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This article introduces a lumped electrochemical model for lithium-ion batteries. The governing equations of the standard ‘pseudo
2-dimensional’ (p2D) model are volume-averaged over each region in a cathode-separator-anode representation. This gives a set of
equations in which the evolution of each averaged variable is expressed as an overall balance containing internal source terms and
interfacial fluxes. These quantities are approximated to ensure mass and charge conservation. The averaged porous domains may thus
be regarded as three ‘tanks-in-series’. Predictions from the resulting equation system are compared against the p2D model and simpler
Single Particle Model (SPM). The Tanks-in-Series model achieves substantial agreement with the p2D model for cell voltage, with
error metrics of <15 mV even at rates beyond the predictive capability of SPM. Predictions of electrochemical variables are examined
to study the effect of approximations on cell-level predictions. The Tanks-in-Series model is a substantially smaller equation system,
enabling solution times of a few milliseconds and indicating potential for deployment in real-time applications. The methodology
discussed herein is generalizable to any model based on conservation laws, enabling the generation of reduced-order models for
different battery types. This can potentially facilitate Battery Management Systems for various current and next-generation batteries.
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Lithium-ion batteries are achieving increasing ubiquity with the
emphasis on renewable energy and electric transportation to address
greenhouse gas pollution. Material and manufacturing innovations,
coupled with market pressures and economies of scale, have led to
declines in battery pack costs of nearly 85% in the period 2010–18.1

An important factor toward enabling further reductions in cost metrics
is the efficient operation of battery systems. This entails maximizing
utilization, reducing overdesign, enabling fast charging, and miti-
gating degradation phenomena. Thermal runaway and the resulting
likelihood of fires and explosions is another critical consideration,
and it is essential to ensure battery operation in the safe temperature
range. The Battery Management System (BMS) is the combination
of hardware and software components that performs the requisite
functions to ensure safe and efficient operation.2 An accurate and
robust mathematical model is essential for BMS, which estimates
battery state variables such as State of Charge (SoC), State of Health
(SoH), and temperature.2,3

The incorporation of sophisticated electrochemical models has the
potential to enable more powerful and intelligent BMS. In addition to
improved prediction of battery states, variables internal to battery elec-
trochemistry allow the formulation of more complete optimization and
control problems than would be possible by simple circuit models.4

Achieving this integration requires reduction of the computational de-
mands of complex models, such as the macro-homogeneous ‘p2D’
models of Newman and co-workers.5 In addition to model reformula-
tion techniques that exploit the underlying mathematical structure of
the equations to achieve fast simulation,6,7 the tradeoff between accu-
racy and computational efficiency has spurred active investigation into
simplifications of the p2D model subject to limiting assumptions.8

Since its introduction by Atlung et al.,9 the Single Particle Model
(SPM) has been extensively used for efficient simulation, estimation,
optimal charging and life-cycle modeling.10–13 The SPM visualizes
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the electrodes in a lithium-ion battery as two representative spheri-
cal particles and considers electrode reactions and transport through
the active particle. SPM is particularly attractive since the largest re-
duction in the number of equations is achieved via simplifications of
the solid phase, given that the corresponding equation is solved at
each point in the electrode computational grid (see section on Model
Development).14,15 Importantly however, it neglects potential and con-
centration variations in the electrolyte phase, which limits its predictive
ability to low-current scenarios and relatively thin electrodes, where
liquid phase polarizations can be neglected.8 In addition, SPM assumes
a uniform reaction distribution throughout each electrode, which is
only attained at moderate currents in which kinetic resistances domi-
nate ohmic effects, and in electrodes which possess a monotonic de-
pendence of equilibrium potential with degree of lithiation.16,17 SPM
has been recovered in the limits of fast diffusion dynamics with respect
to characteristic discharge time.18 The p2D model also returns SPM
in the limit of large changes in characteristic overpotential upon Li
intercalation, which results in uniform reaction distributions.19 These
limitations have led to efforts to expand the applicability of SPM by
introducing simplified descriptions of electrolyte dynamics and non-
uniform reaction distributions.

In our past work, we extensively used model reformulation tech-
niques. Millisecond computation times were achieved using coordi-
nate transformation, spectral methods and reformulation enabled by
analytical solution,6,14,20,21 and successfully demonstrated in applica-
tions for parameter estimation, optimal control, and BMS.10,22,23 De-
spite detailed analysis and comparisons of efficient simulations of
SPM-like models in past work from our group,15 the two and three-
parameter models have been arguably the most widely used for control,
optimization and BMS by the community at large.14 This motivates the
development of efficient models for the electrolyte phase in lithium-
ion batteries.

A common approach for the inclusion of non-uniform reaction
distributions is to directly assume a polynomial profile for pore-
wall flux. Alternatively, polynomial profiles for both electrolyte con-
centration and potential may be assumed and used to determine
the spatial variation of the pore-wall flux.24–26 In addition, some
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workers have derived closed-form analytical solutions for the pore-
wall flux distribution. However, these solutions are only valid under
certain assumptions, such as linear kinetics, or by neglecting the dif-
fusional contribution to the electrolyte current, and also neglect the
concentration-dependence of one or more electrolyte transport
properties.27 Still other approaches assume a polynomial or expo-
nential dependence for the equilibrium electrode potential in space.
These assumed profiles are often combined with polynomial spatial
dependence for other electrochemical variables, converting the origi-
nal Partial Differential Equations (PDEs) of the p2D model into a sys-
tem of Differential Algebraic Equations (DAEs). The simplifications
require assumptions to achieve closure, while also assuming constant
electrolyte transport properties for tractability.28,29 For both types of
approaches, the use of higher-order polynomial profiles for increased
accuracy is expected to increase the DAE system size, with the atten-
dant penalty for computational efficiency.

Extensions of SPM to electrolyte dynamics are often termed
‘SPMe’, where e denotes electrolyte. A common approach begins
with the assumption of a uniform reaction in the electrodes.18,20,30

This results in simplified PDEs for electrolyte concentration. For con-
stant electrolyte diffusivity, SPMe results in linear PDEs, which are
computationally simple to solve. Indeed, it is possible to derive an-
alytical solutions for the constant diffusivity case.16,31 Alternatively,
instead of constant reaction distributions, polynomial spatial depen-
dence for concentration can also be assumed, resulting in a system
of DAEs.32–34 With the knowledge of electrolyte concentrations, the
electrolyte current equation is usually integrated, or volume-averaged
quantities are used to obtain the liquid-phase potential drop. In some
cases, polynomial profiles are assumed for the liquid-phase poten-
tial as well. This information is then used in conjunction with the
electrode-kinetics equation to estimate the cell voltage. The uniform-
reaction SPMe20,30 is rigorously derived from the scaled p2D model
in the limit of fast electrolyte diffusion dynamics.18 This perturbation
approach yields simplified algebraic expressions for the various po-
larization contributions to the cell voltage. These expressions can be
evaluated at negligible computational cost. In addition, the cell volt-
age equation is expressed in terms of electrode-averaged quantities to
obviate the need for assumptions on the pore-wall flux at the terminals.

The PDE system in SPMe becomes non-linear in the case of vari-
able diffusion coefficient, which might compromise computational
efficiency. When solving numerically, the non-linearities are likely to
entail finer spatial discretization in both the electrode and the solid par-
ticle to ensure numerical convergence, which will increase the DAE
system size. The stiffness of the resulting system is also likely to in-
crease for the non-linear case, especially at high current densities. The
effect of increased computational cost may become more significant in
real-time environments, both due to stringent accuracy requirements
and hardware limitations.23 In addition, even in situations where the
non-linear equation is solved numerically, simplifications of the elec-
trolyte current equation, such as constant electrolyte conductivity,30

are necessary to allow tractable integration for calculating electrolyte
ohmic drop. This can be a requirement even if polynomial profiles for
electrolyte concentration are assumed for the non-linear equation.35,36

The perturbation approach results in expressions in which the trans-
port properties are evaluated at a given representative concentration.18

This may result in errors in estimating concentration overpotentials at
high discharge rates, where substantial spatial variations are expected
to arise. Additionally, it is not clear whether the algebraic expressions
for electrolyte ohmic drop are valid for variable concentration prop-
erties and may have to be rederived. Using a constant value may lead
to errors in estimating ohmic drops and concentration overpotentials
at high current-densities.

In this article, we use a Tanks-in-Series approach to reduce the p2D
model. The electrolyte conservation equations are written in volume-
averaged form, without resorting to any direct assumptions on the spa-
tial dependence, unlike in polynomial profile methods. The proposed
Tanks-in-Series approach also does not assume uniform reaction rates
to predict concentration profiles, since we deal in average quantities.
The key approximations are (a) in the interfacial fluxes and (b) us-

Figure 1. Schematic representation of the computational domain in the p2D
model for a dual insertion lithium-ion cell. The active material in both elec-
trodes is modeled as spherical particles. Electron-transfer reactions are modeled
at the particle-electrolyte interface, as is the transport of intercalated lithium
through the active particle. Liquid phase mass and charge transport through the
thickness li of each domain also modeled using concentrated solution theory.
Electron transport through the solid phase is also considered, with electronic
current entering and leaving the cell at the current collectors (not shown). The
color codes for the three porous domains are used throughout this article, i.e.
dark red (positive electrode), dark green (separator), and dark blue (negative
electrode).

ing the electrode-averaged pore-wall flux to estimate the electrode-
averaged overpotential. The second assumption is analogous to some
SPMe models.18 For problem closure, we make reasonable approxi-
mations for the flux variables at the interface. Mass and charge con-
servation are imposed at the domain interfaces in order to determine
the unknown interfacial values. The cell-voltage is then calculated
from the known electrode-averaged pore-wall flux. This formulation
allows for the inclusion of concentration-dependent transport prop-
erties, since terminal-to-terminal integration is not required, and the
properties are only evaluated at the domain interfaces. In addition, it
reduces the full p2D model into a fixed-size system of < 20 DAEs and
no PDEs need be solved.

