Flow Characterization Of Compressed Woody Biomass

Ehsan Akbari Fakhrabadi¹, Matthew Liberatore¹

Jonathan Stickel²

¹Chemical Engineering Department, The University of Toledo

²National Renewable Energy Laboratory

NREL/PR-2700-75653

Acknowledgements

DE-AC36-08GO28308

Biomass conversion technologies

Reaction kinetics has been studied extensively

Process: gasification to Fischer-Tropsch

Feeding is problematic at commercial scale

Flow in particulate systems

Flow of compressed terrestrial biomass in a screw feeder $\frac{1}{5}$

Biomass properties affect feeder design

Problems in solids feeding systems

Arching Flooding Seal failure

Jenike & Johanson, https://www.youtube.com/watch?v=ZjKbSnVESDc 7

Overall goal: Optimize feedstock handling

Impact of feedstock characteristics on screw feeder

Woody biomass material

Tree types:

 White fir (20%), Ponderosa pine (60%), and Lodgepole pine $(20%)$

Feed measurements to models

Connect polymer extrusion + rheology to biomass screw feeding using modeling

Project's goal requires collaboration

Modeling compounder viscosity

Banning et al., Estimating the melt viscosity in the Xplore micro extruder, 2012, Xplore, Netherlands. 11 11

Stress decreases as screw speed increases

Negative plastic viscosity measured

Viscosity fits Cross model

Measurements fall within shear thinning regime

Impact of screw speed on temperature

Temperature may need to be accounted for in feeder design

Higher moisture causes better biomass flow

60% lower viscosity with increasing moisture content

Particles size has little impact on flowability

Adding 30% sawdust does not change viscosity

Summary - Questions? Text 720-443-1526

Higher screw speeds improves biomass flowability

 Shear stress decreases with shear rate Negative plastic viscosity

Viscosity decreases with moisture content

Particle size distribution has little impact on viscosity

Measurements enhance CFD and equipment design

Quantify biomass rheology data

Measure biomass Particle-Particle friction

Parallel plate geometry **Rectangular torsion kit**

Develop CFD models for the screw feeder

OpenVFOAM

Open source CFD tool

C++ based coding

Customized solvers

Meshing packages

Rahimi et al., Complete Simulation of Pilot-scale Screw Feeder in Milestone Reports FY19Q2. 2019, NREL and INL.

Timeline to graduation

Combining Measurements

Microcompounder Rheometer Rheometer Melt Rheology

Xplore MC5 ARES G2 Xplore MC5

Modeling the Compounder Viscosity

R.C.M. van Banning, "Estimating The Melt Viscosity in The Xplore Micro Extruder", 2012, Xplore, Netherlands.

Impact of Screw Speed on Biomass Flow

Increasing screw speed increases flowability

Impact of Screw Speed on Temperature

Temperature may need to be accounted for in feeder design

Impact of Moisture on Biomass Flow

Better biomass flowability as the moisture content increases

Impact of Particle Size on Biomass Flow

Particle size distribution has little impact on flowability

27

Particle size distribution of biomass

Pecha, M.B., et al., Integrated Particle- and Reactor-Scale Simulation of Pine Pyrolysis in a Fluidized Bed. Energy & Fuels, 2018. 28

Biomass conversion technologies

Reaction kinetics has been studied extensively

Process: gasification to Fischer-Tropsch

Feeding is highly problematic for commercial scale processes

Method: twin screw microcompounder

Xplore MC5

```
\eta =F
      \frac{1}{N}C_1  \dot{\gamma} =
```


 F: Axial force (N) N: Screw Speed (rpm) $\dot{\gamma}$: Shear rate (s⁻¹) C1, C2: Constants η: Viscosity (pa.s)

Banning et la., Estimating the melt viscosity in the Xplore micro extruder, 2012, Xplore, Netherlands. 31

Modeling compounder viscosity

Banning et al., Estimating the melt viscosity in the Xplore micro extruder, 2012, Xplore, Netherlands. 32
32

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

