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Executive Summary 
The Wells Fargo Innovation Incubator (IN2) is a $30 million technology incubator and platform 
funded by the Wells Fargo Foundation. Co-administered by and housed at the National Renewable 
Energy Laboratory (NREL), IN2’s mission is to speed the path to market for early-stage, clean-
technology entrepreneurs. Companies selected for participation in the program receive up to 
$250,000 in non-dilutive funding from Wells Fargo, technical support and validation from experts 
at NREL, and ongoing connections to organizations across value chains. 

Ibis Networks (now WattIQ) is a full-stack cleantech company that provides plug-level energy 
monitoring and control to solve energy and asset management problems for the enterprise. The Ibis 
InteliSocket is a pass-through plug-load energy monitor and controller that is designed to reduce 
energy wasted by common 120 V plug-in devices in commercial office buildings, such as 
computer peripherals, conference room audiovisual (AV) equipment, and break-room appliances. 
The system can shut off supply power to these end uses via remote control, manual switches, pre-
set schedules, or automated control algorithms. The scope of this IN2 project was the development 
and refinement of “smart” learning behavior algorithms (LBAs), which could simplify installation 
processes and dramatically expand the sockets’ capabilities and energy-saving potential by 
suggesting suitable control schedules that are based on monitored use patterns. While Ibis has the 
analytical and software expertise for algorithm development, the lack of test data, both in a 
controlled laboratory setting and in real-life deployment scenarios, represented a key barrier 
toward commercialization of the product. Assistance through the IN2 program provided an 
opportunity to conduct the needed trial-and-error algorithm development. 

The project included baseline field-data collection, laboratory testing, and field evaluation 
components, all of which were conducted on the NREL campus between April 2017 and July 2019. 

The baseline data were obtained by monitoring and recording 120 V plug-load usage data in over 
75 office cubicles, 16 conference and huddle rooms, five printer rooms, four kitchens, and the 
library. The laboratory testing consisted of setting up two mock workstations with representative 
office plug loads and running them through typical usage scenarios to develop and test the Ibis 
LBA. The plug loads were operated on a baseline schedule created by the NREL team to mimic 
typical office occupancy. The data collected from these mock offices were used by Ibis’s LBA to 
develop predictions, and these predictions were then compared to actual schedules to evaluate 
accuracy. The final task was the field evaluation, designed to test the LBA against real office plug-
load use, between the months May 2019 and July 2019. Ten cubicles of NREL employees were 
selected to represent a mix of fairly regular and more irregular occupancy patterns. 

Overall, the results are encouraging and indicate there is promising potential for LBAs to create 
control schedules that reduce plug-load energy waste. A relatively simple algorithm that 
considered factors such as day of the week, season, and asset class was able to correctly forecast 
whether to turn outlets on or off 70% of the time based on limited training data. Furthermore, the 
errors in prediction were heavily asymmetric, with a false negative rate of only 3.2% (events that 
inconvenience users) versus a 36% false positive rate (missed opportunity for saving energy) in the 
field evaluation results. Future research should focus on reducing the false positive rate without 
markedly increasing the false negative rate, which would achieve more savings without adversely 
affecting user convenience. There is considerable potential for further improvement of the 
algorithm building on the learnings presented in this work. 
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1 Technology Description 
The Wells Fargo Innovation Incubator (IN2) is a $30 million technology incubator and platform 
funded by the Wells Fargo Foundation. Co-administered by and housed at the National 
Renewable Energy Laboratory (NREL), IN2’s mission is to speed the path to market for early-
stage, clean-technology entrepreneurs. Companies selected for participation in the program 
receive up to $250,000 in non-dilutive funding from Wells Fargo, technical support and 
validation from experts at NREL, and ongoing connections to organizations across value chains.  

Ibis Networks (now WattIQ) is a full-stack cleantech company that provides plug-level energy 
monitoring and control to solve energy and asset management problems for the enterprise. The 
Ibis InteliSocket is a pass-through plug-load energy monitor and controller that is designed to 
reduce energy wasted by common 120 V plug-in devices in commercial office buildings, such as 
computer peripherals, conference room audiovisual (AV) equipment, and break-room appliances. 
The system can shut off supply power to these end uses via remote control, manual switches, 
pre-set schedules, or automated control algorithms. The sockets use the Zigbee communication 
protocol to form a wireless mesh network that connects to the Ibis Inteligateway to upload data 
to the Ibis server. While the Ibis socket in its present generation is already at Technology 
Readiness Level (TRL) 8, which corresponds to IN2 Tier 3,  the company is currently developing 
and refining learning behavior algorithms (LBAs), which will improve installation processes and 
dramatically expand the sockets’ capabilities and energy-saving potential by suggesting suitable 
control schedules that are based on monitored use patterns.  

