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Multiscale Multiobjective Systems 
Analysis (MiMoSA): an advanced 
metabolic modeling framework for 
complex systems
Joseph J. Gardner1, Bri-Mathias S. Hodge1,2,3 & Nanette R. Boyle1*

In natural environments, cells live in complex communities and experience a high degree of 
heterogeneity internally and in the environment. Even in ‘ideal’ laboratory environments, cells can 
experience a high degree of heterogeneity in their environments. Unfortunately, most of the metabolic 
modeling approaches that are currently used assume ideal conditions and that each cell is identical, 
limiting their application to pure cultures in well-mixed vessels. Here we describe our development of 
Multiscale Multiobjective Systems Analysis (MiMoSA), a metabolic modeling approach that can track 
individual cells in both space and time, track the diffusion of nutrients and light and the interaction 
of cells with each other and the environment. As a proof-of concept study, we used MiMoSA to model 
the growth of Trichodesmium erythraeum, a filamentous diazotrophic cyanobacterium which has cells 
with two distinct metabolic modes. The use of MiMoSA significantly improves our ability to predictively 
model metabolic changes and phenotype in more complex cell cultures.

Biological heterogeneity is a challenge even in the most ideal growth conditions in a laboratory. Most of the 
commonly used methods to describe or model metabolism assume that he average cell in the population is an 
adequate representation of the culture if the medium is well-mixed. While these assumptions might be valid 
for fast growing heterotrophic bacteria and yeast, they are not as easily justified for more complex organisms or 
growth conditions such as filamentous bacteria or biofilms. In these cases, environments are highly variable from 
cell to cell; there can be wide ranges of nutrient or light availability, temperature, pH, and other important growth 
parameters1–6. These small differences in growth conditions can lead to large differences in phenotypes even 
amongst cells grown in the same culture. This presents a challenge both in experimental design as well as com-
putational modeling of biological processes and organisms to ensure that what we are measuring or predicting is 
representative of the entire population.

One computational tool that has been used widely in investigating the metabolism of microorganisms are 
stoichiometric metabolic models7. The most widely used stoichiometric metabolic models are constraint-based 
linear programming models which vary in complexity from the relatively simple flux balance analysis (FBA) to 
more complex FBA models which integrate regulatory and/or thermodynamic constraints8–12 or time-dependent 
responses13,14. In cases where growth occurs over a longer period, dynamic FBA (dFBA) can be used to visualize 
changing constraints and media concentrations13. Unfortunately, however, the way these models are formulated 
limits their use to modeling a single cell or an average cell in a population. These models have proved to be 
incredibly useful for strain design of heterotrophic bacteria in well mixed batch reactors11,13,15. Stoichiometric 
metabolic models have also been extended to model more heterogeneous populations, such as binary or tertiary 
bacterial consortia16–20 by adding additional compartments for each species and allowing instantaneous metab-
olite exchange. This is not representative of what is actually occurring in these environments though as diffusion 
of metabolites is an incredibly important limitation to cell growth and interactions. The current benchmarks for 
modeling more heterogeneous populations are OptCom21 and d-OptCom22 (the dynamic version). This mod-
eling approach uses multiple objective optimization technique which allows the model to capture any type of 
interaction (synergistic, antagonistic and neutral) for any number of cells or distinct organisms. While each of 
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the metabolic modeling approaches above do move toward capturing more heterogeneity in the population at the 
cell level, they leave out important phenomena occurring outside the cell, such as diffusion of metabolites and 
nutrients or movement of cells.

We have developed Multiscale Multiobjective Systems Analysis (MiMoSA), an advanced metabolic modeling 
framework in order to more accurately model the metabolism and cellular interactions of complex systems. This 
approach uses a multi-scale multi-paradigm metabolic modeling approach to leverage the ease of implementa-
tion of stoichiometric metabolic models while integrating the spatiotemporal tracking of cells, nutrient diffusion, 
cell-cell interactions and cell-environmental interactions. This approach requires the use of both continuous and 
discrete variables as well as several different mathematical formalisms to reflect the multilevel behavior in popula-
tions. Therefore, we use an agent-based modeling (ABM) framework to allow direct interaction of different levels 
through the encapsulation of physiological, environmental, and metabolic models. ABM is a bottom-up modeling 
approach; the model is made up of a set of agents, which are allowed to act independently as long as they follow 
distinct rules of behavior defined by the user, this allows us to simulate emergent behavior of complex commu-
nities that arise from individual agent behaviors23–26. The system behavior emerges as a result of the many (tens, 
hundreds, thousands, millions) individuals, each following their own behavior rules, living in a defined environ-
ment, interacting with each other and the environment24. The integration of multiple modeling formalisms to 
represent disparate sub-systems is a trend common in engineering and science domains27–31 and has recently seen 
some developments in the systems biology area10,12,14,32–35. Agent-based modeling has been previously applied to 
both intercellular8,36 and multi-cellular processes37,38 but has not previously been used to model metabolic fluxes. 
This multi-scale multi-paradigm approach represents a novel method of integrating individuals (through agents) 
with previously leveraged dFBA formulations13,39, thereby discretizing and separating variables for computational 
efficient solutions with low a priori knowledge.

As a proof-of-concept study, we chose to model Trichodesmium erythraeum, a filamentous diazotrophic 
cyanobacterium. T. erythraeum is a major contributor to the global nitrogen cycle; it is responsible for fixing 
an estimated 42% of all marine biological nitrogen40 and it leaks 20–50% of the nitrogen it fixes41, providing 
surrounding organisms with a biologically available nitrogen source. Unlike other diazotrophs, which either 
spatially or temporally separate the oxygen sensitive nitrogenase enzyme from the water splitting reaction of 
photosynthesis (oxygen production), T. erythraeum is unique because it simultaneously carries out nitrogen and 
carbon fixation during the day in different cells along the same filament (trichome) with metabolic as opposed to 
physiological control. We also have previously studied major metabolic differences between the two cell types42. 
Therefore, it is the ideal model system for the development of MiMoSA: it has structurally identical cells that are 
prone to two subsets of metabolic constraints yielding two major metabolic subsets (photoautotrophic and diaz-
otrophic), a published genome scale model42, transcriptome data, and a plethora of in situ and laboratory data 
to both train the model and validate predictions. We use this organism to highlight the advanced capabilities of 
the MiMoSA framework to predict emergent behaviors of the cell and to investigate rules of cellular physiology.

