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The Timely Promise of Seaweed Biotechnology for Carbon Capture
The landscape of future sustainable biobased fuels and products will likely rely on a portfolio of
different feedstock sources to meet the growing demand for replacements for petroleum-
derived fuels and products [1–3]. One of the promising emerging sources in this area is biomass
derived from seaweed (or macroalgae). Macroalgae are capable of producing more biomass per
acre in offshore marine farms compared with their terrestrial crop counterparts and can be sus-
tainably harvested and produced without utilizing valuable arable land or unsustainable nutrient
requirements [4–9]. In particular, the topical emergence of seaweed in algal blooms occurring
around the world has the bioenergy community focused on developing solutions to harvest
and then maximize the conversion and recovery of the biochemicals entrained in the biomass.
Similar to microalgae, the biomass conversion process for seaweeds is modeled as a biorefinery
and necessitates a discussion around biomass composition, intrinsic value of the components,
and, ultimately, conversion to products as a success metric [1]. Despite this potential, there are
significant challenges associated with realizing both the cultivation and harvesting logistics, as
well as in developing an efficient biomass deconstruction and conversion platform to fuels and
products. Effective, scalable, and economically viable conversion processes tailored to sea-
weeds are discussed in detail and gaps are identified that outline the needs for yield and effi-
ciency improvements. In particular, the recent interest and multiyear, multimillion dollar
investment of the Department of Energy’s Advanced Research Projects Agency-Energy sup-
ports a shift in both government and industry interest (https://arpa-e.energy.gov/?q=arpa-e-
programs/mariner).

The concept of developing a biorefinery approach to maximize the value derived from seaweed
biomass is represented in the literature but is often not placed in the context of sustainable
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bioproducts and bioenergy productions. Often, literature reports relate to the ongoing challenges
with respect to carbon capture potential in an agronomic setting that does not compete within a
food versus fuel debate. With the discussion here, we aim to drive the narrative to a more realistic
framework around seaweed carbon capture and bioenergy conversion. This review will be fo-
cused around the following topics: carbon storage in the biomass and carbon capture potential
based on the underutilized exclusive economic zone (EEZ) of the oceans that represent ideal ma-
rine agriculture locations; application of biotechnological applications towards deconstruction of
the complex biomass composition, including the discovery of new enzyme cascades present in
microbial communities; consideration of seaweed intrinsic biomass value based on composition
and the challenges associated with in-depth characterization of macroalgae; and placing the
biorefinery discussion in the context of the large-scale, offshore farms that are envisioned for
bioenergy production and thus create market opportunities commensurate with the volumes
produced.

Seaweed as a Sustainable Bioenergy Feedstock
Global Seaweed Production Potential
In the context of supplying a feedstock for bioenergy applications, the primary consideration is the
scale of production capacity. It is estimated that current global marine agronomy is able to pro-
duce around 30 MMT (million metric, dry, tonnes) of seaweed per year, of which production in
the USA is estimated to be around 425 000 T [10,11]. Of this, 29.4 MMT was cultivated in a ma-
rine agriculture setting and produced and 1.1 MMT was harvested in the wild. The primary driver
for this production is to support the growing global markets in seaweed-derived hydrocolloid
polymers and other high-value products for food, feed, and agriculture application [12]. Almost
all of this production is driven by a couple of species: Kappaphycus alvarezii, Eucheuma spp.,
Laminaria spp., Gracilaria spp., Undaria pinnatifida, Porphyra spp. (some species in this genus
were renamed asPyropia spp., a.k.a. nori),Sargassum fusiforme, andUlva spp. in global produc-
tion [10,12–14]. Most recently, there is an additional and growing interest in harvesting fast-
growing seaweeds that are entrapped in natural algae blooms for conversion to bioenergy. The
unpredictability of algal blooms may present challenges in a bioenergy supply chain, however,
it is a source that is currently not utilized andmay become a supplemental source of biomass [15].