Buildings are becoming increasingly energy efficient, thanks to modern construction practices 
and advances in major end-use equipment such as heating, ventilation, and air-conditioning 
(HVAC) systems and lighting. Meanwhile, plug loads are growing both in diversity and sheer 
number and are accounting for an increasing fraction of the total building load. The use of 
metering and control tools in coordinated energy-saving efforts have shown up to 40% savings 
on managed plug-load devices, which can equate to 5-10% savings of overall commercial 
building energy. (Mercier and Moorefield, 2001) While the savings projections are compelling, a 
primary challenge in mitigating plug-load energy use is the hassle involved in implementing 
controls for each separate plug-in device throughout an office space or an entire building. The 
task is further complicated when operational schedules change throughout the year due to 
weather events, seasonal operation, or other business reasons. 

Today, Ibis customers use the online Ibis platform to manually implement schedule-based 
controls for depowering individual or groups of equipment. While this manual method can be 
effective at saving energy, it can also be time-consuming to set up. Instead, the large body of 
energy data that Ibis sockets collect can be leveraged with machine learning algorithms to 
automate the implementation of controls. The R&D required to enhance the socket with this 
“smart” capability is the scope of this IN2 project. The company’s goal is to develop effective 
LBAs so that the Ibis system can take a global view of work patterns within a building or 
organization, learn optimal schedules, and automatically implement suitable controls that 
continually self-adjust over time. 

The LBA-based approach to plug-load management offers several attractive advantages: 
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• It frees building managers from the task of setting up individual controls for categories of 
plug-in equipment, as well as constant monitoring and adjustments.  

• It enhances energy-saving potential because it removes manual “trial and error” testing 
and can ensure maximum savings even as operational conditions change over time.  

Similar approaches exist for advanced HVAC and lighting systems, but such algorithms have not 
been fully developed for plug loads. Ibis addresses this gap and provides a pathway to move the 
industry forward by demonstrating a proof-of-concept through laboratory- and field-based 
testing. The work presented here is a steppingstone to further development and integration of this 
strategy into marketable products. 

2 Project Description 
While Ibis had the analytical and software expertise for algorithm development, the lack of test 
data, both in a controlled laboratory setting and in real-life deployment scenarios, represented a 
key barrier toward commercialization of the product. Assistance through the IN2 program 
provided an opportunity to conduct the needed “trial and error” algorithm development. 

 NREL provided technical support in the areas of: 
• Baseline field data collection, 
• Laboratory testing,  
• Field evaluation, and 
• Associated data analysis throughout the above phases. 

NREL provided the sites for data collection. Field-based data were collected primarily in 
NREL’s Research Support Facility (RSF), a 362,000-square-foot, LEED-platinum, net-zero 
energy office building located on the NREL campus. Laboratory testing was conducted in the 
Systems Performance Laboratory (SPL) within the Energy Systems Integration Facility (ESIF), a 
state-of-the-art DOE user facility designed to evaluate the integration of emerging energy 
technologies. 

2.1 The Predictive Model 
The Ibis LBA used a single predictive model that was trained using plug load energy data, 
metadata for each device including the type of equipment that was plugged in, and information 
about the day of week and season. The algorithm then made predictions for individual devices 
based on the device’s own history of behavior, as well as the influence of what we knew about 
that class of equipment, and the overall history of usage by day of week, season, and other time-
related factors. This approach “pools” information from many devices to help make predictions 
about individual devices, and this pooling can lead to error tradeoffs, where decreasing one kind 
of error may result in inadvertently increasing error elsewhere. This is fundamental to predictive 
algorithms and is not unique to this type of application or energy analysis in general.   



3 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

2.2 Baseline Data Collection, Laboratory Testing, and Field 
Evaluation 

The first and longest running task in this project was the baseline field data collection, which was 
set up to monitor and record 120 V plug-load usage data in over 75 office cubicles, 16 
conference and huddle rooms, five printer rooms, four kitchens, and the library (see Figure 1.) 
Most of the monitoring was conducted in the RSF, with a small subset of sockets deployed in 
Denver West Building 52, a nearby off-campus office space leased by NREL. These data 
provided key insights into the usage patterns of office equipment in a commercial office 
environment. No controls were implemented as part of the baseline data collection, so the Ibis 
sockets functioned solely as data loggers. Gateways were placed in close proximity to the 
sockets throughout the deployment areas to upload data from the all of the sockets to the Ibis 
server.  