Results
Model formulation.  We developed MiMoSA by integrating an updated version of the genome-scale met-
abolic model42 (Table S1 for updated reactions) with nutrient diffusion, light diffusion, cell/cell interaction and 
cell/environment interactions (see Fig. 1) using an agent based modeling framework. We have also implemented 
the use of multiobjective optimization to account for the dual cellular objective of producing biomass and the 
metabolite which is transacted between cells (glycogen or β-aspartyl arginine, depending on cell type) with the 
capability of a full range of exchangeable metabolites that are not part of the objective function. Constraints 
were imposed on the model as reported previously42 with two notable exceptions. First, the ultimate product 
of nitrogen fixation was changed from ammonium to β-aspartyl arginine, which is the monomer used to create 
cyanophycin, a nitrogen storage polymer in T. erythraeum and other diazotrophic cyanobacteria43–45. Second, the 
two major storage polymers, glycogen (modeled as maltose, or two linked glucoses) and cyanophycin (modeled 
as β-aspartyl arginine), were decoupled from the biomass formation equation so that they could freely accumulate 
or be metabolized. More detail about the formulation of the model is provided in Methods and Supplemental 
Text.

Tracking changing cellular objectives.  MiMoSA evaluates the cellular objective for each cell for each 
time step based on the changing environmental conditions. As an example of this, we have tracked how the Pareto 
front changes for both photoautotrophic and diazotrophic cells over time (Fig. 2). The front is selected according 
to Methods: Shifting Scalar Objectives with each point corresponding to a specific scalar arrangement of variables. 
With increasing time, diazotrophs shift their objective away from biomass toward the production of cyanophycin 
as carbon becomes more available (Fig. 2A). In contrast, photoautotrophic cells see a maximum production of 
glycogen at 9 hours after the onset of light and then their productivity decreases (Fig. 2B). It is notable that every 
cell in the population is performing these decisions in parallel and Fig. 2 is for a single representative cell of each 
cell type. Cell optimization changed based on environmental conditions and agent rules and the Pareto Fronts 
representing this behavior in these contexts is visualized in Fig. S1.

Model validation.  In order to test the predictive accuracy of the model, we predicted growth rate for a vari-
ety of different light intensities (Fig. 3A) and compared to other published models for T. erythraeum46,47 as well 
as other experimentally measured growth rates1,2,4,42,46,48 exhibiting light saturation at higher light intensities. 
Ultimately, our model is a metabolic model, so it is important that it can also capture the metabolic changes that 
occur in response to changes in the environment. Therefore, we compared predictions of metabolite accumu-
lation, representing part of the major changes to data collected in our laboratory for growth in different light 
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intensities (see Fig. 3B). The model was trained on data collected in 100 μE light and was validated with data 
collect in 50 μE light over a twelve-hour light period.

Cells alter their microenvironment.  An advantage of the modeling approach we have developed is that we 
can track nutrients in the environment. Carbon dioxide (CO2) is typically the limiting substrate in aquatic pho-
tosynthetic growth due to low ambient concentrations and low solubility; for ambient CO2, Henry’s law defines 
an equilibrium concentration of 2.3 μM in the ocean. It is well known that photosynthetic microorganisms use 
carbon concentrating mechanisms (CCM) to concentrate CO2 near the carbon fixing enzyme, ribulose-1,5- bis-
phosphate carboxlyase/oxygenase (RuBisCO) to overcome low selectivity49; our simulations imply that cells also 
increase the local concentration of CO2 immediately surrounding the cell (Fig. S2A) and the release of nitrogen 

Figure 1.  Multi-Scale Multi-Paradigm Model Generation. Before this process, the model generates an 
average scalar equation by fitting the organism’s Pareto Front to experimental data using the ATP hydrolysis 
maintenance reaction as further elucidated in Methods. Then, starting from the top and progressing with the 
arrows (clockwise): The multi-objective Pareto Front is corrected for environmental variables and cellular 
preferences using a weighting algorithm and assuming a normally distributed cell biomass (more detail in 
Methods). The corrected biomass equation is solved, individually, for each cell subject to existing constraints, 
a steady state over each time step, an appropriate maintenance ATP flux, and a scalar objective function for 
which all coefficients add to one. This is interpreted using the agent-based model to make individual cell and 
physiological decisions including (1) whether the cell should die, (2) whether the cell should reproduce (and if it 
does, what type of cell does it differentiate into), and (3) how it should interact with the environment and other 
cells. These interactions inform the status of the other cells (using an intrafilamental diffusion mechanism) 
and the environment (modeled with the same diffusion mechanism for CO2, N2, organic, and fixed nitrogen 
products, and assuming excesses of other media components). The iteration restarts with the objective equation 
updating each living cell (whether newly reproduced or previously established) based on the cell’s current 
metabolic state.
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to the media including at more frequent time steps (Fig. S2B). The simulation covers 150 cells and 10 filaments 
in a model 0.625 mm3 environment, corresponding to a filament density of 16 × 106 trichomes m−3, well within 
the in situ ranges of free trichome density50. This illustrates that the simulation corresponds well quantitatively to 
realistic local environments. At the end of our simulation, the cells on average can create a microenvironment that 

Figure 2.  Pareto Front Progression and Selected Scalar Equation Points over the Light Period in Different 
Conditions for (A) a diazotrophic cell and (B) a photoautotrophic cell. Each line corresponds to a Pareto Front 
generated every 3 hours over the course of the light period at the start (blue, solid) through the end (purple, 
solid-dot) with the point selected by the simulation to best suit cell needs in the scalar objective function 
indicated as an indication of the permutation of objective weights found in that step and cell’s objective equation 
(see Methods: Multiobjective Optimization). Simulations were run with atmospheric conditions, 100 μE light, 
and YBC-II media with 150 cells over 10 filaments with a ratio of 4:11 diazotrophs to photoautotrophs.

