD
software package

◮ Preliminary parameter
determination for milled softwood
• Stop height on inclined ramps
• Ring shear testing

◮ Other classic flow phenomena
reproduced qualitatively
• Beverloo scaling in flows from
silos
• Pile formation
• Hopper discharge

◮ Industrial-scale 3D simulation of
hopper discharge

Future work

◮ Euler-Euler solver
• Improved pressure evaluation
and numerical stability
• Variable density
• Air passage

◮ Bulk solid compression?
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