When comparing the current production levels with the total entrained energy potential of sea-
weed, there is potential for seaweed to displace a significant burden on imported energy and
thus contribute to the global carbon capture and utilization solution. In particular, the EEZ of the
USA represents a significant portion that could be used for aquaculture and marine agronomic
development (Figure 1). In the context of the large marine ecosystems approach to preserve
and restore the natural ecosystems around the world, there are tremendous opportunities to de-
velop a sustainable macroalgae-based aquaculture. The value that macroalgae provide to global
geochemical cycling (among other benefits) includes a carbon and excess nutrient-capture ap-
proach. Especially in the Gulf of Mexico, macroalgae opportunities exist and address the needed
nutrient cycling that is rapidly becoming a priority for ocean and coastal management [16]. Sim-
ilarly, offshore large-scale integrated multitrophic aquaculture is a promising route to support
aquaculture in combination with effective biofiltration of excess nutrients [17]. If only a fraction
(~2.5%) of the EEZ (250 000 km2) could be used for deploying a national marine agriculture pro-
gram, estimated (future) yields of between 300 and 1120million tons of seaweed can be achieved
[5,13,18]. Assuming an effective conversion process is available to convert at least half of the
energy entrained in the harvested macroalgal biomass (with an assumed caloric content of
14 MJ kg–1 ), to for example biogas, between 10% and 20% of the 31 Quad BTU (equivalent
to approximately 31 exajoules, EJ) imported fossil energy natural gas used in the USA in 2018
(https://www.eia.gov/energyexplained/us-energy-facts/) could be displaced. Similarly, if an
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Figure 1. Visualization of the Exclusive Economic Zone Ocean Locations of the USA. This is where the USA has
exclusive jurisdiction over the natural resources, of almost 10 million km2 (3.4 million square miles), extending up to 200
nautical miles from territorial shores (broken lines off the coast), overlaid with the large marine ecosystems around the US
coastline (colored regions). Created using Open Access shapefiles available from Flanders Marine Institute, GeoNetwork
Open Source (geonetwork-opensource.org) and ThematicMapping (thematicMapping.org).
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efficient, high yielding, biofuel conversion process is found, a similar fraction of the imported petroleum
(36 Quad BTU, or 36 EJ) can be displaced. These values correspond to just over 200 million tons of
CO2 [19,20]. Since much of the EEZ is currently underutilized, a fraction of this area could be devel-
oped for marine bioenergy applications, while respecting competing uses for ocean resources [21].

The carbon capture potential of cultivated seaweed at least matches and often exceeds that of ter-
restrial farmed crops, with minimally intensive agricultural practices and nutrient requirements. Sea-
weed biomass productivities of between 1450 and 14 000 T volatile solids (VS, or ash-free dry
weight) km–2 year–1 have been reported, corresponding to between 6 and 57 dry T acre–1 year–1,
depending on species and growth environment, that is, wild harvest or (intensively) cultivated
(Table 1) [5,13,18,20,22,23]. This compares against 40 fresh T acre–1 year–1 for sugar cane as
the representative highest yielding terrestrial crop (yielding 5 T sugar acre–1 year–1) (USDA, ERS,
2019 figures, www.ers.usda.gov/media/8310/table15.xls). Because of the order of magnitude re-
ported range in seaweed productivity, it is hard to estimate the derivative data on carbon capture
potential of seaweed. For carbon capture calculations, we have assumed a 30% carbon content
on a dry weight basis, comparable with measured and representative carbon in wild-harvested
Ulva, Sargassum, and Gracilaria 27–32%, or 37–45% on a VS basis (Box 1). For the purpose of
this review, it is important to remain cognizant of both the seaweed production potential as well
as the variation in carbon content, which, when both are optimized, can have a positive impact on
overall carbon capture potential of the future marine agronomy.

Recently, new opportunities in marine bioenergy technology development were included in a
comprehensive report, for example, ‘Powering the Blue Economy’ [11], positioning seaweed as
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Table 1. Summary of Reported Seaweed Biomass Productivity Potential and Associated CO2 Capture

Species Biomass
T VS km–2 year–1

(T VS acre–1 year–1)a

Biomass
(g VS m–2 day–1)

Carbon
T km–2 year–1

(30% C)

CO2 capture
T km–2 year–1

(T acre–1 year–1)

Refs

ND 1450 (6) 4.0 435 1595 (6) [13]

Macrocystis pyrifera 1800 (7) 4.9 540 1980 (8) [24]

M. pyrifera 2000 (8) 5.5 600 2200 (9) [5,13]

Ulva lactuca 4500 (18) 12.3 1350 4950 (20) [18]

Laminaria longicruris 7407 (30) 20.3 2222 8149 (33) [23]

Gracilaria chilensis 14 000 (57) 38.4 4200 15 400 (62) [20]

aData collected across literature reports and normalized based on areal productivity, all assuming a 30% carbon content on
the basis of volatile solids (VS), or ash-free dry weight; ND refers to an undefined seaweed species and an average
(conservative) value of biomass productivity [13].
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a supply of liquid biofuels and energy for offshore installations, as an integral part of a future vision
of marine renewable energy.