The article is structured as follows. We first illustrate the systematic
development of the Tanks-in-Series model from the full p2D model.
This is followed by a short description of the computational details of
the simulations and the parameters used therein. Simulation results are
then presented that illustrate the voltage-time discharge curves, elec-
trolyte phase predictions, and the qualitative and quantitative features
of the model as a function of discharge rate. The validity of the flux
approximations is then examined for an aggressive case of ultra-thick
electrodes with severe electrolyte diffusion limitations, followed by
a representative comparison of the Tank Model with a version of the
SPMe for variable transport properties. Computational time bench-
marks are presented against standard implementations of the p2D
model to quantify the computational speed. The article concludes with
a short discussion on parameter estimation and other applications, ex-
tensions to different battery systems, and assessments against other
reduced-order models.

Model Development

The pseudo 2-dimensional (p2D) model of Newman and co-
workers is a continuum electrochemical model that has found sub-
stantial application for simulation of Li-ion battery performance.10

Figure 1 illustrates the computational schematic of the model.5,17 The
typical p2D model is written for a single ‘cathode-separator-anode’
sandwich. Each domain is modeled using porous electrode theory, in
which the two solid and electrolyte phases are regarded as superim-
posed continua.37 The model is a set of coupled partial differential
equations (PDEs) based on one-dimensional conservation laws for
charge and mass in each domain. The individual domain equations are
coupled through the specification of appropriate interfacial boundary
conditions, which also ensure mathematical well-posedness. In the
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Table I. Governing PDEs for the p2D model.

Equations Boundary Conditions

Positive Electrode (Region 1)

ε1
∂c1
∂t = ∂

∂x [D(c1)εb1
1

∂c1
∂x ] + a1(1 − t+ ) j1

∂c1
∂x |x=0 = 0
ε

b1
1

∂c1
∂x |x=l1 = ε

b2
2

∂c2
∂x |x=l1

il,1 = −κ(c1)εb1
1

∂φl,1
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c1

)κ(c1)εb1
1

1
c1

∂c1
∂x

∂φl,1
∂x |1,x=0 = 0

ε
b1
1

∂φl,1
∂x |x=l1

= ε
b2
2

∂φl,2
∂x |x=l1

∂
∂x [σe f f ,1

∂φs,1
∂x ] = a1F j1

∂φl,1
∂x |x=0 = − iapp

σe f f ,1
∂φl,1
∂x |x=l1 = 0

∂cs
1

∂t = 1
r2

∂
∂r [r2Ds

1
∂cs

1
∂x ]

∂cs
1

∂r |r=0 = 0
∂cs

1
∂r |r=R1 = − j1

Ds
1

Separator (Region 2)

ε2
∂c2
∂t = ∂

∂x [D(c2) ∂c2
∂x ]

c1|x=l1
= c2|x=l1

c2|x=l1+l2
= c3|x=l1+l2

il,2 = −κ(c2)εb2
2

∂φl,2
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c2

)κ(c2)εb2
2

1
c2

∂c2
∂x

φl,1|x=l1
= φl,2|x=l1

φl,2|x=l1+l2
= φl,3|x=l1+l2

Negative Electrode (Region 3)

ε3
∂c3
∂t = ∂

∂x [D(c3) ∂c3
∂x ] + a3(1 − t+ ) j3

∂c3
∂x |x=l1+l2+l3 = 0
ε

b2
2

∂c2
∂x |x=l1+l2 = ε

b3
3

∂c3
∂x |x=l1+l2

il,3 = −κ(c3)εb3
3

∂φl,3
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c3

)κ(c3)εb3
3

1
c3

∂c3
∂x

φl,3|x=l1+l2+l3 = 0

ε
b2
2

∂φl,2
∂x |x=l1+l2 = ε

b3
3

∂φl,3
∂x |x=l1+l2

∂
∂x [σe f f ,3

∂φs,3
∂x ] = a3F j3

∂φs,3
∂x |x=l1+l2 = 0

∂φs,3
∂x |x=l1+l2+l3 = − iapp

σe f f ,3

∂cs
3

∂t = 1
r2

∂
∂r [r2Ds

3
∂cs

3
∂r ]

∂cs
3

∂r |r=0 = 0
∂cs

3
∂r |r=R3 = − j3

Ds
3

p2D representation of the battery, the active material is regarded as
composed of spherical particles of uniform radii. Lithium intercala-
tion and de-intercalation occurs through electron-transfer reactions at
the particle surface and transport through the solid particle, modeled
by conservation laws in the ‘pseudo’ r-dimension. The complete math-
ematical model and parameter values may be found in Tables I–III.

In deriving the Tanks-in-Series model, the volume-averaging pro-
cedure is applied first to the solid phase conservation equations, illus-
trating how SPM is recovered under certain assumptions. The concept

is then applied to the electrolyte transport equations, thereby resulting
in averaged equations for the liquid phase ‘Tanks’ of Figure 2.

Solid particle transport.—In the absence of complexities such
as phase-separation or concentrated solution effects,38,39 solid phase
transport is modeled by Fick’s second law in spherical coordinates.
For the positive electrode particle, we have

∂cs
1

∂t
= 1

r2

∂

∂r

(
r2Ds

1

∂cs
1

∂r

)
[0 < x < l1] [1]

Figure 2. A visualization of the Tank Model approach depicting the mass and charge flows in to and out of each ‘tank’. Since both the electrolyte flux and liquid
phase current density are zero at the current collectors, net flows into the liquid phase of the positive ‘tank’ and out of the negative ‘tank’ are zero. The interfacial
boundary conditions at the separator define the mass and charge flows for the middle separator ‘tank’. The electronic current carried by the solid phase at the current
collectors is denoted by dotted lines. The solid and liquid phases exchange mass and charge at a rate determined by the pore-wall flux j̄i, an internal exchange
which is not shown here. The sign convention is so adopted that iapp is negative during discharge.
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Where the r coordinate denotes the radial distance within the particle
and is thus the second ‘pseudo-dimension’. The subscript 1 denotes
variables and parameters pertinent to the positive electrode (region 1).

In porous electrode theory, Equation 1 is valid at each point along
the electrode thickness x. The superscript s is used to denote the solid
phase. Ds

1 is the diffusion coefficient in the positive particle. The
second-order problem in r requires the specification of two bound-
ary conditions. At the surface of the solid particle, the diffusive flux is
related to the local rate of electrode reaction, or the pore-wall flux as

− Ds
1

∂cs
1

∂r
= j1 [r = R1, 0 < x < l1] [2]

A symmetry boundary condition is applied at the center of the positive
particle

∂cs
1

∂r
= 0 [r = 0, 0 < x < l1] [3]

The analogous set of equations are written for the negative electrode
(region 3)

∂cs
3

∂t
= 1

r2

∂

∂r

(
r2Ds

3

∂cs
3

∂r

)
[l1 + l2 < x < l1 + l2 + l3] [4]

With the boundary conditions given by

−Ds
3

∂cs
3

∂r
= j3 [r = R3, l2 + l3 < x < l1 + l2 + l3] [5]

∂cs
3

∂r
= 0 [r = 0, l1 + l2 < x < l1 + l2 + l3] [6]

The Butler-Volmer equation is a common constitutive relation for the
pore-wall flux in each electrode as follows

j1 = k1c1
αa,1 (cs,max

1 − cs,sur f
1 )αa,1 (cs,sur f

1 )αc,1

×
(

exp

(
αa,1Fη1

RT

)
− exp

(−αc,1Fη1

RT

))
[7]

Where k1 is the rate constant for the positive electrode reaction, and
cs,max

1 denotes the maximum concentration of Li in the positive elec-
trode particle. F and R denote Faraday’s constant and the gas constant
respectively. α’s are the charge transfer coefficients for each electrode
reaction. The quantity η = φs,1 − φl,1 − U1(cs.sur f

1 ) is the surface
overpotential, expressed as the difference between the solid and liquid
phase potentials minus the electrode open circuit potential U1(cs,sur f

1 )
vs. a Li/Li+ reference electrode. cs,sur f

1 is the solid particle concentra-
tion evaluated at the surface of the particle, i.e.

cs,sur f
1 = cs

1(r = R1, x, t ) [8]

The dependence of open circuit potential (OCP) on the surface con-
centration is indicated accordingly. The equivalent expression for the
negative electrode is given by

j3 = k3c3
αa,3 (cs,max

3 − cs,sur f
3 )αa,3 (cs,sur f

3 )αc,3

×
(

exp

(
αa,3Fη3

RT

)
− exp

(−αc,3Fη3

RT

))
[9]

Equations 1 and 4 can be volume-averaged over their respective elec-
trode volumes. For the positive electrode, we obtain

∂
x=l1∫
x=0

cs
1dx

∂t
= 1

r2

∂

∂r

⎛
⎜⎜⎜⎝r2Ds

1

∂
x=l1∫
x=0

cs
1dx

∂r

⎞
⎟⎟⎟⎠ [10]

The volume-averaged form becomes

∂cs
1

∂t
= 1

r2

∂

∂r

(
r2Ds

1

∂cs
1

∂r

)
[11]

Similarly, for the negative electrode, we have

∂cs
3

∂t
= 1

r2

∂

∂r

(
r2Ds

3

∂cs
3

∂r

)
[12]

The corresponding boundary conditions can also be expressed in
volume-averaged form.

