i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY

The Electrification
Futures Study

Caitlin Murphy

December 10, 2019
NERC Planning Committee Meeting
Atlanta, Georgia

nrel.gov/EFS


http://www.nrel.gov/EFS

Answering crucial
guestions about:

Technologies

What electric
technologies are
available now, and how
might they advance?
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Consumption System Change Flexibility Impacts
How might How would the What role might What are the
electrification impact electricity system need demand-side flexibility potential costs, benefits,
electricity demand to evolve to meet play to support reliable  and impacts of widespread
and use patterns? changes in demand? operations? electrification?
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NREL-led collaboration, multi-year study

' Technology cost and performance (December 2017)
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‘ Demand-side adoption scenarios (June 2018)
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‘ dsgrid model documentation (August 2018)
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Foundational data and tools

* End-use technology cost and performance data
* Demand-side grid load modeling



Projections of end-use electric technology advancement
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Technology data is foundational to cost-benefit assessments
e 3trajectories (slow, moderate, rapid) for buildings and

transportation

nrel.gov/docs/fy180osti/70485.pdf

* Literature-based summary of industrial electrotechnologies
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End-use electric technology cost and performance
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Commercial ASHPs installed cost
and efficiency projections
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dsgrid: bottom-up engineering model to estimate
hourly electricity consumption

Residential
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demand-side @
grid (dsgrid)

Electrification Futures Study

e O
Jan Feb Mar  Apr May Jun Jul Aug Sep Oct  Nov Dec nreI.gov/docs/fylSosti/7 1492pdf

nrel.gov/analysis/dsgrid.html
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Enables a detailed understanding of how equipment
replacement could impact consumption
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EFS scenarios and impacts

* Demand-side adoption scenarios
* Methodological approaches
e Supply-side evolution scenarios



EFS models and data flow
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Data EFS projections NREL Annual EIA Annual
Sources for electric Technology Energy Outlook Many others
technologies Baseline 2018 (2017-18)
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NREL | 10



Demand-side adoption scenarios
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Matteo Muratori, Daniel Steinberg, Laura Vimmersted,
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nrel.gov/docs/fy180osti/71500.pdf
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2050 U.S. electricity consumption
increases relative to Reference

* Medium +932 TWh (20%)
* High +1,782 TWh (38%)
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Planning for electrification requires considering the

impacts to annual consumption and load shapes

2015 2050 High
@
O . ® o .
® o ("] Y . *e
« \° ? .. A o | © ¢ @ »
o a @ e o @ o . wh ‘ &
‘ o] s O | e " a . © ‘. o [0 ° 9 ® ° X
o
O o - .. © © ° &) L ’
Qil' o/0'\'@® /9@
o “ O
o !
Season Peak Load (GW)
Spring Fall 1 ‘ 40 () 80
B Summer I Winter 20 60 ‘ =100

Note: Summer = June-August, Fall = September-November, Winter = December-February, Spring = March-May
NREL | 12



Transportation sector , B g
- ae so
details
2050 U.S. transportation fleet gx :
(High scenario): 3"
e 240 million light-duty plug-in electric . f
vehicles i1
e 7 million medium- and heavy-duty plug- £ g
in electric trucks :
* 80 thousand battery electric transit f;; :
buses 2* %
Together these deliver up to 76% of miles 009
traveled from electricity in 2050 13 §§§
138,000 DCFC stations (447,000 plugs) and 10 &
million non-residential L2 plugs for light-duty = o oo o
vehicles B = ol = e

- _ , Vehicle stock
+ Changes to buildings and industrial sectors
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Power sector

modeling methods

*  Regional Energy Deployment System (ReEDS)

— Long-term capacity expansion model of the
electricity system in the contiguous United States

D Interconnect
l Balancing Area

2010 Transmission Network
1-2,000 W

*  Base model = 2018 final release version
— Consistent with 2018 Standard Scenarios report
— Key assumptions from ATB 2018 and AEO 2018

* New electrification-specific methodological improvements

2018 Standard Scenarios Report:

. A U.S. Electricity Sector Outlook
Economy-wide natural gas ey . i i
consumption and price T~
?‘-< Demand-side flexibility

. Peak demand management and
capacity sharing

NRELITP.6AZ0.11913

NREL | 14



Supply-side evolution

research questions

 What are the impacts of electrification on the mix, magnitude, location,
and timing of new bulk power system infrastructure development in the
United States?

* How could widespread end-use electrification impact the generation mix
and utilization of different classes of generators and transmission assets?

 What are the impacts of electrification on costs, energy consumption, and
air emissions for the electric and broader energy systems?

If widespread electrification occurs, how would the U.S. power system

need to evolve, and what are some broader implications?
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29 supply-side scenarios

modeled

+ Reference
* Medium
» High

* Designed to isolate the
impacts of electrification

Demand-side Variations Supply-side Variations

End-use Electric Technology Fuel & Technology
Advancement

e Sensitivities across multiple S | Smaler NG Resource
dimensions in demand sectors * Moderate* IR
: . Ve + Lower RE Costs
and future supply uncertainties e RE Coue
Demand-side Flexibility + Constant RE Costs
* Presents power system + Current
: . * Base® System Constraints
I m pa Cts (W h ena p p ro p rl ate ) * Enhanced + Retirement Constraints
an d b roa d e r e n e rgy Syste m + Emissions Constraints

* Transmission Constraints

impacts (whenever possible)

* Refers to “Base Case” or default assumptions
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Thank You from the EFS Team
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Questions? Thank you.
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