Figure 3.  MiMoSA model validation (A) Growth rate as a function of light intensity in T. erythraeum; here 
we compare the predictions of growth rate from our model to two published models46,47 and experimental data 
reported from a variety of literature values1,2,32,42,48,82–84. Error bars represent the error propagated when finding 
the mean of all separately recorded growth rates in similar conditions (YBC-II media, atmospheric CO2, no 
added nitrogen, and equivalent light intensity) using standard Euclidean error propagation. (B) Experimentally 
measured changes (black circles) in biomass accumulation for cells grown in 100 μE and 50 μE compared 
to simulated values (blue lines). Error bars on the glycogen and cyanophycin measurements represent one 
standard deviation for three biological replicates.
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is roughly 2 fold higher in CO2 than the surrounding ocean. By looking at flux through major pathways, it appears 
that the CO2 is derived from high fluxes through the oxidative PPP and TCA Cycle in diazotrophic cells (Fig. 4).

Modeling a heterogeneous cell population.  One of the main advantages of this new modeling approach 
is that individual cells can be tracked in space and time so the heterogeneity of the population can be quantified 
(in terms of metabolic flux distributions). As an example, we tracked 150 cells over a 12-hour time period with 
time steps of 6 seconds which results in a total of 18,000 metabolic flux maps. Since these are an overwhelming 
amount of data to visualize, we have chosen to focus on a few representative flux maps (see Fig. 4). In the left 
column, we track how the ammonium composition of the environment surrounding the cells changes with time 

Figure 4.  Examples of the types of data the multi-scale multi-paradigm metabolic model can track in time and 
space. Heat map legend and flux map legends are at the bottom of the figure. x → indicates horizontal space in 2-D 
simulations. Time progresses from top to bottom with the top row indicating the beginning of the 12 hour light 
cycle cycle, the middle row the midpoint at 6 hours, and the bottom row the end of the light cycle. The left column 
contains the distribution of ammonium in the local media over these time points. The asterisk indicates the cells 
selected for the flux maps. The simulation can also be depicted as a 2-D grid with an arbitrary third dimension of 
one grid-cell deep. The whole space is a square grid with dimensions of 2500 μm (2.5 mm) and each grid-cell with 
dimensions of 100 μm (10 T. erythraeum cells). The middle column visualizes flux maps of photoautotrophs (left, 
green) and diazotrophs (right, blue) from the cells selected from the locations indicated by the asterisk. Flux maps 
were identical at 0 hours, selected from cells with the lowest extracellular ammonium in their gridspace at 6 hours, 
and selected from the highest extracellular ammonium in their gridspace at 12 hours. The right column is the 
frequency of unique metabolic profiles ranked by objective flux (a measure of cell productivity accounting for both 
biomass and metabolite production). Blue line is the kernel density estimate (kde) which estimates the probability 
of a given metabolic profile. ABBREVIATIONS. 6PG: 6-phospho-D-gluconate, 6PGDL: 6-phosph-D-glucono-1,5-
lactone, AcCoA: Acetyl-CoA, AKG/αKG: α-ketoglutarate/2-oxoglutarate, βASP-ARG, β-aspartyl arginine, CIT: 
Citrate, DHAP: Dihydroxyacetone phosphate, DON: Dissolved Organic Nitrogen, E4P: Erythrose-4-phosphate, 
F6P: Fructose-6-phosphate, FOR: Formate, FUM: Fumarate, G6P: Glucose-6-phosphate, GAP: Glyceraldehyde 
3-phosphate, GLX: Glyoxylate, 3PG: 3-phosphoglycerate, ICIT: Isocitrate, MAL: Malate, OA: Oxaloacetate, PEP: 
Phosphoenolpyruvate, PYR: Pyruvate, R5P: Ribose-5-phosphate, Ru5P: Ribulose-5-phosphate, RuBP: Ribulose 
1,5-bisphosphate, S17P: Sedoheptulose 1,7-bisphosphate, S7P: Sedoheptulose 7-phosphate, SUCC: Succinate, 
SUCSAL: Succinic semialdehyde, X5P: Xylulose 5-phosphate.
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from the initial seeding of cells at 0 hours to the middle of the daytime period (6 hours) to right before the onset of 
night (12 hours). These panels depict the release of ammonium into the environment as time progresses, and it is 
higher in areas where the cell density is highest. This agrees well with in situ data which report that T. erythraeum 
leaks 30–50% of the nitrogen it fixes41; our simulations predict that approximately 20% of the nitrogen fixed by the 
community is excreted into the medium. It is also important to note that the majority of ammonium is released 
by the cells in the second half of the day; during the first 6 hours, the cells release ammonium to a total of 2.56 μM 
midday compared to 9.22 μM concentration of ammonium at the end of the day. Again, this agrees with previous 
literature reports that the rate of nitrogen fixation peaks at midday51, therefore we would expect more secretion 
of ammonium after peak nitrogenase activity. Select flux maps of cells growing in areas of low ammonium (top), 
medium ammonium (middle) and high ammonium (bottom) are depicted in the middle column of Fig. 4. At the 
beginning of the simulations, cells are seeded in an environment that is identical to the defined marine medium 
YBC-II and because of this, they have identical flux maps as shown by the distribution graph in the right column. 
At time 0, we have a bimodal distribution because there are two cell types: photoautotrophic and diazotrophic. 
Photoautotrophic cells have high flux through the Calvin Cycle and the diazotrophic cells are operating in a more 
respiratory mode, with high flux through both the oxidative pentose phosphate pathway (PPP) and tricarbox-
ylic acid (TCA) Cycle. As the cells grow and start to experience more heterogeneity in their environment, they 
respond by differentiating their metabolism within the filament (Fig. S3). First, this is evident in the frequency 
distribution plot, where they are both diverging in terms of total metabolic flux distributions and moving toward 
achieving optimal flux in terms of the objective function for both t = 6 hours and t = 12 hours. By comparing the 
changes that occurs in metabolic flux between areas of low, medium, and high ammonium, we can learn a few 
things about cellular physiology. In all cases, photoautotrophic cells have high flux through the Calvin cycle and 
an incomplete TCA Cycle, which has been widely reported in cyanobacteria grown phototrophically52. In the case 
of T. erythraeum, succinic semialdehyde is derived from the nitrogen storage compound cyanophycin and is fed 
into the TCA Cycle to support the production of biomass precursors and glycogen (through gluconeogenesis). 
When external ammonium is high, photoautotrophic cells have less flux to glycogen, presumably because they 
do not need to provide as much to the diazotrophic cells to obtain fixed nitrogen in return. Investigations into 
imbalances in both metabolites and relative cell quantity display mechanisms of ammonium loss to the environ-
ment. Figure S4A illustrates how a lack of glycogen flux results in a higher loss of ammonium (with the exceptions 
of recently divided cells which metabolize glycogen with high ammonium loss) while Fig. S4B visualizes a clear 
minimum ammonium release in the recorded range of percent diazotrophs per filament (between 15 and 30%). 
Diazotrophic cells have high flux through both the oxidative PPP and the TCA cycle which still utilizing carbon 
fixation reactions such as Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoenolpyru-
vate (PEP) carboxylase and carbon conserving reactions like the glyoxylate shunt. Flux through the glyoxylate 
shunt increases as the availability of ammonium increases outside the cell, which is likely in response to the lower 
glycogen transfer from the photoautotrophs.