∂cs
i

∂r = − ji
Ds

i
, r = Ri

∂cs
i

∂r = 0, r = 0
i ∈ {1, 3} [13]

Numerical solution of these equations entails spatial discretization
in the spherical dimension. Discretization of Equations 11 and 12
results in a system of Differential Algebraic Equations (DAEs), with a
convenient linear form for constant Ds

i . For discretization, we employ
an efficient three-parameter model based on a biquadratic profile for
the radial dependence of cs

i .
14,40 This approximation is expected to

ensure higher accuracy than a two-parameter parabolic profile even at
relatively high rates of discharge. The discretized system of equations
is therefore

dcs,avg
i

dt
= −3

ji

Ri
[14]

dqi
avg

dt
= −30

Ds
i

R2
i

qi
avg − 45

2

ji

R2
i

[15]

35
Ds

i

Ri
[cs,sur f

i − cs,avg
i ] − 8Ds

i q
avg
i = − ji i ∈ {1, 3} [16]

Where the three-parameter model has been expressed in terms of
the particle-averaged solid phase concentration cs,avg

i , the particle-
averaged concentration gradient qi

avg, and the particle surface con-

centration cs,sur f
i . The particle average concentrations are related to

the State of Charge (SoC) at the cell level and is directly obtained
from the simulation results in the above formulation.

As mentioned earlier, the focus of this article is the development
of efficient equations for the electrolyte phase, and therefore the most
commonly adopted solid-phase approximation is used in this article.
While other reformulation and approximation techniques may be more
suitable at higher discharge rates and parameter combinations, we
chose this approximation to (a) explain the concepts with a simpler
approximation for brevity and easier adoption of current work (b) to
alert users the importance of more detailed and relevant approxima-
tions published elsewhere.15 Importantly, the accuracy of the quartic
profile approximation was quantitatively verified against nearly error-
free numerical methods (collocation, finite difference) for the cases
considered in this article.

Solid phase charge transport.—For charge transport in the solid
phase, the governing equation may be written as a conservation law
for charge as follows37,41

− ∂is,1

∂x
− a1F j1 = 0 [0 < x < l1] [17]

The time-derivative for charge density is ignored due to electroneu-
trality.

Similarly, we have, for the negative electrode

− ∂is,3

∂x
− a3F j3 = 0 [l1 + l2 < x < l1 + l2 + l3] [18]

Here, are is,1 and is,3 denote the solid phase current densities. The
constitutive equation for the solid phase current density is an Ohm’s
law expression based on the effective electronic conductivity and local
potential gradient as follows

is,1 = −σ1

(
1 − ε1 − ε f ,1

) ∂φs,1
∂x

is,3 = −σ3

(
1 − ε3 − ε f ,3

) ∂φs,3
∂x

[19]

Where 1 − εi − ε f ,i is the fraction of solid phase in electrode i, after
subtracting the liquid and inert volume fractions. This factor corrects
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for the actual conduction pathways in the electrode material. More
detailed correction factors may also be applied. The solid phase vol-
ume fraction also appears in the specific interfacial area, which for
perfectly spherical particles is given by ai = 3

Ri
(1 − εi − ε f i ).

Volume-averaging gives us

i1,x=0 − i1,x=l1

l1
= a1F j1 [20]

Using the boundary conditions that impose the solid phase current
density at the interfaces, one can simplify Equation 20 as

iapp

l1
= a1F j1 [21]

Volume averaging thus connects the applied cell current density iapp

and average pore-wall flux. The sign convention for the model is so
adopted that iapp is negative during discharge.

j1 = iapp

a1Fl1
[22]

Similarly, for the negative electrode, we have

j3 = − iapp

a3Fl3
[23]

Equations 21 and 22 can be used in conjunction with the volume - av-
eraged forms of Equations 1–6 to determine the temporal evolution of
average solid-phase concentrations for a given iapp. In effect, the active
material in each electrode is now modeled by a single representative
particle,18 the Li concentration profiles through which will be influ-
enced by factors such as the applied current density iapp, solid phase
diffusion coefficients Ds

i and the characteristic particle radius Ri. This
set of equations also determines the evolution of the averaged surface
particle concentration, which in turn affects the surface overpotentials
and thus the cell voltage response through constitutive Equations 7
and 9. These equations are volume-averaged in order to obtain a re-
lationship between the average pore-wall fluxes ji and the average
potentials φs,i and φl,i. This is illustrated for the positive electrode in
Equation 24 below

j1 =

x=l1∫
x=0

j1dx

x=l1∫
x=0

dx

=

x=l1∫
x=0

k1c1
αa,1

(
cs

1,max − cs,sur f
1

)αa,1(cs,sur f
1

)αc,1
(

exp
(

αa,1Fη1
RT

)
− exp

(−αc,1Fη1
RT

))
dx

x=l1∫
x=0

dx

[24]

Unlike the equations for electrolyte concentration, the highly non-
linear nature of the constitutive equation renders evaluation of Equa-
tion 24 cumbersome and likely impossible without the use of a full-
order solution that gives the actual spatial dependence of the variables.
To this end, averages of non-linear quantities are approximated by their
value at the average values of the variables on which they depend (i.e.
f (X ) ≈ f (X )).

Mathematically, this can be stated as

ji � ki(ci )
αa,i (cs,max

i − cs,sur f
i )αa,i (cs,sur f

i )αc,i

×
(

exp

(
αa,iFηi

RT

)
− exp

(−αc,iFηi

RT

))

ηi = φs,i − φl,i − Ui(c
s,sur f
i ) [25]

The classic Single Particle Model (SPM) employs an additional simpli-
fication by ignoring the dynamics of the electrolyte phase. Therefore,
ci = c0, implying that the electrolyte concentration is always equal
to its initial value. Neglecting liquid phase variations also means that
φl,i is often set to a constant reference, e.g. φl,i = 0 for all i.

Neglect of ohmic and electrolyte concentration effects restricts the
accuracy of SPM to operating regimes characterized by low ohmic
losses, low currents, and kinetically limited electrodes, which usually
result in spatially uniform pore-wall flux distributions.16,30 To this end,
the Tanks-in-Series descriptions of electrolyte dynamics are expected
to augment and improve the practical applicability of SPM.

Electrolyte mass balance: volume-averaging.—We begin with the
governing equation for electrolyte concentration for an isothermal
model in one spatial dimension. The equations for c based on porous
electrode theory may be expressed in the form of conservation laws37

In the positive electrode,

ε1
∂c1

∂t
= −∂N1

∂x
+ a1

(
1 − t0

+
)

j1 [0 < x < l1] [26]

Due to the absence of solid active material, the conservation equation
for c in the separator is characterized by a lack of a source term as

ε2
∂c2

∂t
= −∂N2

∂x
[l1 < x < l1 + l2] [27]

The subscript 2 is used to denote the variables in the separator domain.
The equation for the negative electrode is identical in form to that

of the positive electrode

ε3
∂c3

∂t
= −∂N3

∂x
+ a3

(
1 − t0

+
)

j3 [l1 + l2 < x < l1 + l2 + l3] [28]

N1, N2, N3 may regarded as electrolyte fluxes, which need to be related
to local concentration gradients. Noting the similarity of the governing
equations to Fick’s second law, we have the following constitutive
equations41

N1 = −D(c1)εb1
1

∂c1
∂x

N2 = −D(c2)εb2
2

∂c2
∂x

N3 = −D(c3)εb3
3

∂c3
∂x

[29]

In the above equations, D(c) denotes the concentration-dependent
electrolyte diffusion coefficient, corrected by a Bruggemann-type fac-
tor to account for porous medium tortuosity.

The governing equations for electrolyte concentration are second-
order in space, which entails the specification of two boundary con-
ditions for c1, c2 and c3. The boundary conditions are defined at the
extremities of each domain. The positive and negative current col-
lectors are physical barriers to the transport of Li+ ions, and thus

the electrolyte flux at these locations is set to zero. These boundary
conditions are thus given by

N1,x=0 = N01 = 0 [30]

And,

N3,x=l1+l2+l3 = N34 = 0 [31]

In addition, electrolyte concentrations and their fluxes must be con-
tinuous at the interface between the separator and electrodes. At the
positive electrode-separator interface, this is expressed as

c1,x=l1 = c2,x=l1
N1,x=l1 = N2,x=l1 = N12

[32]

In general Ni j is used to denote the flux at the interface of regions i
and j.

Similarly, at the interface between the separator and negative elec-
trode, we have

c2,x=l1+l2 = c3,x=l1+l2
N2,x=l1+l2 = N3,x=l1+l2 = N23

[33]

Now, Equation 26 is integrated over the volume of the positive elec-
trode V1 as

∂
∫

V1
ε1c1dV

∂t
= −

∫
V1

∂N1

∂x
dV +

∫
V1

a1

(
1 − t0

+
)

j1dV [34]
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For the one-dimensional model in cartesian coordinates, the differ-
ential volume dV is given by dV = Adx, where A is a constant
that may be considered a cross-sectional area. In addition, we ex-

press the integrals in terms of average quantities as c1 =
∫
V1

c1dV∫
V1

dV , and

j1 =
∫

V1
j1dV∫

V1
dV , with v denoting the volume average of variable v in

a given ‘tank’. Substituting these relations converts the volume inte-
gral into a one-dimensional integral over electrode thickness, i.e. from
x = 0 to x = l1.