Harvesting and Processing Logistics
While seaweed farming has existed for years, primarily for food and feed applications, a vision for
marine agronomy at the bioenergy scale needs to take into account the costs of all aspects of
processing along the seaweed value chain [25]. The logistics of harvesting a crop that is pro-
duced in near-shore waters is a complex process and there are significant challenges associated
with recovering the biomass feedstocks for on-shore conversion. While an in-depth review of the
harvesting and processing logistics of different seaweeds is outside of the scope of this review,
we briefly introduce some important considerations. In some examples, the crop may be
completely removed to be replanted the next season, in other cases, 10–40% of the biomass
is left behind to start the next cultivation cycle [26]. Both seeding and harvesting operations rely
primarily on human labor and, generally, overall process requirements for large-scale macroalgae
operations at sea are challenging and only industrialized for some species of seaweeds
[14,21,27]. Because of the highly manual nature of the process, the scale of implementation is
currently limited and needs to be automated to reach autonomous harvesting operations for
full-scale bioenergy feedstock production [19,21,28].

Seaweed Composition
Biomass Composition
Similar to other cultivated bioenergy crops, the high polysaccharide content of seaweeds posi-
tions them well to meet the demands of a changing market for producing both fuels and a
suite of products [29–31]. The biomass composition changes dramatically for different algae spe-
cies and across seasons for some genera of seaweeds [32]. An in-depth compositional profiling
of the seaweed biomass can thus inform a different product portfolio by species selection (Box 1).
Other influences on the biomass composition can be assigned to environmental manipulation.
This unique contribution of seaweeds can be aligned with the appropriate conversion or fraction-
ation technology, allowing for the utilization of algal biomass components to ultimately help to
drive down the cost of bioproducts compatible with a large-scale conversion process.

The genera Sargassum, Laminaria, Porphyra/Pyropia,Gracilaria, andUlva are representatives of the
primary taxa of seaweeds. The primary discussion around the composition of seaweeds will focus
on representatives from this set, distinguished by large phylogenetic phyla of green (e.g., Ulva),
red (e.g., Gracilaria, Porphyra/Pyropia), and brown (e.g., Sargassum, Laminaria) seaweeds. This
simple classification allows for some generalizations to be drawn with respect to the presence of
Trends in Biotechnology, November 2020, Vol. 38, No. 11 1235



Box 1. Compositional Profile of Major Seaweed Representatives

Distinct biomass compositional profiles are associated with each of three representative seaweed species, Ulva fasciata, Gracilaria parvispora, and Sargassum echinocarpum
(Table I). These three genera are of interest in current research on conversion to bioenergy products and their respective biomass composition is described in detail here. Con-
sistently, about a third of the biomass is entrained in ash, with the majority of the rest of the measured biomass composition found in the carbohydrate fraction, which reaches
around 40% of the ash-free portion of the biomass, and is likely higher due to the incomplete measurement of all monosaccharides that make up the complex polymeric struc-
tures. On an ash-free or volatile solids (VS) basis, the biomass carbon content reaches up to 45% for Sargassum, consistent with the high observed carbohydrate content.

When looking at themolecular make-up of themonosaccharides that comprise the carbohydrate fraction (Table II), there are distinct sugars that can be found in the hydrolyzed
liquors from eachof the species. In the caseofUlva, the primarymonosaccharides are glucose, rhamnose, and uronic acids, consistent with published reports on the presence
of cellulose in green algae [76], while for Gracilaria it is galactose (most likely derived from the agar polymers) and glucose, and for Sargassum primary components are the
uronic acids and glucose. Such different compositional structures will undoubtedly require adaptation of a selective fermentation approach [64].

The lipid content, reported as the sum of the fatty acids after in situ transesterification [77] is shown in Table I, while the fatty acids that make up the lipids before and after washing
the biomass upon wild harvest are shown in Table III. In Table III, all data are expressed on a total fatty acid methyl ester (FAME) basis, reported on an ash-free dry basis (i.e., VS)
after lyophilization of the biomass. All fatty acids are presented by their [carbon number]:[number of unsaturated bonds along the carbon chain]; C11CP and C13CP refer to the
cyclopentyl dihydrochaulmoogric and dihydrohydnocarpic acids, respectively, as previously identified [78,79] and quantified by gas chromatography after in situ transesterification
[77,80].