  
Figure 1. Deployment in NREL cubicles 

Left: Ibis sockets were deployed in NREL cubicles to monitor and record office plug-load usage data. Right: Each 
socket has one “controlled” outlet (labeled in green) and one “always on” outlet. During the baseline data collection 

both outlets operated in “always on” mode. 

The laboratory testing consisted of setting up two mock workstations with representative office 
plug loads and running them through typical usage scenarios to develop and test the Ibis LBA. A 
photo of the set-up and a list of plug loads used are shown in Figure 2. The plug loads were 
operated on a baseline schedule created by the NREL team to mimic typical office occupancy. 
Where possible, equipment operation was automated using the Windows Task Scheduler and 
Wi-Fi-connected smart plug load controllers. The data collected from these mock offices were 
used by Ibis’s LBA to develop predictions, and these predictions were then compared to actual 
schedules to evaluate accuracy. This method enabled virtual testing of the Ibis algorithms 
without implementing controls, by allowing the team to compare when the socket would have 
shut off supply power to when the plug load was actually in use. 
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Figure 2. Testing in the Systems Performance Lab 
Two workstations were set up in the SPL for laboratory testing. Workstation #1 (left, dotted line) consisted of a Dell 
laptop, external monitor, coffee maker, and printer. Workstation #2 (right, dashed line) consisted of a Dell laptop, 

external monitor, desk lamp, and space heater. 

The final task was the field evaluation, designed to test the LBA against real office plug-load 
use. Ten cubicles of NREL employees were selected to represent a mix of fairly regular and 
more irregular occupancy patterns. Two rounds of virtual testing of the LBA-generated 
predictions were conducted, using a similar process to the laboratory tests. Each virtual round 
lasted for two work weeks. In a third and final round of testing, controls were implemented for 
two and a half work weeks based on predicted arrival and departure times. Each schedule for this 
field test was forecasted to 15-minute granularity, yielding 96 forecasted data points per device 
in each of the ten cubicles per day. The forecasted values were provided by Ibis, and actual usage 
and occupancy of the cubicles was determined by NREL, looking at raw consumption data. 
Comparison of the forecasts with actual data provided scoring for each 15-minute interval for the 
field test. After the controls portion of the field evaluation concluded, the participants were asked 
to respond to a survey about their experiences. 

2.3 Scoring Methodology 
The laboratory testing and field evaluation results were analyzed using an error or “confusion” 
matrix (Kohavi and Prevost 1998; Townsend 1971), which contrasts predicted and observed 
class counts in a discrete classification problem. Table 1 provides operational definitions used in 
scoring the tests. 

Workstation #1 

Workstation #2 
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Table 1. Confusion Matrix Key for Accuracy Scoring 

 Positive Real Occupancy Negative Real Occupancy 

Positive Predicted 
Occupancy 

True Positive: Device is controlled to 
be “on” when it should be on. 

False Positive: Device is controlled to 
be “on” when it should be off, resulting 
in lower energy savings. 

Negative 
Predicted 
Occupancy 

False Negative: Device is controlled to 
be “off” when it should be on, a 
noticeable inconvenience for people. 

True Negative: Device is controlled to 
be “off” when it should be off. 

There are four components in a binary confusion matrix: true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN). A true positive or negative means that the forecasted 
control schedule was correct in predicting whether a device would be on (true positive) or off 
(true negative). The main diagonal cells in the matrix represent accurate predictions; antidiagonal 
cells represent prediction errors. Not all prediction errors have the same effect, and the confusion 
matrix helps explain how prediction error is a compromise between inconveniencing users and 
not capturing potential energy savings.  

From the data in the confusion matrix, various quantitative measures of classification (and thus 
prediction) performance are available. Total accuracy is defined as (TP + TN) / (TP + TN + FN + 
FP), or the fraction of true predictions compared to all predictions. The false positive rate is 
defined as FP / (FP + TN), and the false negative rate is defined as FN / (FN + TP). Other 
measures relevant to this project include “sensitivity,” which in this case gives the proportion of 
time slots that had actual occupancy and consumption that were forecasted correctly, defined as 
TP / (TP + FN); and “false discovery rate (FDR),” which is the rate of false positive predictions 
compared to all positive predictions: FP / (FP + TP). In the context of this study, sensitivity and 
FDR help measure the degree to which the LBA is “biased” towards preventing one type of 
prediction error over the other. An algorithm that made prediction errors randomly would, for 
example, have sensitivity and FDR rates that were roughly equal. 