Equation 34 thus becomes

ε1
dc1

dt
= −

x=l1∫
x=0

∂N1
∂x dx

l1
+ a1

(
1 − t0

+
)

j1

= N1,x=0 − N1,x=l1

l1
+ a1

(
1 − t0

+
)

j1 [35]

Here, we make the reasonable assumption that the electrode poros-
ity ε1, specific interfacial area a1 and Li+ transport number t0

+ in the
electrolyte phase are constant in both space and time.42

Using Equation 30, Equation 35 reduces to

ε1
dc1

dt
= −N1,x=l1

l1
+ a1

(
1 − t0

+
)

j1 [36]

The same sequence of operations gives us the volume-averaged equa-
tions for the separator and negative electrode as follows

ε2
dc2

dt
= N2,x=l1 − N2,x=l1+l2

l2
[37]

ε3
dc3

dt
= N3,x=l1+l2

l3
+ a3

(
1 − t0

+
)

j3 [38]

It is worth noting that the steps applied so far represent a rigorous
volume-averaging of the equations in each porous domain, followed
by the use of the boundary conditions to eliminate interfacial flux
terms where possible. No approximations have been made up to this
point.

Electrolyte mass balance: approximating fluxes.—In order to
track the average concentrations in each ‘tank’, we begin with the
volume-averaged concentration Equations 36–38. Inspection of these
equations reveals the presence of the unknown interfacial flux terms
that require suitable approximations to achieve closure. In doing so,
we can exploit the flux boundary conditions 32 and 33, which establish
the mass flow coupling between adjacent tanks in series.

A simple approximation for the interfacial diffusive flux is in terms
of a ‘driving force’ �c and a ‘length scale’ approximation δi,i j within
domain i for the interface between domains i and j. The concept is
depicted in Figure 3. This is analogous to the ‘diffusion-length’ ap-
proach attempted previously, but we dispense with assumptions on the
spatial profiles for c.32,43 The ‘driving force’ �c is expressed in terms
of a difference between the average concentration and the unknown
interfacial concentration �c1 = c1 − c1,x=l1 , and we use δ1,12 = l1

2
as a first approximation. We therefore have, using the constitutive
Equations 29

N1,x=l1 = −D(c1,x=l1 )εb1
1

∂c1

∂x x=l1
≈ D(c1,x=l1 )εb1

1

(
�c1

δ1,12

)

= D(c1,x=l1 )εb1
1

(
c1 − c1,x=l1

l1
2

)
[39]

Figure 3. Representing the flux approximations at the interface of two regions. The example is illustrated for the positive electrode-separator interface.
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On the separator side of the interface, we assume δ2,12 = l2
2 , which

we use for the flux approximation

N2,x=l1 = −D(c2,x=l1 )εb2
2

∂c2

∂x x=l2
≈ D(c2,x=l1 )εb2

2

(
�c2

δ2,12

)

= D(c2,x=l1 )εb2
2

(
−c2 + c2,x=l1

l2
2

)
[40]

An equivalent interpretation of the above flux approximations is that
we have assumed that the concentration at the midpoint of the porous
domain equal to the volume average. This approximation is mathe-
matically equivalent to Gaussian integration with one point, accurate
to l2

1 .
Substitution of the above approximations into the continuity con-

ditions of Equations 32 gives us

D(c1,x=l1 )εb1
1

(
c1 − c1,x=l1

l1
2

)
= D(c2,x=l1 )εb2

2

(
−c2 + c2,x=l1

l2
2

)
[41]

The interfacial concentration is now expressed in terms of tank aver-
ages as

c12 = c1,x=l1 = c2,x=l1 =

⎛
⎜⎝

ε
b1
1
l1

c1 + ε
b2
2
l2

c2

ε
b1
1
l1

+ ε
b2
2
l2

⎞
⎟⎠ [42]

In general, we use the notation vi j to denote the value of a given variable
v at the interface of domains i and j. An identical sequence of steps
yields the concentration at the separator-negative interface as

c23 = c2,x=l1+l2 = c3,x=l1+l2 =

⎛
⎜⎝

ε
b3
3
l3

c3 + ε
b2
2
l2

c2

ε
b3
3
l3

+ ε
b2
2
l2

⎞
⎟⎠ [43]

Substituting the values of interfacial concentrations back into the flux
approximations allows us to express the interfacial fluxes in terms of
tank-average variables. Thus, we have

N12 = −2D (c12) (c2 − c1)
l1

ε
b1
1

+ l2

ε
b2
2

[44]

N23 = −2D (c23) (c3 − c2)
l2

ε
b2
2

+ l3

ε
b3
3

[45]

Equations 44 and 45 can thus be inserted into the volume-averaged
forms 36–38 to obtain a system of Ordinary Differential Equations
(ODEs). It is important to equate the approximations for the total flux,
and not just the driving forces.44 This ensures true mass conservation.

In the three ‘tanks’, after substituting the known values of average
pore-wall fluxes, we have

dc1

dt
=

2D(c12 )(c2−c1 )
l1

ε
b1
1

+ l2

ε
b2
2

ε1l1
+ (

1 − t0
+
) iapp

Fε1l1
[46]

dc2

dt
=

−2D(c12 )(c2−c1 )
l1

ε
b1
1

+ l2

ε
b2
2

+ 2D(c23 )(c3−c2 )
l2

ε
b2
2

+ l3

ε
b3
3

ε2l2
[47]

dc3

dt
=

−2D(c23 )(c3−c2 )
l2

ε
b2
2

+ l3

ε
b3
3

ε3l3
− (

1 − t0
+
) iapp

Fε3l3
[48]

As specified previously, a slight difference between this approach and
others in literature18,30,36,45 is that it avoids the assumption of uniform
reaction rate (given by the pore-wall flux) to solve the PDEs for concen-
tration, but instead deals in average quantities. This allows the predic-
tion of average concentration trends even when the constant pore-wall
flux assumption is not applicable, with the flux approximations as the

sole source of error. Inspection of Equations 46–48 also suggests their
decoupling from those for other electrochemical variables, indicating
that they may be solved independently as an ODE system, the solutions
of which may be used to compute other relevant quantities during post-
processing. While all model equations are simulated simultaneously
throughout this article, such a segregated approach may be computa-
tionally efficient in real-time control or resource-constrained environ-
ments and is enabled by the Tanks-in-Series model. Leaving the model
in this form allows for the incorporation of nonlinear diffusivities.

Liquid phase charge transport.—The governing equation for elec-
trolyte current is related to charge conservation in the electrolyte phase.
Thus, we have

− ∂il,1
∂x = −Fa1 j1

− ∂il,2
∂x = 0

− ∂il,3
∂x = −Fa3 j3

[49]

Where the constitutive equation for electrolyte current is given by a
modified Ohm’s law based on concentrated solution theory. Thus

il,1 = −κ(c1)εb1
1

∂φl,1
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c1

)κ(c1)εb1
1

1
c1

∂c1
∂x

il,2 = −κ(c2)εb2
2

∂φl,2
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c2

)κ(c2)εb2
2

1
c2

∂c2
∂x

il,3 = −κ(c3)εb3
3

∂φl,3
∂x + 2RT (1−t0+ )

F (1 + ∂ ln f
∂ ln c3

)κ(c3)εb3
3

1
c3

∂c3
∂x

[50]

The concentration-dependent ionic conductivity κ(c) is corrected by
a tortuosity factor specific to each region.

Now, volume-averaging Equation 49 is redundant, ultimately re-
sulting in Equation 21 due to the overall charge balance imposed by
porous electrode theory. However, the interfacial boundary conditions
for i2,i provide for the estimation of liquid phase ohmic effects. At
the interface between the electrodes and separator, the entire current
iapp is carried by the liquid phase, and the solid-phase current density
is zero. Using the constitutive Equation 50, we therefore have, at the
positive electrode-separator interface

il,1,x=l1 = −κ(c1,x=l1 )εb1
1

∂φl,1

∂x
+ 2RT (1 − t0

+)

F
v(c1,x=l1 )κ(c1,x=l1 )εb1

1

× 1

c1,x=l1

∂c1

∂x
= iapp

il,2,x=l1 = −κ(c2,x=l1 )εb2
2

∂φl,2

∂x
+ 2RT (1 − t0

+)

F
v(c2,x=l1 )κ(c2,x=l1 )εb2

2

× 1

c2,x=l1

∂c2

∂x
= iapp [51]

Where we have defined the thermodynamic factor as v(ci ) = 1 +
∂ ln f
∂ ln ci

. The tank-averaged equations for the electrolyte potential are
now written as

il,1,x=l1 = −κ(c1,x=l1 )εb1
1

(
φl,x=l1 − φl,1

lp

2

)
+ 2RT (1 − t0

+)

F
v(c1,x=l1 )

×κ(c1,x=l1 )εb1
1

1

c1,x=l1

(
c1,x=l1 − c1

lp

2

)
= iapp

il,2,x=l1 = −κ(c2,x=l1 )εb2
2

(
φl,2 − φl,x=l1

ls
2

)
+ 2RT (1 − t0

+)

F
v(c2,x=l1 )

×κ(c2,x=l1 )εb2
2

1

c2,x=l1

(
c2 − c2,x=l1

ls
2

)
= iapp [52]

Where an approximation ∂φl,1
∂x ≈ (φl,1,x=lp −φl,1 )

lp
2

and ∂φl,2
∂x ≈

(φl,2,x=lp −φl,2 )
ls
2

, analogous to Equations 39 and 40 is made for the gradi-

ents of φl,i, in terms of tank-average and interfacial values. Equating
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the interfacial current density results in Equation 53, which can be
solved in conjunction with continuity conditions to obtain the interfa-
cial electrolyte potential.