A fatty acid diversity and specificity was observed here that is consistent with the higher unsaturated fatty acids that make up algae lipids [29]. In particular, omega-3 poly-
unsaturated fatty acids (e.g., eicosapentaenoic acid, C20:5n3) were detected, albeit at very low concentrations of the biomass, in Gracilaria and Sargassum, potentially
opening opportunities for high-value product extraction. Because the analytical methodology is based on a direct, or in situ, transesterification of the whole biomass, data
on the origin of the fatty acids (i.e., which intact lipid the fatty acids were associated with) is not available. Cyclopentyl dihydrochaulmoogric and dihydrohydnocarpic acids,
unusual metabolite fatty acids, have been detected inGracilaria; these function as intercellular metabolites and ‘local hormones’, in particular in the red algae family [78,79].
The proposed identity of the fatty acid derivatives is based on electron impact fragmentation data by gas chromatographymass spectrometry for the two different products;
their respective quantification is based on a similar size fatty acid standard, indicating that both together account for almost 15% of the total fatty acids and should not be
dismissed as lipid contributors. Because of their so far unknown biological activity, their impact on a biological conversion process could be significant.

Table I. Overview of Macro-Elemental and Biochemical Composition of Three Seaweed Species, Ulva fasciata, Gracilaria parvispora, and
Sargassum echinocarpum

Ash
(% DW)a

C
(% VS)

H
(% VS)

N
(% VS)

Lipids (as FAME)b

(% VS)
Protein
(% VS)

Carbohydrates
(% VS)

Ulva fasciata 28.57 38.2 6.7 2.9 1.55 13.92 42.8

Gracilaria parvispora 33.91 41.6 6.5 3.6 3.35 17.32 38.67

Sargassum echinocarpum 27.38 45.1 6.3 1.8 2.78 8.82 38.26

aAll data are expressed on either a dry basis (%DW) or an ash-free dry basis (i.e., volatile solids, %VS) after lyophilization of the biomass upon wild harvest off the coast of
Kailua Kona, Hawaii in June 2019.
bFAME, fatty acid methyl ester after direct transesterification of whole biomass, protein, and carbohydrates, measured as described in [43,73–75].

Table II. Overview of Biomass Monosaccharide Composition for Three Seaweed Species, Ulva fasciata,
Gracilaria parvispora, and Sargassum echinocarpum

Fucosea Rhamnose Galactose Glucose Mannose Xylose Mannitol Uronic acids

Ulva 0 11.3 0.46 16.02 0 4.63 0 10.39

Gracilaria 0 0 23.79 12.66 0.66 0.88 0 0.69

Sargassum 3.96 0 1.79 10.27 1.09 0.57 5.04 15.54

aAll data are expressed on an ash-free dry basis (i.e., volatile solids) after lyophilization of the biomass and sulfuric acid
hydrolysis, followed by anion exchange chromatography quantification [43,44]. Arabinose and ribose were not detected in any of
the seaweed samples.

Table III. Overview Biomass Lipid (Fatty Acid) Composition for Three Seaweed Species, Ulva fasciata, Gracilaria parvispora, and Sargassum
echinocarpum

C14:
0

C16:
0

C16:
1n7

C18:
0

C18:
1n9

C18:
1n7

C18:
2n6

C18:
3n3

C18:
4n3

C20:
3n6

C20:
4n6

C20:
5n3

C22:
0

C22:
1n9

C11CP C13CP

Ulva 0.8 62.2 1.6 1.0 2.1 10.5 3.7 4.6 1.4 0.0 0.0 0.0 4.2 0.4 0.0 0.0

Gracilaria 0.7 38.4 0.4 0.7 2.4 1.1 0.3 0.0 0.0 1.5 18.0 12.9 0.0 0.1 11.3 2.6

Sargassum 4.5 36.0 2.9 0.9 13.3 0.3 4.0 6.6 6.4 0.8 14.3 4.4 0.7 0.2 0.0 0.0
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distinct polymeric structures [33]. For example, seaweed cell walls are known to contain (practically)
no lignin and only low amounts of cellulose and lipids, which renders the seaweed-based biomass
potentially higher in polysaccharides accessible for conversion processes, compared with hard-to-
digest terrestrial ligno-cellulosic feedstocks [34,35]. Brown seaweeds can be rich in polyphenols,
which are not only difficult to degrade but could also inhibit anaerobic digestion [36,37]. Brown sea-
weeds (e.g., Laminaria) are used as feedstocks to produce polysaccharides (e.g., alginate), which
can find applications as thickeners, gelling agents, and stabilizers for frozen food and cosmetics
[33,35,38,39]. Red seaweeds, such as Gracilaria and Kappaphycus, contain large quantities of
agar and carrageenan, respectively. These industrial polysaccharides are often used in the food,
pharma, textile, paint, and biotechnology industries, including antifouling, antibiotic, and antimalarial
applications [40]. Similarly, green seaweeds such as those of the Ulvales family, are known to pro-
duce a complex, acidic, polysaccharide ulvan, also finding applications in themedical and cosmetics
industries [38,41]. These polysaccharides also could also be exploited as prebiotic functional ingre-
dients for both human and animal health applications [6,12].