  



6 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

3 Results and Discussion 
3.1 Laboratory Test Structure and Results 
Laboratory testing was aimed at confirming when the LBA had progressed sufficiently to make 
useful predictions about when equipment would be in use, given a two-week observation period 
to obtain training data. The LBA was trained on its ability to “fit” existing patterns. Ibis reported 
to the NREL team the times at which the LBA indicated that each lab device switched on and 
off. The test was conducted in a single-blind manner as described above, training for several 
weeks and then predicting usage for the same devices. NREL then scored the Ibis LBA 
determinations against the actual schedule of lab device state changes, producing a confusion 
matrix allowing us to look at accuracy alongside false positive and false negative predictions. 

Raw results are given in Table 2, and accuracy metrics are summarized in Table 3. Ibis 
performed extremely well in the laboratory tests, earning an accuracy rate of 95%. The plug load 
usage schedules in the laboratory were more tightly controlled than would normally be seen in a 
real office environment, but there was some variability in the schedules introduced because a few 
appliances required manual control.   

Table 2. Confusion Matrix from Laboratory Test Results 

426 True Positives 17 False Positives 

70 False Negatives 1119 True Negatives 

 
Table 3. Laboratory Accuracy Metrics 

Total Accuracy (TP + TN) / (TP + TN + FN + FP)  95% 

False Positive Rate FP / (FP + TN) 1.5% 

False Negative Rate FN / (FN + TP) 14% 

Sensitivity TP / (TP + FN)   86%  

False Discovery Rate (FDR) FP / (FP + TP) 3.8%  

3.2 Field Evaluation Structure and Results 
For the field evaluation, occupancy and equipment usage were forecasted for each upcoming day 
based upon previously observed time series data. A higher prediction error was expected in the 
field than during laboratory testing because real work patterns are likely more variable than what 
we might mimic in the laboratory, and more importantly, certain patterns were expected in the 
errors. For example, it should be easier to predict when spaces and equipment are turned on in 
the morning, than detecting periods where equipment could be turned off in the middle of the 
work day, given that meeting schedules and typical day-time movement within the office may 
not have strong repetitive patterns.  

Ten office cubicles were instrumented with Ibis sockets and the LBA gathered two weeks of 
baseline training data. The LBA was used to make day-ahead predictions for each device, 
predicting when the cubicle and its devices were expected to be occupied and powered on. Each 
day, the previous day’s data was added to the training set and a new day-ahead prediction was 
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made. There were three separate rounds of evaluation, with each round of controls based on the 
previous two weeks of collected data. In the first two rounds, the sockets were used as data 
loggers with no controls in place. In the third round, controls were implemented based on the 
LBA predictions.  

 

Figure 3. Example Histogram of Device Power Level 

A histogram of power levels was created for each end-use device in order to define a threshold for when the device is 
“on” versus “off.” This process relied partly on engineering judgement. In the above example, the laptop was 

considered “on” when its power draw exceeded 3 W. 

For the first two rounds, Ibis reported the predicted schedules to the NREL team and NREL 
scored the accuracy of the predictions in comparison to the measured data using confusion 
matrices. Predictions (or hypothetical controls) were created for both outlets on the Ibis sockets, 
even though only the bottom outlet could be controlled. This gave Ibis the opportunity to predict 
twice as many loads. To determine when the devices were on versus off, NREL created 
histograms of the different power levels for each device (see example in Figure 3.) The team 
visually analyzed the histograms to determine a unique threshold power level for each device, 
often a few watts. When power was measured above this threshold, the device was considered to 
be on, and when the power was below the threshold, the device was considered to be off. For 
most data points it was clear whether the device was on or off because its power was well above 
or below the threshold; however, there were some instances where the device’s state seemed 
ambiguous, especially during the transition intervals during which a device was being turned on 
or off by the user. Each one-minute interval during the study period was scored as either a true 
positive, true negative, false positive, or false negative, and the results were aggregated to assess 
the LBA’s overall accuracy. 

Given that forecasting accuracy (and thus the effectiveness of algorithmic control schedules) 
involves a tradeoff between potentially inconveniencing users and achieving optimal savings, 
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Ibis adjusted LBA parameters between each round of field testing in order to explore how the 
details of the algorithm affect the balance between savings and convenience.   

A similar scoring method was used in the third round, where controls were actually implemented 
for the “controlled” (bottom) outlet of each socket. Predictions were still made for the 
uncontrolled outlet, again for the purpose of acquiring more data. True positives, true negatives, 
and false positives arose in the same manner as before; however, for the controlled loads false 
negatives were only detected if the occupant overrode the socket controls. According to post-
field evaluation survey results, at least five participants used the override button at least once in 
order to correct a false negative. Two of these five respondents reported using the override 
button multiple times during the course of the study. A single participant was responsible for the 
majority of total override events. That participant reported staying later than the forecasted 
controls on some days and also arriving earlier on other days.  