− ε
b1
1

(
φl,1,x=l1 − φl,1

l1
2

)
= −ε

b2
2

(
φl,2 − φl,2,x=l1

l2
2

)
[53]

Solving for φl,12 gives us

φl,12 = φl,1,x=l1 = φl,2,x=l1 =

⎛
⎜⎝

ε
b1
1
l1

φl,1 + ε
b2
2
l2

φl,2

ε
b1
1
l1

+ ε
b2
2
l2

⎞
⎟⎠ [54]

A similar form is obtained at the separator-negative electrode interface

φl,23 = φl,2,x=l1+l2 = φl,3,x=l1+l2 =

⎛
⎜⎝

ε
b3
3
l3

φl,3 + ε
b2
2
l2

φl,2

ε
b3
3
l3

+ ε
b2
2
l2

⎞
⎟⎠ [55]

Equations 39–43 can now be combined with Equations 51–55 to give
us the algebraic equations governing electrolyte potential

iapp = −2κ(c12)

⎛
⎝φl,2 − φl,1

l1

ε
b1
1

+ l2

ε
b2
2

⎞
⎠

+ 4RT (1 − t0
+)

F
v(c12)κ(c12)

1

c12

⎛
⎝ c2 − c1

l1

ε
b1
1

+ l2

ε
b2
2

⎞
⎠ = il,1,x=l1

iapp = −2κ(c23)

⎛
⎝φl,3 − φl,2

l3

ε
b3
3

+ l2

ε
b2
2

⎞
⎠

+ 4RT (1 − t0
+)

F
v(c23)κ(c23)

1

c23

⎛
⎝ c3 − c2

l2

ε
b2
2

+ l3

ε
b3
3

⎞
⎠ = il,3,x=l1+l2

[56]

The final step in the model formulation is the specification of a ref-
erence potential. A convenient reference is the electrolyte potential at
the interface between the separator and positive electrode. We thus set
φl,12 = 0. This modifies Equation 54, and completes the DAE system
for the Tank Model.

φl,12 =

⎛
⎜⎝

ε
b1
1
l1

φl,1 + ε
b2
2
l2

φl,2

ε
b1
1
l1

+ ε
b2
2
l2

⎞
⎟⎠ = 0 [57]

We can now assemble the complete Tanks-in-Series Model in Table IV.

Cell voltage.—Solving the system of Table IV now allows the
prediction of the cell voltage as

Vcell = φs,1 − φs,3 [58]

In using Equation 58 to calculate cell voltage for the Tanks-in-Series
Model, it is implicitly assumed that the solid phase potentials at the cell
termini may be approximated by their respective electrode averages.
In reality, the terminal potentials must be determined via interfacial
approximations for the constitutive Equations 19 analogous to Equa-
tions 52 for φl,i. Accounting for this potential drop may be necessitated
at high current densities, or for electrodes with poor electronic con-
ductivity. In practice, σe f f ∼ 50 S/m and the φs,i gradients within the
electrode are negligible. This can be seen by the following rough es-
timation for an aggressive |iapp| = 100 A/m2 and σe f f = 1 S/m, and
electrode thickness l1 = 100μm. We therefore have

iapp � −σe f f
φs,1−φs,01

l1/2

φs,1 − φs,01 = | − l1iapp/(2σe f f )| = 10−2/2 ∼ 0.005V
[59]

Thus, the upper limit of this solid phase ohmic drop is ∼5 mV per elec-
trode. This justifies the assumption of uniform φs,i for most situations
of practical salience.

Model Parameters

Table III lists the parameter values for a 1.78 Ah Nickel-Cobalt-
Manganese (NCM)/graphite power cell, collated from various sources
by Tanim et al.33 Electrolyte transport property correlations were taken
from the work of Valøen and Reimers, and are listed in Table II.42 A
modified value of Ri = 1 μm was used for the particle radii, in order to
ensure rapid diffusion with negligible gradients. The absence of solid
phase diffusion limitations serves the practical purpose of ensuring the
accuracy of our three-parameter model for solid phase transport even
at relatively high discharge rates, based on the quantitative guidelines
of Subramanian et al.40 This prevents numerical errors for solid phase
discretization from confounding our analysis, which is focused on
examining the accuracy of our Tanks-in-Series equations for the liquid
phase.

Computational Details

The full p2D model is used as the benchmark in evaluating the
predictions of the Tanks-in-Series model. The p2D model was dis-
cretized and solved using coordinate transformation, model reformu-
lation and orthogonal collocation techniques described in previous
work.6 The number of collocation points in each region were adjusted
to achieve numerical convergence of discharge curves at different cur-
rent densities, ultimately selecting n = (7,3,7) Gauss-Legendre col-
location points. Comparisons of the Tank Model with SPM are also
reported, for which a Finite-Difference discretization with n = 256 in-
ternal node points were employed. All DAE systems were consistently
initialized,46 and solved using the dsolve function in Maple 2018.47

An absolute solver tolerance abserr = 10−8 was specified.
For evaluating computational performance, the discretized equa-

tions were solved in time using IDA, an Implicit Differential-Algebraic
solver in ANSI-standard C language under BSD license. IDA is
an efficient solver for initial value problems (IVP) for systems of
DAEs, which is part of the SUNDIALS (SUite of Nonlinear and DIffer-
ential/ALgebraic equation Solvers) package.48 The absolute solver tol-
erance was set to atol = 10−8 and a relative tolerance of rtol = 10−7

was specified.
All computations were performed on an Intel Core i7-7700K pro-

cessor with a clock speed of 4.2 GHz, 8 logical cores and 64 GB
RAM.

Results and Discussion

Base case model comparisons.—In this section, the Tanks-in-
Series model is simulated for galvanostatic discharge at C-rates of
1C, 2C, and 5C. In comparing the model predictions to the full p2D
model, we seek to ascertain the accuracy of the Tanks-in-Series ap-
proximations, and to quantify its deviation from p2D as a function of
applied current density. The results are also compared against curves
from SPM, chiefly to illustrate improvement over commonly used fast
physics-based models.

Galvanostatic discharge curves.—Figure 4 compares the cell
voltage-time predictions of our Tanks-in-Series model (hereafter
termed the ‘Tank Model’) with SPM and the full p2D model. The
agreement of all three models at 1C and 2C indicates relatively low
liquid phase polarizations compared to other overpotentials, possibly
due to the values of the Base Case parameters, which are those of a
power-cell rated for higher discharge rates. Even so, there is a dis-
cernible improvement with the Tank Model. The improved accuracy
of the tank model at 5C discharge is substantially more pronounced,
particularly during the intermediate phase of the discharge process.
This is further illustrated in Figure 5, which depicts the instantaneous
error for Vcell . The qualitative trends are identical for both the Tank
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Table II. Additional constitutive equation.

j1 = k1c1
αa,1 (cs,max

1 − cs,sur f
1 )αa,1 (cs,sur f

1 )αc,1

(
exp

(
αa,1Fη1

RT

)
− exp(

−αc,1Fη1
RT )

)
j3 = k3c3

αa,3 (cs,max
3 − cs,sur f

3 )αa,3 (cs,sur f
3 )αc,3

(
exp

(
αa,3Fη3

RT

)
− exp(

−αc,3Fη3
RT )

)

κ(ci ) = 1 × 10−4ci

⎡
⎣ (−10.5 + 0.0740T − 6.96 × 10−5T 2)

+ci(0.668 − 0.0178T + 2.8 × 10−5T 2)
+c2

i (0.494 − 8.86 × 10−4T 2)

⎤
⎦

2

, i ∈ {1, 2, 3}

σe f f ,i = σi(1 − εi − ε f ,i ), i ∈ {1, 3}

D(ci ) = 0.0001 × 10
−
[

4.43+ 54
T −229−0.005ci

]
−0.00022ci

, i ∈ {1, 2, 3}
ai = 3

Ri
(1 − εi − ε f ,i ), i = 1, 2, 3

Up = −10.72θp
4 + 23.88θp

3 − 16.77θp
2 + 2.595θp + 4.563

θp = cs,sur f
1

cs,max
1

Un = 0.1493 + 0.8493e−61.79θn + 0.3824e−665.8θn − e39.42θn−41.92−
0.03131 tan−1(25.59θn − 4.099) − 0.009434 tan−1(32.49θn − 15.74)

θp = cs,sur f
3

cs,max
3

(1 − t0+ )
(

1 + ∂ ln f
∂ ln ci

)
= 0.601 − 7.5894 × 10−3 ci

0.5 + 3.1053 × 10−5 (2.5236 − 0.0052T )ci
1.5, i ∈ {1, 2, 3}

Model and SPM, but the curves for the Tank Model appear shifted by
nearly a constant value compared to SPM. This difference is due to
the Tank Model’s estimates of liquid phase ohmic drops and concen-
tration overpotentials, which reduces error. The magnitude of these
overpotentials increases with current density as characterized by the
C-rate.

The increased accuracy of the Tank Model at 5C is illustrated in
Figures 5c, and 5d, with the absolute error only slightly exceeding
20 mV, in contrast to >60 mV for SPM. A more than threefold reduc-
tion in RMSE is obtained at 5C due to the incorporation of the lumped
equations for the electrolyte.