It is critical that a robust analytical pipeline for macroalgae is focused around polysaccharide com-
ponents, with the aim of defining the basis of biomass conversion and ultimately guiding the de-
tection of products. While many surveys have been conducted on the major macromolecular
composition of seaweeds in order to identify strains for different applications, the quantification
methods have varied tremendously across the published literature. Precisely these biases in
methods used for compositional characterization of the materials are at the basis for a problem-
atic comparison of literature reports on seaweed biomass composition [42]. The value of under-
standing the macromolecular composition of seaweeds on a consistent basis will help to develop
a basis for valuation of biomass and help tailor specific conversion pathways to maximize the de-
construction and bioenergy production.

While there are significant challenges associated with collecting quantitative characterization of
seaweed biomass composition [42], a relative comparison between the three major taxa is
shown in Tables I–III in Box 1. The basis of compositional analysis of seaweed polysaccharides,
as recently recommended [43], includes a sulfuric acid hydrolysis process to monomeric sugar
constituents that are subsequently quantified based on a liquid chromatography separation pro-
tocol [43,44]. Alternative methods are available for carbohydrates, however, not all have merit in
the analytical characterization of algal biomass [42]. Using the hydrolysis and chromatography
approach, it is clear that different species of seaweed can be classified based on the released
monomeric sugar composition, such as rhamnose, fucose, guluronic acid, and mannuronic
acid, along withmany different derivatives (e.g., sulfatedmonomers), and thus a biochemical con-
version process would need to be tailored specifically to metabolize these monomers.

Seasonality of Ultimate and Proximate Composition
The compositional characteristics can be represented in the elemental composition of seaweeds,
which are usually measured as proximate [total solids (TS) and VS] and ultimate (carbon, hydro-
gen, and nitrogen) compositional analysis. The biodegradable element of the seaweed is also re-
ferred to as VS and salt is a major constituent of ash in seaweed. The total and VS content of all
seaweeds range with species and with season [32,45,46]. With any changes in the biochemical
composition of the seaweeds over different seasons, the respective process yields for any rele-
vant bioenergy pathway are likely to be affected [32,45,47,48].

The elemental composition, and in particular the ratio between carbon and nitrogen (C:N), is an
important characteristic of seaweed and often provides information that can be used to estimate
the effectiveness of a conversion process [45,46]. Many brown seaweeds have C:N ratios in
Trends in Biotechnology, November 2020, Vol. 38, No. 11 1237



Trends in Biotechnology
excess of 15–20, while some green seaweeds (e.g., Ulva), had a low ratio, of 10 or lower [49]. This
allows an elemental formula to be developed to describe the TS content of the substrate. For ex-
ample,Ulva spp. generated the elemental formula C9H16O7N [50]. These ratios can have significant
implications on downstream conversion processes, for example, for anaerobic digestion, the opti-
mum C:N ratio is in the range of 20:1 or 30:1, with the much lower ratios of C:N causing levels of
ammonium in the digester that could inhibit effective deconstruction and fermentation [51].

Limited information is available around the seasonality of compositional changes of seaweed
composition, with the exception of a couple of detailed studies [32,47,52,53], but observations
date back to the 1950s, where ash and carbohydrates were the predominant components
tracked [54]. In particular, when looking at the laminarin and mannitol concentrations in
Laminariaceae, these carbohydrates were found to be highest in October and lowest in winter
months, with the ash proportion showing a reverse trend [54]. Similarly, the highest alginate con-
tent in kelp species (Macrocystis pyrifera) was in the summer months [52]. By contrast, protein
content was found to be highest in the winter months and lowest during the summer [53,55].

However, some work on the elemental composition (ultimate and proximate) of Laminaria
digitata, harvested over the course of a year, supports the notion that the highest carbohydrate
content biomass coincided with the highest biomethane potential in a continuous anaerobic di-
gester [45]. This indicates that the underlying biochemistry and storage products in the feedstock
can dramatically influence the predicted conversion process characteristics.