Elucidating rules of cell physiology.  A key feature of agent-based modeling is the ability to model emer-
gent behaviors in populations. We do not know all the rules of behaviors that define T. erythraeum a priori but 
by comparing simulations to observed in situ data and iterative improvement of the model, some rules can be 
elucidated. One trait that is widely variable in nature is filament length. It has been widely accepted that the 
average filament length is 100 cells53 but more recent studies have suggested that they are typically much shorter, 
with a geometric mean of 13.2 ± 2.3 cells per filament, but with a mean range of 1.2 to 685 cells per filament in 
situ54. Conditions for in situ sampling are widely variable so we hypothesized that filament length plays a role in 
maintaining growth in different environments: low light, low CO2 and low N2. We used the model to investigate 
which conditions might favor shorter or longer filaments (Fig. 5). For each simulation, 150 total cells were seeded 
but in different trichome lengths (10, 30, 75, and 150 cells/filament) with and a ratio of diazotrophs to photoau-
totrophs of 3:7. In terms of growth rate, across all conditions we tested the shorter filaments had faster growth. 
This implies that diffusional limitations of nutrients into the cell and metabolites within the filament between 
different cell types start to hamper growth rate at longer filament lengths. The relative decline in growth rate is 
less dramatic for 25 μE when comparing across filament length, but when compared to other light conditions, 
there is a dramatic drop in growth rate for shorter filaments at low light. This indicates that longer filaments are 
capable of compensating for less light better than shorter filaments, perhaps due to increased surface area. Next, 
we examined the effect of filament length on cyanophycin composition for the same growth conditions as above. 
In every condition except low nitrogen, filaments with 75 cells appear to have more cells with above average cyan-
ophycin content than other filaments lengths. Smaller nitrogen compounds (NH4

+, amino acids, urea, etc.) can 
theoretically be used to support growth, permitting cyanophycin to be a longer-term storage compound. This is 
a possible explanation for the increase of cyanophycin in longer filaments. As filaments are longer, diffusive lim-
itations become more pronounced, meaning that nitrogen gradients will remain in nitrogen replete cells longer 
and will be remade into cyanophycin as opposed to being metabolized for growth. This makes intuitive sense: not 
only is there a final drop-off at 150 cells, the distribution of cyanophycin content within the cells becomes larger, 
suggesting that some cells are starved for nitrogen and some are nitrogen replete. It is probable that filaments 
have adapted to leverage diffusion to both sequester nitrogen and to mitigate futile cycling of carbon and nitrogen 
compounds when diatomic nitrogen is available. The pattern of cyanophycin content diverges for cells in nitrogen 
limited environments due to overall shortages of nitrogen within the filament.

Finally, we investigated how glycogen content of cells changes due to filament length. The first pattern to note 
is that as length increases, the heterogeneity of the filament in terms of glycogen content also increases. This 
illustrates the importance of tracking individual cells because they are experiencing different environments and 
responding in different ways. Longer filaments also appear to be able to maintain glycogen content more readily 
than shorter filaments in all stress conditions we tested. Finally, nitrogen limited growth results in increased 
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glycogen content as seen in other cyanobacteria55. It appears that longer filaments in N limited growth can accu-
mulate more carbon, perhaps again due to higher surface area and hence more energy from light harvesting. Our 
simulations agree well with published studies; it has been reported that growth rate and light intensity are both 
inversely correlated to filament length56. These data indicate that filament length is largely determined by external 
cues rather than genetically.

Discussion
MiMoSA enables the most detailed and accurate metabolic modeling of complex systems to date by allowing cou-
pling of several different mathematical formalisms describing natural phenomena, behavioral rules, and metabo-
lism into a multi-scale multi-paradigm model. In constructing MiMoSA, we have added several features to enable 
us to more accurately predict phenotypes. A key feature of MiMoSA is the use of a multi-objective optimization 
approach. Unlike fast growing bacteria, which have successfully been modeled using a single objective function 
of maximum biomass15, slow growing organisms have more complex objectives. In our simulations, T. eryth-
raeum cells must achieve a delicate balance between biomass formation and the production of either glycogen 
or cyanophycin due to the symbiotic relationship between two cell types in the same filament. Photoautotrophs 
cannot function optimally without a biologically available form of nitrogen from the diazotrophs and the diaz-
otrophs cannot support their metabolism without reduced carbon from the photoautotrophic cells. The use of 
multi-objective optimization allows us to describe this trade-off more accurately and by calculating the Pareto 
Front a priori we can also reduce computational effort. We have also accounted for changes in biomass com-
position that occur in response to changes in the environment or as a result of building carbon and nitrogen 
reserves during the day by decoupling the biomass equation. This allows the model to respond more fluidly to 
changes in the environment, which more closely mimics what cells experience in nature; for example, macro- and 
micro-nutrient stresses have been well known to cause changes in metabolism such as lipid and carbon accumu-
lation57–62. As such, the inclusion of metabolite and nutrient diffusion to augment metabolic optimization is a 
critical aspect of the model.