The oscillatory instantaneous error profiles in Figure 5 can be ob-
served in other reduced-order models.18,25,26 The maximum amplitude
of the oscillations, corresponding to the maximum absolute error, ex-
pectedly increases with discharge rates. Sources of this error may be in
the liquid phase approximations of the Tank Model, and in the estima-

Figure 4. Model comparisons for cell voltage at different rates of discharge.
The tank model (gold) coincides almost exactly with the p2D model, obscuring
the black dashed curves of the latter. This color code is used throughout the
article in all model comparisons involving SPM.

tion of electrode averaged overpotential from the electrode averaged
current as in Equation 25. In this case, the contribution of errors from
the solid phase concentration is expected to be negligible given the
choice of particle size Ri, which ensures rapid diffusion dynamics and
attainment of steady state in ∼50 s. This can also be seen in Figure 6,

in which the averaged particle surface concentrations cs,sur f
i across the

three models at 1C are compared. The close agreement of the Tank
Model to the finely discretized SPM and p2D models indicates the
accuracy of the biquadratic profile approximations 14–16. Even at a
higher current density of 5C, agreement is ensured in both electrode
particles, as depicted in Figure 7. However, the average values may still
obscure variations across the electrode thickness due to a non-uniform
reaction distribution. In particular, the particle surface concentration at
the termini will also deviate from its electrode average due to variations
in local pore-wall flux ji. Such deviation from the average values of
Equations 22 and 23 results in errors in reaction overpotentials, which
contributes to errors in Vcell .

Figure 8 compares the spatial distribution of pore-wall fluxes at 1C.
The positive electrode j1 achieves rapid uniformity, even though the
reaction is initially confined near the separator interface at t = 0. Mi-
nor oscillations and deviations from the average are observed toward
the end of discharge, but the relative change is negligible compared to
that for the negative electrode j3. The local value near the separator
is six times higher than the Tank Model average at the beginning of
the discharge, whereas j3 ∼ 0 near the negative collector. The max-
ima shift toward the negative collector as the discharge progresses.
The reaction ‘front’ propagates through the electrode, and successive
peaks are observed at the two points. Throughout the discharge, the lo-
cal intercalation rate near the terminal deviates substantially from the
Tank Model, sometimes by a factor of two, approaching the average j3

only toward the end of discharge. The reaction distribution in a porous
electrode is the result of the relative balance between reaction kinetics,
ohmic resistances, and the functional dependence of the open circuit
potential U (cs,sur f

i ). Non-uniform reaction distributions are observed
in electrodes with faster kinetics with respect to ionic or electronic
transport, and flat OCP curves.17,49 The U (cs,sur f

i ) curve for graphite
has a substantially flat section corresponding to multiple phase transi-
tions at different degrees of lithiation.50 In contrast, U (cs,sur f

i ) for the
NCM positive electrode exhibits a more monotonic dependence with
a larger (in magnitude) average slope over the full lithiation range.
The non-uniform reaction distribution thus contributes to the error in
the Tank Model, in addition to the approximations for liquid phase.19

These effects are even more pronounced in Figure 9, which examines
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Figure 5. Instantaneous voltage errors with respect to the p2D model at (a) 1C (b) 2C (c) 5C discharge. (d) compares the overall Root Mean Square Errors (RMSE).
The error profiles exhibit oscillations.

these trends at 5C. The larger relative deviation close to the negative
collector is expected at the higher overall current density. Additionally,
oscillatory trends are also observed for the positive electrode beyond
t ∼ 300 s, with the deviations about the average increasing to ∼20%.

Despite the chemistry-specific considerations and limitations of
the Tank Model equations, the Tank Model results in an RMSE of

14.3 mV even at 5C discharge rate, making it competitive in terms of
error metrics for online applications. This error is expected to reduce
even further based on the specific battery chemistries being consid-
ered, such as in the case of a negative electrode with slower kinetics
and a more monotonic U (cs,sur f

i ) curve,17 which is expected to result
in an inherently more uniform reaction profile. This would further

Figure 6. Comparison of electrode-averaged particle surface concentrations at 1C discharge for (a) positive electrode and (b) negative electrode. The close
agreement between the three models means the curves are nearly on top of each other.
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Figure 7. Comparison of electrode-averaged particle surface concentrations at 5C discharge rate for (a) positive electrode and (b) negative electrode. The close
agreement between the three models means the curves are nearly on top of each other.

bolster the case for the Tank Model with its substantially improved
computational efficiency.

Given the approximate nature of the Tank Model equations, it is also
expected that errors in estimating the liquid phase overpotentials will
contribute to the error. In order to characterize the extent of this error,
we now examine the liquid phase variable predictions. The next section
evaluates the Tank Model predictions of liquid phase quantities.

Figure 8. Spatial distribution of pore-wall flux in (a) positive electrode and
(b) negative electrode at 1C. The error due to the use of the average pore-wall
flux to estimate the cell voltage is expected to be larger in magnitude for the
spike-shaped profile for the negative electrode.

Electrolyte Phase Variables

Electrolyte concentration.—Figures 10a and 10b compares the
average and interfacial concentrations from the Tank Model and the
p2D models, at 1C discharge rate. While there is a disagreement in the
steady state values of ci attained, the deviation from the p2D model
is ∼2% in the two electrodes. On the other hand, there is near perfect
agreement for the average electrolyte concentration in the separator
c2. The interfacial concentrations also exhibit agreement, despite the
somewhat naïve approximations used for interfacial flux. This is likely

Figure 9. Spatial distribution of pore-wall flux in (a) positive electrode and
(b) negative electrode at 5C . The non-uniformities in both electrodes are more
prominent relative to the 1C rate.
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Figure 10. Comparison of liquid phase variables at 1C, namely (a) average concentrations c̄i (b) interfacial electrolyte concentrations ci j (c) average electrolyte
phase potential φ̄l,i and (d) interfacial potential φl,i j . The separator-positive electrode interface is the potential reference, hence φl,i j = 0. The negative-separator
interface is indicated by the light blue and positive-separator interface by maroon. The average and interfacial values are plotted on identical scale to aid interpretation
of the respective concentration and potential drops.

due to the smaller thickness of the separator relative to the electrodes
(25 μm vs. ∼40 μm) which improves the validity of our two-point
flux approximations in Equations 44 and 45. The Tank Model predicts
different dynamics for ci compared to the p2D model. An approach
to a constant steady state value compared is indicated, in contrast to
the p2D model, which shows small fluctuations. The establishment
of this steady state occurs on the characteristic electrolyte diffusion

timescale, given by τD = l2
i

De f f ,i
∼ 30s in the electrodes.

The concentration drop across the separator is ∼ 40 mol/m3 given
its smaller thickness relative to the electrodes. Therefore, the diffu-
sion coefficient at both interfaces is comparable in magnitude, since
the concentration change is within 4%. Coupled with the comparable
thicknesses of both electrodes (Table III), this results in similar mag-
nitudes of interfacial concentration drops in both electrodes due to the
imposition of flux continuity by the Tank Model as in Equation 41.

Figures 11a and 11b compares the concentrations at 5C discharge
rate. The close agreement between the concentrations is notable, indi-
cating the ability of the Tank Model equations to capture the concen-
tration variations. The average concentrations in the electrodes agree
within 5%, with near-exact agreement for the values in the separator,
and at the interfaces. The transient dynamics and concentration drop
in the electrodes for both models are qualitatively similar to the 1C
case, though the magnitude of the concentration drop has increased
to sustain the higher flux at 5C. The close agreement between the
concentrations profiles suggests that the contribution of concentration
overpotential errors to Vcell is not significant up to 5C for the cell
parameters considered here. It also indicates the accuracy of the li

2 ap-
proximation, likely due to the electrode thicknesses considered. It may
be possible to refine these flux approximations by altering the diffusion
lengths δi,i j . This can be used to in order to match the concentration

profiles with attendant benefits for the accuracy of prediction of Vcell

through the concentration overpotentials. For example, it is common
in literature to assume a parabolic or cubic spatial dependence for ci in
the electrodes.24,25,27,34,45 Applying volume-averaging on a parabolic
profile in a given domain returns a value of δi,i j = li

3 , the use of which
may result in more accurate predictions.32,34 It is worth noting how-
ever that the δi,i jvalue can be treated as an adjustable parameter that
can be estimated, providing a representative measure of the diffusion
length scales for a given operating situation. This allows more flexi-
bility, in that different values may be adjusted for different domains
without altering the model formulation, in contrast to assuming spatial
profiles in a somewhat heuristic fashion, which entails rederiving the
DAE system each time a spatial profile is changed.

Electrolyte potential.—Figures 10c and 10d depict the average and
interfacial values of the electrolyte potential φl over a 1C discharge. Of
note, the average values φl,i rapidly reach a steady state for the Tank
Model. We observe excellent agreement in the separator φl,2. This
indicates the validity of the chosen flux approximations in the relatively
thin separator, which also ensure agreement between the interfacial
values φl,i j . This is a likely consequence of the charge conservation
imposed by the Tank Model through Equation 56, which adjusts the
values of interfacial potential to maintain the total liquid phase current
iapp.

More significant differences are observed in the electrodes. In par-
ticular, the φl,3 value predicted by the p2D model exhibits substantial
fluctuations, whereas the Tank Model predicts a steady state within
∼30 s of the discharge process. This qualitative difference is likely
due to the errors in the prediction of average potential from the aver-
age pore-wall flux, owing to the non-uniform reaction distribution in
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Table III. Base case model parameters (constant values).