Structural Biochemical Polymers
Seaweed polysaccharides are famously complex and have unique properties that make
these polymers highly attractive in biotechnological applications (Box 2) [41]. The other side of
the complexity is that these polymers are different when compared with terrestrial feedstocks
(e.g., ligno-cellulosic biomass) for bioenergy production and thus not directly compatible with
existing technologies and process operations, suggesting that much more research is needed
to both elucidate the structure and associated needed degradation pathways.

Because the described complexity of the structural polymers that make up the polysaccharide or
carbohydrate fraction of seaweed, there are still challenges in converting these polymers to useful
products. While there have been a number of reports on the utilization and fermentation of the
monosaccharides [56–58] that make up the polymers, there is little information on the decon-
struction of the polymers beyond pretreatments.

Microbial Degradation of Structural Polymers
One of the critical challenges to macroalgae or seaweed conversion and degradation is tailoring
the microbial deconstruction activities to the seaweed chemical compositional profile. There are
numerous reports on the bioconversion (e.g., fermentation of released monosaccharides from
seaweeds [33,48,57–62]. Products such as ethanol, butanol, and acetic, propionic, butyric, lac-
tic, adipic, and succinct acids can be biologically produced from existing microbial platforms and
become intermediates for next-generation fuels and bioproducts [61]. Typically, the organisms
used for fermentation are not tailored to the unique molecular make-up of the hydrolyzed sugar
liquor and are often unable to metabolize, for example, uronic acids and other saccharides
[63]. Easily fermented sugars, such as glucose, galactose, mannose, and others, can comprise
a smaller contribution of the biomass, with much more prominent contributions from deoxy-
and anhydro-saccharides (fucose, rhamnose, anhydrogalactose, etc.), hydrogenated sugars
(e.g., sugar alcohols such as mannitol), and uronic acids (Box 1). To achieve the necessary
high yield and titer of fermentation products, there is a need for microbial organisms that are
1238 Trends in Biotechnology, November 2020, Vol. 38, No. 11
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able to effectively assimilate and metabolize these unique saccharides. Recent work has made
progress in overcoming metabolic bottlenecks. In particular, the successful transfer of a uronic
acid transporter, along with the required catabolic genetic machinery to a yeast host for the pro-
duction of ethanol from brown seaweedmonosaccharides, achieved up to 83% of the theoretical
ethanol yield from consumed mannitol and uronic acids [64]. Simultaneously, the redox balance,
and central metabolism energy resource allocation, needs to be carefully engineered to ascertain
no yield losses occur [61,65].

While most of the bioenergy fermentation of seaweed polysaccharides have focused on metab-
olizing the unusual monosaccharides found in brown seaweed, it is understood that if the poly-
saccharide hydrolysis preceding the fermentation is not complete, a large fraction of the
biomass remains untapped. In this context, metrics such as hydrolysis and fermentation carbon
yield are important and are not always reported on the basis of the polysaccharide content in the
original biomass [48,61].

There are large numbers of bacterial populations found on seaweeds that are being elucidated [66]
and are an untapped and highly promising resource to find specific metabolic and fermentative ac-
tivities. Many marine microbial communities are found naturally occurring on seaweeds or forming
the basis of themicrobiome in herbivorous fish and thus are able to utilize the seaweed polysaccha-
rides as energy sources [67,68]. Recent work has begun to take a metagenomic approach to look
specifically for bacterioplankton composition and microbial structure function degradation
Box 2. Complex Biopolymers of Prominent Seaweeds

Seaweed composition is dominated by polysaccharides that have highly complex compositional profiles. In the case of brown seaweeds, biomass structural heteroge-
neity plays a role in the respective polysaccharide contribution (Figure I). For example, the co-occurrence of multiple polysaccharides gives these seaweeds structural
integrity but also challenges conversion approaches. We document here a summary of the primary polysaccharides and their respective molecular structures, illustrated
in Figure I. The polysaccharides are present in the three main seaweed families and we focus on unique polysaccharides beyond cellulose and starch, which are thought
to be minor contributors to seaweed polysaccharides and have been described previously [57].

Agar, found in red seaweeds, such asGracilaria, is a heteropolymer mixed of two polysaccharides: agarose and agaropectin, with agarosemaking up the majority of the
mixture. Agarose is a linear polymer, made up of repeating units of agarobiose, a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose (Figure IIA).
Agaropectin is a heterogeneous mixture of smaller molecules that occur in lesser amounts and is made up of alternating units of D-galactose and L-galactose, heavily
modified with acidic side-groups, such as sulfate and pyruvate [81].