The influences of nutrient and energy availability in conjunction with population characteristics were stud-
ied to determine community and cellular adaptations to environmental perturbations. The model allows us to 

Figure 5.  Trichome length affects the performance of the community. Trichomes were varied in initial length 
from short (10 cells filament−1) to long (150 cells filament−1) but with identical diazotroph: photoautotroph 
ratios of 3:7 (excepting 75 cells filament−1 which was 3.1:7) and initial cell counts (150 total) in the total 
population. Black asterisks are Student’s T-tests P-Values < 0.05 when comparing that cellular population to 
the 100 μE case in every group. Dashed black lines are experimentally measured values and the gray dashed 
lines are their standard errors measured in the Boyle Laboratory (0.271 ± 0.0129 d−1 for growth rate, 0.0939 
± 0.0131 g cyanophycin/g DW, 0.455 ± 0.0440 g glycogen/g DW). Growth conditions represent the columns 
progressing as follows: 100 μE light in YBC-II media and atmospheric conditions, 50 μE light in YBC-II media 
and atmospheric conditions, 25 μE light in YBC-II media and atmospheric conditions, 1.25 mM (versus 
2.5 mM) HCO3

− and 200 ppm (versus 400 ppm) CO2 in otherwise atmospheric conditions and YBC-II media 
with 100 μE light, and 0.395 atm (versus 0.79 atm) N2 in otherwise atmospheric conditions and YBC-II media 
with 100 μE.
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quantify the changes in the microenvironment around the cell compared to the bulk properties of the environ-
ment (Fig. S2A) as well as to see how these changes affect the distribution of carbon and nitrogen inside the cell 
(Fig. 4). These can be supplemented with “zooming in” on specific time steps to enhance investigation to rapidly 
occurring phenomena (Fig. S2B). Not only did our predicted growth rates quantitatively match the experimental 
data, it was better able to capture effect of light saturation on growth rate; light intensities above 100 μE have little 
to no effect on growth rate47,56,63–65. Our simulations agree well with the experimental data, however, there are 
differences that can be explained by the differences between our experimental conditions and our simulations. 
The main difference being the effect of diurnal light; T. erythraeum will not grow without diurnal day/night 
patterns, therefore the experimental data were collected from cells that were grown in 12 h:12 h day/night cycles 
but the model is for a single 12-hour day time period. The addition of diurnal light patterns in future iterations 
of this model will help to improve the light dependent growth phenotype. Even so, the model is able to visualize 
community coordination and development during the 12 hour light period, exhibiting the increased release of 
ammonium to the media in the afternoon, consistent with the observation that nitrogenase activity peaks mid-
day51. Moreover, the individualized resolution of metabolic optimization can probe the nuances of intercellular, 
intracellular, and cell-environment interactions. Analysis of metabolic flux reveals a spontaneous partial/linear 
TCA Cycle in photoautotrophic cells consistent with previous reports52. Cells also naturally coordinate to provide 
glycogen and cyanophycin transfer between cells, yielding oxidative behavior in diazotrophic cells through gly-
colysis with the possible side effect of oxygen consumption as a mechanism to protect nitrogenase as suggested 
in experimentation64. Meanwhile, photoautotrophs naturally perform reductive carbon fixation coupled with 
utilization of the lower TCA Cycle to degrade arginine. These metabolic functions are affected by extracellular 
forces which are integrated into this model. For example, high ammonium environments result in declining 
gluconeogenesis in photoautotrophs (12 hours in Fig. 4), likely since these cells are energetically limited and use 
cyanophycin as an energy source instead of light. Diazotrophs are prone to these environmental cues as well as 
low ammonium environments enhance light TCA cycle to enhance recycling of amino acid byproducts from a 
lack of nitrogen. By integrating modeling of other phenomenon with constraints based metabolic models, we 
were able to simulate T. erythraeum cultures that more accurately represent both in situ and laboratory data.

One of the many advantages of using this multi-paradigm framework is that we can simulate emergent behav-
ior of a population. In situ data report a wide mean range of trichome length from 1.2 to 685 cells54; we used the 
model to investigate possible causes because this is a difficult phenotype to investigate experimentally. Our simu-
lations suggest that even though longer filaments suffer from diffusional effects that limit growth, they are better 
able to handle stress (Fig. 5) consistent with literature. Increased surface area in longer filaments minimizes the 
effect of lower light because the filament can harvest more light per volume. Also, the larger filaments are better 
able to maintain the average composition of storage compounds despite low carbon or low nitrogen conditions. 
Therefore, we would expect in areas of nutrient or light stress, the filament length would be longer.

One of the other unusual phenotypes of Trichodesmium that we were able to investigate using MiMoSA was 
leaking 30–50% of the nitrogen it fixes. Nitrogen fixation is an incredibly energy intensive process, costing the cell 
8 ATP per ammonium, so it is not clear why T. erythraeum would excrete 30–50%. Despite using optimization 
to solve for fluxes, which should minimize energy losses, our simulations predict approximately 20% of the fixed 
nitrogen is excreted into the medium (Fig. S5) which implies that this is a metabolically driven phenomenon. 
Further investigation has led us to develop three hypotheses on why this occurs: carbon limitation in diazotrophs, 
energy limitation in photoautotrophs, and imbalances between photoautotroph: diazotroph ratios. In the first 
case, photoautotrophs are unable to create glycogen chains and instead must start from a higher energy sub-
strate than carbon dioxide (like succinic-semialdehyde) or must perform glycolysis on arginine derivatives to 
achieve energetic viability (Fig. S3A). Second, population imbalances cause nitrogen to be produced faster than 
it can be anabolized into β-aspartyl-arginine chains and is released into the media, meaning there is an optimal 
ratio of cell types (Fig. S3B). It is also possible that carbon limited diazotrophs are unable to manufacture full 
β-aspartyl-arginine chains and proton imbalances require ammonium release to the medium instead of passage 
to surrounding photoautotrophs.