Symbol Parameter Negative Electrode Separator Positive Electrode Units

εi Porosity 0.3 0.4 0.3

ε f i Electrode filler fraction 0.038 0.12

bi Brugemann tortuosity correction 1.5 1.5 1.5

ai Particle surface area per unit volume 1740000 1986000 m2/m3

ci
s,max Maximum particle phase concentration 31080 51830 mol/m3

ci
s,0 Initial particle phase concentration 24578 18645 mol/m3

c0 Initial electrolyte concentration 1200 mol/m3

Ds
i Solid phase diffusivity 1.4 × 10−14 2.0 × 10−14 m2/s

ki Electrode reaction rate constant 6.626 × 10−10 2.405 × 10−10 m2.5/(mol0.5s)

αa,i Electrode reaction anodic coefficient 0.5 0.5

αc,i Electrode reaction cathodic coefficient 0.5 0.5

li Electrode thickness 40 × 10−6 25 × 10−6 36.55 × 10−6 m

Ri Characteristic particle radius 10−6 10−6 m

t0+ Li+ transference number 0.38

σi Electronic conductivity 100 100 S/m

T Temperature 298.15 K

iapp Current Density (1C) -17.54 A/m2

the negative electrode, as discussed previously. The errors due to ap-
proximating the terminal overpotential based on the average j3 in the
Tank Model is thus manifested in φl,3, with the instantaneous deviation
from the p2D model tracking the time-varying local reaction rates. In
addition, substantial errors are observed at shorter timescales, where
the Tank Model predicts the attainment of steady state. The maximum
absolute value of this deviation is ∼3 mV, corresponding to approxi-
mately 40%. The choice of flux approximation is also likely to affect
the deviation of the average value from that at the terminal, in addition
to producing mismatches in ohmic drop.

In contrast, the uniform reaction distribution in the positive elec-
trode results in a more spatially uniform overpotential profile over

the discharge process, which is also reflected in the nature of the φl,1

profiles. The average values reach quasi-steady values differing by
∼1.5 mV. The sum of the average errors in both electrodes value is
∼3 mV, which is comparable in magnitude to the voltage errors in
Figures 5a and 5d. The main contributions to the error Vcell are thus
the liquid-phase potentials in the electrodes.

These effects are further accentuated at 5C, as illustrated in
Figures 11c 11d. In particular, the initial deviation in φl,3 has increased
beyond 10 mV, with a commensurate increase in average errors in both
electrodes. The deviations in both electrodes are ∼ 7 mV, indicating
comparable errors in ohmic drops. Interestingly, the profile for φl,1

from the p2D model also shows a slight fluctuation at t ∼ 300 s,

Table IV. Governing Equations of the Tanks-in-Series Model.

Positive Electrode (Region 1) Separator (Region 2) Negative Electrode (Region 3)

dc1
dt =

2D(c12 )(c2−c1 )
l1

ε
b1
1

+ l2

ε
b2
2

ε1l1
+ (1 − t0+ )
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Fε1 l1
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2
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Figure 11. Comparison of liquid phase variables at 5C, namely (a) average concentrations c̄l (b) interfacial electrolyte concentrations ci j (c) average electrolyte
phase potential φ̄l,i and (d) interfacial potential φl,i j . The separator-positive electrode interface is the potential reference, hence φl,i j = 0. The values at the
negative-separator interface are indicated by light blue curves and positive-separator interface by maroon curves. The average and interfacial values are plotted on
identical scales to aid interpretation of the respective concentration and potential differences.

corresponding to the non-uniformities in j1 at 5C as seen in Figure 9a.
The total average error in electrolyte potentials is comparable to the
values of Figures 5c and 5d. This indicates a contribution of errors in
ηi to Vcell through φl,i. The separator φl,2 and interfacial values φl,i j

are in close agreement even at 5C, except for relatively small errors in
φl,23 during the approach to steady state.

Refinement of the gradient approximation for φl,i may help reduce
errors by matching the ohmic drops across the electrodes, and by im-
proving predictions of reaction overpotential. As with electrolyte con-
centration, it is common to assume polynomial profiles for the spatial
variation of φl .26,32 Similar adjustments of the analogous length-scale
approximations may help improve estimates of the migration contri-
bution to ionic current, helping reduce errors in the estimation of both
ohmic drops and reaction overpotentials. Preliminary studies suggest
that altering gradient approximations marginally increases the errors
for φl,1and φl,2, and thus for the positive overpotential η1, but this
error is more than balanced by the reduction in errors for φl,3, η3 and
the overall electrolyte ohmic drop.

Interfacial fluxes.—Figure 12a depicts the comparison of the Tank
Model approximations Ni, j with the actual interfacial values from the
p2D model. The interfacial fluxes exhibit excellent agreement even
with the somewhat simple approximations for the Tank Model. Dis-
crepancies in the temporal profiles are observed at relatively short
timescales, where the full model predicts a different trajectory for
the approach to steady state and subsequent minor fluctuations (not
shown). However, this error is less than 1% even for 5C discharge, as
in Figure 13a. The close match between fluxes is observed once the

steady state gradients have been established at approximately 30 s,
which, expectedly, is of the order of the diffusion timescale for the
electrolyte. For the Tank Model, the match between the fluxes at the
two interfaces is also consistent with the observation of nearly equal
interfacial concentration drops and comparable electrode thicknesses,
as discussed in the section on electrolyte concentration. There is a
rapid establishment of steady state. We expect the approximations to
reduce in validity as the current density is increased further. Errors
will also arise if the characteristic timescales for different processes
are increased, which will result in significant spatial gradients (analo-
gous to the reaction distribution). This in turn is expected to result in
errors of concentration overpotentials, with its manifestation in errors
in Vcell .

Figure 12b compares the approximations for the ohmic contribu-
tion to the electrolyte current density at 1C, to evaluate the approxi-
mations for the electrolyte potential gradients. Here too we observe
substantial agreement with respect to the p2D model. This is expected
given the match in the interfacial mass flux predictions above. The
Tank Model ensures charge conservation at the interface through Equa-
tions 52. Agreement between the diffusional contributions forces the
equality of the ohmic contributions to maintain the current density at
the interfaces. The relative error is comparable even at 5C, as depicted
in Figure 13b. There is a slight discrepancy in values during the ap-
proach to the quasi-steady value and in subsequent fluctuations, which
tracks the errors in electrolyte potentials discussed previously.

Given the close agreements in predicted concentrations and con-
centration overpotentials, the flux approximations for may be modified
to reduce errors in φl,1 and φl,3. One easy way to achieve this could be
to use a length scale approximation corresponding to a higher order
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Figure 12. Comparison of (a) interfacial molar flux Ni, j and the (b) ohmic
contribution to liquid phase current density at the positive-separator interface
(maroon) and negative-separator negative (blue), at 1C. The operating current
density iapp is ∼17.5 A/m2.

polynomial profile. For the cell and current densities considered in this
article both concentration overpotentials and liquid phase ohmic drops
are small relative to the ‘thermal voltage’ RT/F .5,18 However, the er-
rors in ohmic potential drop and concentrations could cause errors in
Vcell at higher current densities, which will be reflected in systematic
errors in both |Ni, j |and | − κe f f

∂φl
∂x |.

Case study: thick electrodes.—The tanks-in-series model thus
needs to be examined in light of different limiting performance sce-
narios, especially for situations in which significant spatial gradients
can arise across the electrodes, giving rise to polarizations that are
underestimated – e.g. extremely high rates of discharge, or very thick
electrodes. This is related to the key assumptions in the Tank Model,
namely the interfacial fluxes, which determines the accuracy of the
corrections for liquid phase effects.

The impacts of these approximations are now studied in a special
case, by the comparison of the Tank Model for the case of a cell with
relatively thick electrodes, which may be of salience for high-energy
density batteries.51,52 For this case study, the electrode thicknesses l1

and l3 were increased by a factor of 6 while holding all other parameters
constant. Thus, the individual capacities of each electrode increase
by a factor of 6, while their ratio is held constant. For a consistent
comparison with the Base Case, the model was compared at a 5C/6
C-rate, corresponding to the current density iapp equivalent to the 5C
discharge for the Base Case. The modified parameter values are listed
in Table V.

For this ‘6x case’, significant electrolyte diffusion limitations and
ohmic drops are expected to arise compared to the Base Case. A mod-

Figure 13. Comparison of (a) interfacial molar flux and the (b) ohmic contri-
bution to liquid phase current density at the positive-separator interface (ma-
roon) and negative-separator negative (blue), at 5C. For reference, the operating
current density is ∼87 A/m2.

ified parameter Se based on Doyle et al. can be used as a measure of
expected diffusion limitation.5,53

Thus

Se =

(
l21

ε
b1
1

+ l22

ε
b2
2

+ l23

ε
b3
3

)

D(c0 )

tdis
[60]

This factor is thus the ratio of the characteristic time for electrolyte
diffusion to the total discharge time, higher values suggesting exacer-
bated diffusion resistances.

The voltage-time discharge curve for this case is depicted in
Figure 14. Here we can observe the large liquid phase polarization
and spatial non-uniformities that SPM is clearly unable to capture,
and instead predicts near-complete cell utilization. The p2D model
predicts termination of discharge at an intermediate time point, likely
owing to severe electrolyte depletion in the positive electrode. What is

Table V. Modified Parameters for the ‘thick electrode’ case.