Carrageenan is also an anionic polysaccharide, also typically found in the red seaweeds, where the monosaccharide units are sulfated. The polymer consists of straight
chain backbones of alternating 3-linked β-D-galactopyranose, 4-linked α-galactopyranose residue. Some of the α-galactose residues may be in an anhydrous form and
be substituted by sulfate ester, methyl groups, and pyruvic acid acetals. The 3,6 anhydro-α-D-galactose is responsible for gelation of the carrageenan polymers. A
representative structure is shown in Figure IIF.

Laminarin is a storage polysaccharide, primarily accumulated by brown seaweeds, such as Sargassum, and consists of a β-1,3-glucan with β-1,6 branches, with ter-
minal mannitol residues on the chains. It is a linear polysaccharide, with a β-1,3:β-1,6 ratio of 3:1 and its hydrolysis is catalyzed by enzymes such as laminarinase. A
representative trimer is shown in Figure IIB.

Fucoidan consists of a backbone of sulfated fucans, or α-L-fucopyranose residues, and other minor sugars such as xylose, galactose, mannose, and glucuronic acid,
typically isolated from brown seaweeds (e.g., Fucus vesiculosus or Sargassum). The fucoidan polymer contains a linear backbone of 1,3 linked, sulfated α-L-fucopyranose
(Figure IIC) with branches of several residues as α-D-glucopyranosyluronic acid residues or α-L-fucopyranosyl residues, which forms quasi-regular carbohydrate chainswith
hexasaccharide [41].

Ulvan, a branched polysaccharide, typically isolated from the green seaweedUlva, is composed of repeating disaccharide units, in which D-glucuronic acid (GlcA) is
β-1,4-linked or L-iduronic acid (IdoA) is α-1,4-linked to L-rhamnose 3-sulfate (Rha3S) (Figure IID), which is α-1,4-linked within the main chain. Some of the uronic
acids are replaced by β-1,4-linked D-xylose (Xyl), which can be sulfated at position 2 (Xyl2S). Furthermore, Rha3S can be modified by β-1,2-linked GlcA side chains
and the GlcA-Rha3S or IdoA- Rha3S pattern can be interrupted by consecutive GlcA residues [82].

Alginate is an anionic polysaccharide comprised of mannuronic acid and guluronic acid; it has gelation properties in water and is typically found in highest concentrations
in brown seaweeds, including Sargassum. The main building blocks are (1,4)-linked α-L-guluronic acid (G residues) and (1,4)-linked β-D-mannuronic acid (M residues)
and structures that contain alternating M and G residues. A representative structure is shown in Figure IIE.
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Figure I. Macroscopic View of
Biomass Heterogeneity (Air
Bladders, Blades, and Stipes) of
Sargassum muticum, an Invasive
Species. Seaweed collected from local
San Diego shores, used for microbial
degradation studies (image courtesy of
authors).
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adaption that is adapted to live off the dissolved organic carbon (DOC) exudates from seaweeds
[67,68]. The DOC studied comprised a complex mixture of major chemical compound classes of
carbohydrates, protein, and lipids and thus microbial populations found associated with these
products are likely harboring the necessary deconstruction and metabolic conversion machinery
and can provide insights into seaweed polymer deconstruction activities [67,69].

Microbial diversity can present clues to novel activities specifically tailored to help digest the major
biomass polymers. As an example, ulvan degradation pathways and enzymatic activity cascades
have been identified in a bacterium Formosa agariphila, a marine flavobacterium, and build on the
elucidation of novel β-glucuronyl hydrolase from the GH105 family [70]. Similarly, a microbial deg-
radation cascade has been successfully engineered in Escherichia coli, based on a set of alginate
lyase enzymes that were secreted into the immediate vicinity of the bacterial population [56].