MiMoSA enables the tracking of cellular-level environmental changes and the impact that they have on a met-
abolic model, opening the door to more accurate modeling of multi-cellular systems and the in silico investigation 
of the complex interactions between different cell types within an organism, and different species in a commu-
nity. This is the first report of a metabolic model that integrates nutrient and light diffusion, cell/cell interactions 
and cell/environment interactions and we have used it to accurately predict growth, cellular composition and to 
investigate the unique physiology of T. erythraeum, which has filaments of both diazotrophs and photoautotrophs 
in close proximity. It establishes that this organism can effectively adapt to different conditions at three levels: the 
genetic level through division of labor in separate cell types, the metabolic level through relatively open-ended 
metabolic capabilities as well as further division within types, and at the population level to harness diffusional 
and physical interactions with the environment. MiMoSA is also a readily adaptable modeling framework – the 
addition of additional species to the model only requires the availability of a genome-scale metabolic and a few 
rules of behavior to be added. While we focused the proof-of-concept study of T. erythraeum, MiMoSA is a mod-
eling framework that can be used to model a variety of more complex systems including applications in ecology, 
human health and metabolic engineering.

Materials/Methods
Cell culture conditions.  Cells were grown as described previously42. Trichodesmium erythraeum IMS101 
cells were acquired from the Bigelow Laboratory for Ocean Sciences (East Boothbay, ME, USA). Cells were grown 
in a New Brunswick (Hamburg, Germany) with 100 and 50 μE in 12 h light/12 h dark cycles. Cells were grown 
in artificial seawater YBC-II medium66 at pH 8.15–8.20. CO2 was maintained at atmospheric concentration. 
All chemicals were obtained from Sigma-Aldrich (St. Louis, MO). Growth rate was monitored by measuring 
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chlorophyll absorbance67 from 50 mL of culture every two days. Cyanophycin and glycogen were measured every 
four hours from the beginning of the light cycle (9 AM) to its end (9 PM). Total biomass mass was determined 
by dry weight analysis, cells were filtered with a Whatman 0.22 μm cellulose-nitrate filter and dried overnight at 
100 °C.

Biomass quantification.  Carbohydrates were measured colorimetrically using the anthrone method68 
against glycogen as a standard. Cyanophycin was extracted by disrupting 740 μL of 250 mL cells concentrated to 
2 mL via filtration and rinsing with TE buffer with 2.70 mg/mL lysozyme overnight at 37 °C, centrifuging at 16,100 
× G for 5 min, and resuspending the pellet in 1 mL of 0.1 M HCl (in which cyanophycin is soluble) for 2 h. The 
extraction was repeated on the pellet, the supernatant fractions were combined, and cyanophycin was quantified 
colorimetrically using the Sakaguchi reaction69.

Mass balance constraints.  Constraints based metabolic models are based on mass balances, therefore it 
is imperative that we develop accurate accounting of each element. Therefore, we used training data (Table S2) 
to estimate normal cellular consumption (Table S3). Average objective fluxes were estimated using mass bal-
ances around biomass and metabolite production with the formulation given in SI: I.C Estimating Mass Balance 
Constraints. Note that these formed training objectives: uptakes and consumption scale with nutrient molar 
contents around and within cells.

Development of agent based model.  Repast Simphony70 in Java was used as the agent-based modeling 
framework in which differentiated multi-objective metabolic models of Trichodesmium erythraeum are contained. 
It contains three agent types – Ocean, Cells, and Filaments. The Cells agent contains two sub-agents representing 
each cell type: photoautotrophs and diazotrophs and is responsible for intracellular processes and decisions. The 
Ocean agent defines and calculates the extracellular environment and the Filaments agent organizes the Cells and 
modulates their transactions.

Cells.  Cell agents (cells) are generated for each individual cell in the model. These contain two subtypes, pho-
toautotrophs and diazotrophs, but contain several consistent elements between the two. Simulation variables are 
summarized in Table S4. All cells reproduce according to the same rules: cells divide according to sampling from 
the weighting distribution described above if that sample is bigger than the cell mean cell, cells only extend from 
the ends, and cells can only divide into diazotrophs if there is a diazocyte under development (decided at the fil-
ament level if the filament is nitrogen limited). When a cell is large enough, it converts to fully stationary growth, 
producing only metabolites and creating a larger and larger metabolic gradient between cells without de novo 
biomass synthesis. This prevents a cell from becoming excessively large in the center of the filament. Cells will die 
if they cannot produce the requisite maintenance ATP through metabolism or catabolism.

Cells allow metabolites to diffuse through the lipid bilayer using permeabilities reported in the literature 
(Table S5). This mechanism represents a non-zero leakage scenario that was nevertheless much slower than intra-
filamental diffusion (Table S6). Scavenging from the environment for compounds which carried no evidence of 
active transport followed these same rules and was therefore prone to concentration gradients. Active transport-
ers, on the other hand, allowed the cell to uptake whatever concentration of compound was necessary subject 
to its presence in the local ocean grid. Allowable exchange of metabolites between cells is illustrated in Fig. 6. If 
several cells compete in that grid space, access to the available molecule was divided equally among those cells.

Subclasses: photoautotrophs and diazotrophs.  Both subclasses define the uptake constraints and send to a Python 
file that decides whether the cell metabolizes or catabolizes based on those constraints using the multi-objective 

Figure 6.  Allowed Metabolite Diffusion and Exchange between and into Cells. Green cells represent 
photoautotrophic cells and blue represent diazotrophic cells. Solid black lines indicate free diffusion between 
cells, dotted black lines indicate lipid bilayer diffusion, and red dashed lines indicate coupled ion transport into 
the cell. Not pictured is ATP synthase. Maltose is modeled as the 12-carbon molecule that forms the foundation 
for glycogen while β-aspartyl arginine is the foundation for cyanophycin.
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metabolic model previously described (see Supplemental Information: Routine Metabolic Optimizations). The cell 
then updates its internal metabolites based on the optimization results, diffuses metabolites, divides if possible, 
and uptakes from its local environment. Model bounds are calculated using local concentrations to calculate max-
imum flux bounds excepting β-aspartyl arginine which is further limited to 8% of available nutrients (See Fig. S6). 
These methods are handled by three ScheduledMethods that Repast Simphony schedules in specific progression. 
Together with the Ocean Agent’s updates, the individual cell actions (as dictated by the metabolic model) form the 
core of the simulation. A more detailed flow chart for cell decision making can be found in Fig. S7. Progression 
through these steps is identical for cell types, but the metabolic static variables (objectives, gas uptake, etc.) are 
different between the two subclasses, necessitating separate methods.