Overall, the field evaluation results are encouraging (total accuracy across all three rounds is 
70%) and indicate there is promising potential for LBAs to create control schedules that reduce 
plug-load energy waste. Table 4 gives the raw results for predictions versus observed usage 
across the field test rounds; Table 5 gives the accuracy metrics.    

Table 4. Confusion Matrix from Field Evaluation Results 

Round 1 76,427 True Positives 99,396 False Positives 

943 False Negatives 237,293 True Negatives 

Round 2 77,939 True Positives 133,962 False Positives 

4,104 False Negatives 237,469 True Negatives 

Round 3 
(controls implemented) 

39,779 True Positives 122,759 False Positives 

1,473 False Negatives 171,237 True Negatives 

Table 5. Field Evaluation Accuracy Metrics 

 Round 
1 

Round 
2 

Round 
3 

Mean 

Total Accuracy (TP + TN) / (TP + TN + FN + 
FP)  

76% 70% 63% 70% 

False Positive Rate FP / (FP + TN) 30% 36% 42% 36% 

False Negative Rate FN / (FN + TP) 1.2% 5.0% 3.6% 3.2% 

Sensitivity TP / (TP + FN)   99% 95% 96% 97% 

False Discovery Rate 
(FDR) 

FP / (FP + TP) 57% 63% 76% 65% 

The pattern of errors provides useful information for future efforts. Round 1 is clearly the 
optimal configuration found in these field tests. The adjustments made in Rounds 2 and 3 that 
assumed occupancy between 9:00 a.m. and 5:45 p.m. tended not to improve the balance between 
savings and convenience, and the initial parameters and configuration used in the LBA for 
Round 1 should serve as the basis for ongoing research. Round 2 had a higher false negative rate 
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due to a lamp being left on overnight and a laptop left in the docking station overnight, causing a 
higher-than-usual power draw. Both sources of false negatives in Round 2 would have had no 
effect on user convenience, but given the rules for scoring, predictions were necessarily included.   

The distribution of the timing for FN events is concentrated around two time periods: around 
8:00 a.m. and around 5:45 p.m., reflecting the inherent variability in when people arrive at the 
office and when they leave. Detailed inspection of the FN events reveals that 64% of the FNs are 
attributable to two participants whose schedules were markedly more variable than the other 
cubicles’ occupants observed during this study. 

The feedback from the user survey was overwhelmingly positive, with only one respondent 
saying that they would not volunteer for a similar control program in the future. (This person 
also acknowledged that their difficulties during the control period may have been unrelated to the 
Ibis sockets.) The majority of respondents said that they had to override the controls at least once 
during the control period, but that the override process was simple and not an inconvenience. 
Several people noted that the override process was simple because the project team had provided 
instructions ahead of time on what to do if an override was required, which underscores the 
importance of user education at commissioning. 
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4 Future Work 
This work demonstrates the potential for LBAs to synthesize control schedules to save energy 
from plug loads. A relatively simple algorithm that considered factors such as day of the week, 
season, and asset class was able to correctly forecast whether to turn outlets on or off 70% of the 
time based on limited training data. Furthermore, the errors in prediction were heavily 
asymmetric, with a false negative rate of only 3.2% (events that inconvenience users) versus a 
36% false positive rate (missed opportunity for saving energy) in the field evaluation results. 

Future research should focus on reducing the false positive rate without markedly increasing the 
false negative rate, which would achieve more savings without adversely affecting user 
convenience. In this study, we explored some algorithm variants, and were able to understand 
how the balance shifted with some of the changes attempted. There is considerable potential for 
further improvement of the algorithm building on the learnings presented in this work. 

Developing stronger predictive models for individual workers would enable wider varieties in 
schedules to be captured more accurately. Weighting individual-level variability more strongly in 
an LBA for automating plug load controls may help reduce the impact of the error tradeoffs and 
yield automated plug-load controls that achieve near-optimal savings with minimal disruption to 
user behavior. 

Additional use cases for various control strategies for categories of plug-load equipment and how 
those controls would best integrate with other building systems are worth exploring. Building 
systems could provide inputs to enhance occupancy signals for the LBA, or conversely, building 
systems could make use of the plug-load data to influence their own controls, providing a more 
integrated and holistic approach to energy management. For example, the Ibis system could be 
connected to occupancy sensors for building lighting systems. The additional occupancy data 
would provide opportunity for a more sophisticated automated control algorithm, but many 
decisions would need to be made to maximize the benefit potential, such as how to prioritize 
disparate streams of information for optimal plug-load strategy, as well as which direction(s) 
information would flow. 
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