Parameter Base Case Value Modified Value

Positive Electrode Thickness (μm) 36.55 219.3

Negative Electrode Thickness (μm) 40 240
1C Discharge Current Density (A/m2) −17.54 −105.24
C-rate 5 5/6
Se 0.1 0.53
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Figure 14. Discharge curve comparisons for the thick electrode case.

noteworthy however is the prediction of the Tank Model, which pre-
dicts a premature termination but within 5 minutes of the discharge
process. This is despite substantially improved agreement compared
to SPM over the small portion of its operation. This suggests sub-
stantial error in the prediction of ci and φl,i. This can now be seen
in Figure 15, which compares the average concentration predictions
from the two models. In particular, the Tank Model predicts the ci

being driven to zero at t ∼5 minutes, which coincides with the termi-
nation of discharge. The c3 values disagree by more than 20%, while
the Tank Model predicts c1 ∼ 0 at t ∼ 300 s, in contrast to the actual
value of ∼500 mol/m3. This discrepancy thus suggests the limitation
of the diffusive flux approximations, which substantially overestimate
the concentration gradients. One possible reason for this error is that
the diffusion layers have not built up to their steady state value, as also
indicated by the diffusivity parameter Se. The errors due to the result-
ing flux approximations may be circumvented by refining the same, or
by the use of a time-dependent exponential correction for the length
approximation as suggested by some workers.32,54 The time constants
for this exponential change may be defined based on characteristic
diffusion timescales.

This example thus demonstrates a combination of design and op-
erating parameters in which the Tank Model has reduced performance
and necessitates improved approximations. In particular, the large po-
larizations considered in this example may be encountered for the Base
Case cell as well, such as during high-current dynamic and pulsed
operation. A more comprehensive analysis is useful to establish the

Figure 15. Average concentration c̄i comparison for the thick electrode case.
The approximate Tank Model predicts zero electrolyte concentration in the
positive electrode at a relatively short time (t∼300 s).

Figure 16. Representative comparisons of SPM (peach) , SPMe (purple), and
the Tank Model (gold). The p2D model is used as the benchmark.

parameter combinations at the cell level that deem the Tank Model
useful. The limits of a BMS that uses such a model can also be defined
through such an analysis.

Comparisons against other reduced-order models.—In this arti-
cle, the Tank Model is compared against SPM because of its substan-
tial ubiquity in advanced BMS applications, as it continues to be the
model of choice when physical detail is desired. In introducing the
Tank Model, we seek to propose an alternative for various applica-
tions where SPM is substantially common. However, for additional
perspective, this section discusses the error metrics of the Tank Model
relative to a recent version of the SPMe, which corrects SPM with
electrolyte dynamics as mentioned previously.18 For this study, the
electrode parameters from Ref. 18 were chosen, in addition to elec-
trolyte transport correlations from Ref. 42. The representative values
of electrolyte transport properties required by the SPMe formulation
were evaluated at the initial electrolyte concentration.

The error metrics up to 3C discharge rate are illustrated in Fig-
ure 16. The substantial improvement in error in going from SPM to
lumped electrolyte models is evident, particularly at 3C, where the
RMSE reduction is nearly three-fold for SPMe. However, the Tank
Model exhibits even lower error (13 mV vs. 35 mV). This suggests
more accurate estimation of concentration overpotentials and liquid
phase ohmic drops for the chosen parameters. The SPMe uses repre-
sentative values, whereas the Tank Model only requires the evaluation
of electrolyte transport properties at the interfaces. Consequently, the
concentration-dependent transport properties can be included in an
efficient manner. The expressions in SPMe may need to be rederived
to account for these variations.

Computational performance.—Computational times for the Tank
Model are listed in Table VI. For the Tank Model, each conserva-
tion law in the electrolyte phase is replaced by its volume-averaged
form, while the solid phase in each electrode is replaced by 3 lin-
ear DAEs. The original ∼ 200 – 1000 DAEs are thus replaced by 14
average conservation equations. This results in a 1C discharge curve
being simulated in ∼ 2 ms, in contrast to >1000 ms for a standard
Finite Difference implementation. The computational speed of this
model is comparable to fast SPM implementations. The Tank Model
is also competitive with the state-of-the-art reformulated p2D model
from our group, achieving up to an order of magnitude reduction in
computation time. The mathematical similarity of the Tank Model
to the reformulated model with n = (1,1,1) collocation prompts the
question as to why the (1,1,1) reformulated model is not used instead
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Table VI. Representative computational performance metrics for
the Tank Model.

Number of Computation
Model and Implementation DAEs time (ms)∗

p2D – Finite Difference (50,35,50) 986 1493
p2D - Reformulated 30–150 5–20

Tank Model 15∗∗ 2.1

∗Average of N = 3 simulation runs for a 1C discharge. It must be
noted that the simulation time and memory consumption is a strong
function of the computing environment as well as error tolerances for
both initialization and simulation.
∗∗Including the equation for cell voltage.

of developing the Tank Model. This is because the proposed model
is conservative and exhibited higher accuracy. In addition, it can be
rewritten so as to contain fewer adjustable parameters compared to
reformulated models. Increasing the accuracy and numerical conver-
gence of reformulated models requires using its ability to guarantee
convergence for different chemistries, parameters and operating con-
ditions by increasing the number of collocation points.

Recasting the tank model.—Recalling the volume-averaged elec-
trolyte Equations 46–48 of the Tank Model, we have
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The above equations may be conveniently written as
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Where the governing equations have been expressed in terms of equiv-
alent ‘mass transfer’ coefficients, volume and source terms. In the
above equations, the Ki j = 2D(ci j )

li
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+ l j

ε
b j
j

have units of mass transfer coeffi-

cient (m/s), and Vl,i denotes the electrolyte volume (per unit area) in
region i with units of length. The transport parameters in the electrolyte
current balance 56 may also be grouped similarly
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Where, the thermodynamic factor v(ci j ) = 1 for simplicity. Here,

Si j = 2κ(ci j )
li

ε
bi
i

+ l j

ε
b j
j

have units of S/m2. The lengths used in the flux approx-

imation, which for this case is li
2 , are present in the expressions for Ki j

and Si j . Estimating these quantities is equivalent to deriving a suitable
flux or gradient approximation. For constant diffusivity, the electrolyte
concentration equations constitute a coupled linear system of Ordinary

Differential Equations with constant coefficients. The form of these
equations suggests a possible parameter estimation strategy in which
the Tank Model is matched against experimental data by direct esti-
mation of the ‘consolidated’ transfer coefficients. Variations due to
concentration-dependent transport properties, or transients in which
the ‘steady state layer’ is attained over a characteristic timescale com-
parable to discharge time can potentially be handled by estimating
average values over the course of the process. The similarity of the
mathematical model to conventional Continuous Stirred Tank Reactor
(CSTR) systems is noteworthy and suggests scope for exploiting the
extensive control theory developed for CSTR systems.

Conclusions and Future Work

An efficient, conservative model for lithium-ion batteries is pre-
sented, which uses a Tanks-in-Series approach to generate approx-
imate equations for electrolyte dynamics. Despite the loss of infor-
mation due to volume-averaging, the additional equations result in a
nearly four-fold reduction in error compared to typical SPM at high
(5C) discharge rates. While the Tank Model achieves excellent ac-
curacy with respect to the full p2D model for the cell considered in
this article (<0.4% error), even better performance is expected for
electrodes with inherently more uniform reaction distributions. The
model formulation provides for the convenient refinement of flux ap-
proximations and estimation to increase accuracy for more aggressive
parameter combinations. The model retains the computational sim-
plicity of SPM-like models, with the millisecond computation time
making it a candidate for a replacement of SPM in the simulation
of large series-parallel configurations of cells. The model may also
be used for long cycle simulation and parameter estimation toward
modeling capacity degradation, and the evaluation of models for the
same.

The generalized methodology developed herein can be applied to
electrochemical models for more complex systems, including conver-
sion chemistries such as Li-sulfur and lead-acid batteries. The appli-
cation of this technique for a PDE model for Li-sulfur batteries will
be communicated in a future article. Thermal effects, and the resulting
interplay with transport and kinetic processes will introduce an addi-
tional dimension of complexity. Application of this methodology to
the energy balance equations is a key next step and a logical extension
of the current work. Future work also includes developing approximate
analytical and perturbation solutions for this model. We envisage the
ultimate use of this model in state and parameter estimation, real-time
control and advanced BMS.

In this article, we defined the scope of our work as the detailed
development of the Tanks-in-Series model, and evaluation of its pre-
dictions against the full p2D model in terms of accuracy and computa-
tional speed. Some comparisons against SPM were provided to illus-
trate the improvement over the most common electrochemical models
for advanced BMS. While conceptual differences between this model
and other methodologies in literature were touched upon, a detailed
comparison was avoided to maintain focus on the details of the gener-
alized Tanks-in-Series methodology. The literature on reduced-order
p2D models is vast with each technique possessing its advantages,
limitations, and conditions for applicability. Future work will involve
more detailed analyses of the differences in the Tanks-in-Series ap-
proach and other methods, and their impact on key performance mea-
sures and model predictions.
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List of Symbols

Dependent Variables
c Electrolyte Concentration
cs Solid Phase Concentration
φl Liquid Phase Potential
φs Solid Phase Potential
Vcell Cell Voltage
j Pore-wall flux
N Electrolyte molar flux
Other Superscripts
surf Pertaining to the surface of the particle in the

solid phase
Pertaining to the average over the volume of
a porous domain

s, avg Pertaining to the average over the volume of
the solid particle

Other Subscripts
i Pertaining to region i where i ∈{1,2,3}
ij Pertaining to the interface between regions i

and j, where i, j ∈ {1,2,3}
i,ij Pertaining to the interface between regions i

and j on the side of region i where i, j ∈ {1,2,3}
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