Ocean.  The ocean agent is responsible for tracking cells and modeling external nutrients. Its main task is facil-
itating diffusion between cells and locations as well as approximating an uptake radius for cells. Each ocean 
represents a uniform, static, abstract area of the overall grid space with a uniform dimension space of δ × δ where 
δ is a user defined parameter. This set of simulations was conducted with time steps of 0.1 hours as a moderate 
value between diffusion phenomena (on the order of seconds along the length of a filament) and doubling time 
(on the order of 50 hours). Metabolites are assumed to freely diffuse in a dilute seawater environment between cell 
filaments (Table S6) and assumed to be uniform within the grid, given the relatively long time step compared to 
the rate of diffusion over such small dimensions. If the impacts of metabolic diffusion limitations were of interest, 
the time step within the framework could be made appropriately small to more accurately track metabolites, at 
cost of increased computational burden. Each ocean gridcell diffuses molecules into its adjacent ocean gridcells 
assuming discretized slab diffusion in two dimensions. This is done using a previously developed discrete algo-
rithm for diffusion in a grid71:
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where ∆f x( )i  is the change in concentration of metabolite in grid space xi over a time step, A is the normalization 
constant to be calculated by solving the third equation within the entire neighborhood to ensure conservation of 
mass within the neighborhood, dj is the distance between grid space xi and its grid neighbor xi

j and η is the diffu-
sivity control of the system over the time step. As η → 0 diffusion halts and as η → ∞ diffusion becomes instanta-
neous. In this study, η = ∆t4  as in the original Fick’s Law.

Diffusion is calculated using two steps, one forward and one reversing the order of gridspace calculation, to 
mitigate the effect of order on estimating the concentration gradient (Fig. S8). Excess ammonium is secreted into 
the environment using a membrane diffusion coefficient. Cells are allowed to uptake any metabolite/nutrient in 
YBC-II medium; the only extracellular products allowed in simulations are small molecules, such as CO2 and 
NH4

+ which diffuse through the membrane, as well as compounds that have experimental evidence of transport-
ers from proteomic analysis or transcriptomic analysis (estimated using membrane diffusion outwardly and free 
diffusion for gases or active transporters for ions/molecules inwardly) in Table S7 72,73.

The Ocean Agents also manage diffusion of metabolites from marine sinks and through the gas-liquid sur-
face interface with the atmosphere. This is done assuming equilibrium concentrations of dissolved gases defined 
by Henry’s Law and mono-directional slab diffusion for CO2, O2, and N2. Table S6 lists the free diffusivities of 
compounds and Table S8 lists the Henry’s Constants for atmospheric compounds, and Fig. S8 demonstrates the 
movement of diffusive molecules through the simulation.

Furthermore, light diffusion to cells is defined as a function of their y coordinate according to the equation:

= −I I e (4)ky
0

where I is light intensity, k is the extinction coefficient of light in seawater, and y is the depth below the surface of 
the individual cell.

Filaments.  Filament Agents are responsible for organizing cells, managing movement, splitting to promote 
diazotroph development, and defining cell type after division. Random walk movement (to simulate the lack of 
control cells have over lateral motion) is simulated by generating a random direction that has an empty grid space 
for every cell in the filament. Cells move within a user defined interval of time or if their growth is impeded by 
another filament, in which case growth is halted until the cells move away from each other. The filament forces 
splitting into two separate filaments when nitrogen is limiting growth and neither filament end is undergoing 
diazotroph development (meaning that another diazocyte is required). Filament Agents decide the next cell type 
using this inequality:
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where ɛ is the Pareto Efficiency of the given cell type and n is the quantity of that cell type in the filament. The 
Pareto Efficiency is quantified as the sum of the objective fluxes divided by their Pareto Optimum (from experi-
mental results) divided by the number of objectives.
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If inequality (20) is satisfied, the cell prioritizes diazotroph development, otherwise it prioritizes photoau-
totroph development. If a diazotroph region is currently under development, the filament adds another cell to 
that region. If there is no diazotroph under development, or if the C:N ratio becomes higher than physiological 
bounds, the filament splits to expose a region where diazotroph development may begin. A photoautotroph can 
be placed at any open site. Since there are two ends on every filament, up to two of these decisions are being made 
during each simulation time step. After filament splitting, if the split results in a homogenous region of either 
diazotrophs or photoautotrophs, the missing cell type is preferred. Filaments split in the middle of the longest 
region of homogenous cells and are prevented from splitting to result in a single cell, meaning that the shortest 
possible resulting splits are two cells in length. Cell division completes within one time step when metabolites and 
biomass are equally divided between parent and daughter cell and the filament updates to contain the cell at its 
end. This decision is a memoryless process conducted each time step. This means that cell division is completely 
metabolically motivated (which is affected, in turn, by diffusion and physiological processes).

Parameter estimation.  As described previously, to improve the accuracy of simulations, the model was fit 
to experimental data for cells grown in 100 μE light in YBC-II medium. Maintenance energy, in the form of the 
ATP hydrolysis reaction, is the main parameter that is adjusted in FBA formulations18,42,74–76 to match simulations 
with growth rate. Since maintenance energy at 100 μE was higher than the energetic capacity of the model for 
growth at 50 μE, a linear correlation was interpolated from experiments at 100 μE and 80 μE with ATP mainte-
nance flux fit to multiple light intensities without specifically training on 50 μE:

ν ν= +I mI( ) (7)ATP 0

where m and ν0 are calculated using the point-slope equation for a linear equation:
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where I1 is 100 μE and I2 is 80 μE. The estimated values of the linear equation are recorded below in Table 1. If 
the model is unable to satisfy its maintenance demand (through any metabolic process, including catabolizing its 
own biomass), the cell dies. L0 is the energy required in zero light to maintain the cell without active metabolism.