The most promising microbes tailored to complex polysaccharide conversion to, for example, or-
ganic acids, can be found in representatives from the phyla Bacteroidetes and Firmicutes, with rep-
resentatives of Clostridiaceae, Ruminococcaceae, and Lachnospiraceae within the Firmicutes
phylum. A number of representatives of these genera are known carbohydrate-degrading bac-
teria, with a very high number of identified carbohydrate-active-enzymes (CAZymes) [71]. In
particular, an agar degradation locus was recently discovered and characterized in a represen-
tative marine Bacteroidetes [72]. It remains to be demonstrated that such an informed search
for novel and enriched microbial activities in seaweed-associated and/or fish-gut-associated
microbiome communities can yield genetic information on novel encoded enzymes that can
be applied to the biocatalytic degradation of the complex seaweed biomass.
1240 Trends in Biotechnology, November 2020, Vol. 38, No. 11
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Figure II. Overview of Representative Chemical Structures of Major Representative Seaweed Polysaccharides. (A) Agar (shown as an aragobiose dimer of
galactose and 3,6-anhydro-L-galactopyranose); (B) laminarin (shown as a trimer of β-1,3 linked glucose); (C) fucoidan (shown as a sulfated fucan unit); (D) ulvan [shown
as α-L-rhamnopyranose 3-sulfate (Rha3S), linked to β-D-glucuronate (GlcA)]; (E) alginate (shown as a trimer of mannuronic and guluronic acid, MGM); (F) carrageenan
(shown as a tetramer of alternating 3-linked β-D-galactopyranose and 4-linked sulfated α-galactopyranose residues).
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Another remaining challenge is associated with improving accessibility of the microbial communi-
ties to the polymers that are needed as a carbon source for downstream conversion and ulti-
mately to maximize the channeling of the biomass carbon in the products. Improving
accessibility of the biomass for deconstruction can happen through physical biomass decon-
struction and in nature (in vivo) can be accomplished by an animal chewing or physically shearing
the seaweed to increase the available surface area. In a biological deconstruction process (e.g., in
a fish gut), enzymes are secreted into the stomach to further deconstruct the seaweed, increasing
Trends in Biotechnology, November 2020, Vol. 38, No. 11 1241
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Outstanding Questions
Can future sustainable seaweed
farming become a significant source
of biomass for bioenergy production
exceeding terrestrial areal carbon
capture potential?

Which biomass deconstruction activities
are most critical in defining and
implementing a successful and
economically feasible conversion
pathway?

Can the deconstruction activities of
unique seaweed polymers be tailored
for maximum activity through microbial
bioprospecting?

Can high-value products from seaweed
contribute to the biorefineries of the fu-
ture in a fully integrated, and economi-
cally viable, bioconversion process?
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accessibility for the microbes to the biomass. These same strategies can be applied in vitro to po-
tentially greater effect. Various milling techniques can reduce particle size and increase surface
area. As has been done with terrestrial biomass, cocktails based on microbial enzymes can be
optimized and mass produced for seaweed-based biomass.

Concluding Remarks and Future Perspectives
The interface between biotechnology and agriculture is set to position seaweeds or
macroalgae in a critical nexus to meet the increasing demands of biomass for fuels and prod-
ucts. The strategic direction for seaweed as a highly efficient photosynthetic biofuel and
bioproduct feedstock can be achieved through the integration of biotechnology, process engi-
neering, and analysis. Primary strategies for bioenergy production from seaweed will likely need
to rely on a multiproduct biorefinery approach to sustain economically feasible development.
One of the products in the biorefinery would be fuels derived from fermentation products,
such as alcohols, produced alongside higher-value bioproducts. The basic promise of
seaweed-based bioenergy applications is valid; there does not need to be competition with
existing food and feed supply or associated land-use change challenges, since seaweeds
have the potential to be grown offshore in a globally underutilized EEZ. There is the added ad-
vantage of using waste or run-off nutrients as a cultivation fertilizer, allowing for the recovery of
nutrients at each step of an integrated process to minimize the pressure on limited available re-
sources (see Outstanding Questions). However, there are significant barriers currently imped-
ing commercialization and economic production of seaweeds for relatively low-value energy
and fuel markets. The barriers to commercialization span from accessing seaweed biology
and structural composition and deconstruction chemistry (and biochemistry), to challenges as-
sociated with the integration of technologies at demonstration scale. Overcoming these bar-
riers will require a concerted effort towards the discovery of novel biological and chemical
conversion technologies. One area that shows promise is the realm of bioprospecting for
novel microbial activities directed at converting the biomass to novel products. For example,
the advent of microbiome sequencing of natural herbivorous fish gut communities provides ac-
cess to a treasure trove of deconstruction and energy conversion metabolism that can guide
novel biotechnology research. Even though many technologies have been demonstrated at
the laboratory scale, this most often has focused on specific unit operations or aspects of
the technology such that the challenge remains to fully integrate unit operations for bioenergy
applications and demonstrate these through extended multiseason operations.
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