Multiobjective optimization.  Unlike typical formulations of flux balance analysis13,75–80, which use a single 
objective function to predict fluxes, our model uses multi-objective optimization to more accurately approximate 
the true objectives of the cell: to optimize biomass while also producing the metabolite they exchange between cell 
types. The multiobjective scalar function is of the form:

= + −r aX a m(1 ) (10)obj

where a is a scaling parameter between 0 and 1, X is non-metabolite biomass (proteins, lipids, carbohydrates, 
nucleic acids, and pigments) and m is the transactional metabolite (β-aspartyl arginine for diazotrophs and malt-
ose for photoautotrophs). The value for a was varied between 0 and 1 over 1000 steps to generate a Pareto Front, 
optimizing the new objective function subject to the training constraints and ATP maintenance flux. Each point 
on that front corresponds to an arrangement of scalarized variables. Flux through robj can be then reinterpreted 
into direct biomass and metabolite fluxes via multiplication of their coefficient by the objective solution:

μ ν ν= = a (11)X obj

ν ν= − a(1 ) (12)m obj

Visualization of this approach can be seen in Figs 2 and S9. For each point along the Pareto Front, Euclidean 
distance was used to determine the relative weight of each objective function, which was then used to generate 

Cell Type

Maintenance Energy, vATP

m μ( )mmol
g DW h E ( )v0

mmol
g DW h L0 (μE)80 µE ( )mmol

g DW h
100 µE ( )mmol

g DW h

Photoautotroph 34.3 53.3 0.952 −16.7 16.9

Diazotroph 62.3 82.0 0.987 −41.9 44.0

Table 1.  ATP maintenance flux requirements estimated as a function of light intensity for Pareto Fitting.
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a single, scalarized reaction. Each cell in the simulation calculates its scalar objective function separately during 
each time step based on its internal constitution and requirements.

Shifting scalar objectives.  To investigate the mutability of the scalar objective equation, and the effects of intra- 
and inter-cellular conditions on cell objectives, an algorithm to shift the objective function along the Pareto Curve 
is implemented based on the biomass of the cells (assuming that structural biomass is relatively intransigent in 
these conditions). That means that, as biomass accumulates, a cell will behave more stationarily, i.e., it will prior-
itize secondary metabolites. This is adjusted assuming a normal distribution in cell sizes:

μ σ~f X N( ) ( , ) (13)

where μ is the average biomass (assuming cubic shape and density near water) or metabolite concentration (from 
experimental data) and σ is the standard deviation. As the standard deviation decreases, the model is less tolerant 
of deviations from mean values and will more readily adjust the scalar weights. As it increases, it will be more 
tolerant of deviations from mean values and will cause smaller perturbations to scalar weights. For this study, the 
standard deviation was assumed to be 0.433 so that 95% of cells would fall within a factor of seven from minimum 
to maximum and a mean of 1.029 × 10−9 g calculated using an assumed cubic shape with dimensions of 10 μm 
per side and a density of seawater81.

The correction occurs by using the cumulative distribution function for the normal distribution. Given a 
Pareto matching algorithm resulting set of weights, the weights are shifted (inversely) as:

= ˆw aw (14)1 1
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where w1 is the new, shifted weight, ŵ1 is the non-normalized and shifted weight, and w1 is the Pareto matched 
weight. X is the variable and x is the cell’s quantity. Meaning, in each case, that as the objective increases, it 
responds by producing the corresponding objective: as biomass increases, it expends more resources on 
biomass.

Implementation of mutable objective functions.  Previous studies have used static objective functions, 
where production is consistent during every phase of growth. However, organisms accumulate and digest metab-
olites during growth and development. To reflect this, we inserted a “mutable” objective function where relative 
preferences of storage compounds and biomass production can be tailored by the agent based on cell biomass. 
The scalarized objective equation was thus broken into two main components: storage compounds (cyanophycin 
modeled as β-aspartyl arginine and glycogen modeled as maltose) and biomass (lipids, proteins, DNA, RNA, 
chlorophyll, phycoerythrin, etc.). We assumed that biomass remained relatively stable throughout the day while 
the amount of storage compound was allowed to vary. The scalar weights, or production priorities, were manip-
ulated assuming cells do not grow beyond twice their average cell without dividing: lower biomass prioritizes 
growth and higher biomass prioritizes vegetative storage compound production. Mathematically, this is modeled 
such that the scalar objective equation’s biomass coefficient was inversely adjusted by cumulative probability of a 
cell’s biomass in the distribution. The normal distribution was formulated assuming cubic 10 μm cells with den-
sity of water81 as the average mass and a narrow distribution with a standard deviation of 0.433 times the mean 
size. This value was chosen to promote switch-like bistable behavior between cell phenotypes: either cells are 
biomass driven (exponential) or they are metabolite driven with combinations of probabilities in between. This is 
because a single sample of a cell from a distribution of cells would have a probability of 99% to fall between 0 and 
twice the mean size. The final distribution is:

. . ⋅ .~f X N ng ng( ) (1 029 , 0 433 1 029 ) (18)

Calculation of new objective coefficients was done by first finding the cumulative probability (z) of another 
randomly selected cell’s non-metabolite biomass being less than or equal to the objective cell’s biomass at each 
time point for each cell:

= ≤z F X x( ) (19)i

This is used to adjust the average, experimentally matched objective coefficient (wb) for biomass by multiply-
ing that coefficient by the probability of the cell being larger than that size, a value that represents the probabilistic 
expansion space ( ) of the cell:

 = − z1 (20)

= ⋅ŵ w (21)b b
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Major metabolite coefficients for the scalarized objective equation were also adjusted using this probability, 
increasing as the cell’s size increased:

= ⋅ŵ z w (22)m m

Finally, the coefficients are normalized such that:
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where  is the set of all objective metabolites in the original scalar equation.
Performance evaluation of the mutable objective function, validation of O the mutable objective function 

versus the static version, and justification of non-metabolite biomass as the independent objective are provided 
in SI Methods and Fig. S10.

Data availability
We have provided the ABM framework as supplemental file 1 and the datasets resulting from simulations are 
available at the Boyle Laboratory website, https://nboylelab.com.
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