
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-5000-75998
July 2020

Resilient Autonomous Wind Farms

Preprint
Aaron Barker, Benjamin Anderson, and Jennifer King

National Renewable Energy Laboratory

Presented at the 2020 American Control Conference (ACC)
July 1–3, 2020

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-5000-75998
July 2020

Resilient Autonomous Wind Farms

Preprint
Aaron Barker, Benjamin Anderson, and Jennifer King

National Renewable Energy Laboratory

Suggested Citation
Barker, Aaron, Benjamin Anderson, Jennifer King. 2020. Resilient Autonomous Wind Farms:
Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5000-75998.
https://www.nrel.gov/docs/fy20osti/75998.pdf.

https://www.nrel.gov/docs/fy20osti/75998.pdf

NOTICE

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was
supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views expressed
herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Resilient Autonomous Wind Farms

Aaron Barker, Benjamin Anderson, Jennifer King

Abstract— With the advent of an increasing number of con-
trol strategies that seek to optimize wind turbine performance
on a farm level, taking into account individual wind turbine
information to achieve wind-farm-level objectives has become
an increasingly important goal. Methods for controlling wind
turbines on an individual and farm level have experienced
significant d evelopment, a nd a n a bundance o f n ew imple-
mentations for gathering and using data from turbines have
created potential for novel control mechanisms that can further
optimize the performance and delivery characteristics of a
wind farm. A key element of making these wind farms more
efficient i s t o d evelop r eliable a lgorithms t hat u se l ocal sensor
information that is already being collected, such as from local
meteorological stations, nearby radars, sodars, and lidars, and
supervisory control and data acquisition (SCADA) data. Mak-
ing use of information from all wind turbines in a wind farm
can enable such approaches as determining the atmospheric
conditions across the farm, improving fault-finding, and ensur-
ing more efficient o verall c ontrol o f f armwide optimizations
through mechanisms such as wake steering. However, these
approaches typically involve a centralized communications and
control center. In order to ensure the resilient operation of the
farm, it is necessary to develop an approach that distributes
the calculation and communication amongst multiple nodes
throughout the farm. In this fashion, a redundant, robust, and
secure network can be created, which can tolerate faults in
calculation, communication, and even external attacks that seek
to disrupt the operation of the wind farm. This paper introduces
the use of the Raft-Byzantine-Fault-Tolerant algorithm in the
implementation of autonomous control of a wind farm. This
implementation will allow for fault tolerance for malfunctioning
nodes, sensors, transmitters, and connectors. This approach is
equally extensible to account for malicious actors. It will be
shown to achieve overall consensus, provided the number of
faults/malicious nodes is less than 3n+1, where n is the number
of turbine cluster faults that may occur, and to be robust in
the face of multiple arbitrary faults.

I. INTRODUCTION

As the percentage of energy contributed to the grid by
renewables continues to grow rapidly, the grid of the future
will need to ensure that it remains reliable, robust, and

A. Barker is with the National Renewable Energy Laboratory; email:
aaron.barker@nrel.gov.

B. Anderson is with the National Renewable Energy Laboratory; email:
benjamin.anderson@nrel.gov.

J. King is with the National Renewable Energy Laboratory; email:
jennifer.king@nrel.gov.

resilient to attacks that may seek to take it offline or interrupt
its operation. Resilience is becoming increasingly important
to renewable energy deployment and it involves having an
understanding of the areas that encompass failure modes
from common devices, sensor and transmission failures, and
deliberate and malicious threats that may seek to disrupt
the operation of a wind farm [1], [2]. Changes to the grid
structure and energy markets mean that soon it is likely that
wind, solar, and other renewable energy technologies will
be paid to provide ancillary grid services, further increasing
the importance of resilience. Energy security is increasingly
looked at as an important aspect of the nation’s genera-
tion/electricity policy [3].

In this context, methods for controlling wind turbines on
an individual and farm level have experienced increasing
development. An abundance of new implementations for
gathering data from turbines has created potential for novel
control mechanisms that can further optimize performance
and delivery characteristics of a wind farm [4]. In addition,
as the cost of wind turbines continues to drop, and as they
become more power dense, the way in which sites are built
for optimal financial return is also changing. Turbines can
be spaced closer together to reduce associated Balance-Of-
Station costs [5] [6]. Drawbacks from this come in the form
of increased wake effects downstream of the turbine. This
closer spacing can also reduce the overall lifetime of the
turbines. Advanced control methods, such as wake steering
[7]–[10], can be used to mitigate this impact, but they rely
on having a very accurate and consistent understanding of
the wind direction to operate efficiently. However, these
advanced control methods need access to wind direction
and speed measurements taken by the turbines, potentially
exposing them to faults and malicious threats.

Furthermore, wind farms are moving toward operating
autonomously through these advanced optimization and con-
trol algorithms. Consensus-based algorithms allow turbines
to share information with each other about the conditions
they are experiencing [11]. This has been investigated using
turbine supervisory control and data acquisition (SCADA)
data to reach a consensus of the wind direction experienced
at each turbine using the Alternating Direction Method of
Multipliers (ADMM) [12], [13], as described in Section II-
A. This method has shown promise and allows turbines to
reach consensus on wind direction while being tolerant of
some faults. However, to further develop these methods,
and for more robust, reliable, and resilient results, this
approach needs to tolerate a greater range of faults. These
faults include sensor errors, connectivity issues, damage, and
interruption to operation. Irrespective of the source of the
fault, consensus should still be able to be reached quickly to

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
1

Fig. 1: Interaction between wind direction consensus and
Raft-Byzantine Fault Tolerant checking and replication of
reported values. Consensus is performed at the wind farm
level and the results are compared within generals (i.e., the
nodes appointed as leaders of the clusters) to determine the
accuracy of the data received.

maximize the utility of using the wind farm network in this
distributed consensus fashion.

The work that follows will outline the framework by which
we can implement a Byzantine Fault Tolerant (Raft-BFT)
algorithm within a wind farm network, using the ADMM
approach to determine wind direction consensus across all
turbines in the farm (shown in Section II). This approach
will be demonstrated to achieve distributed consensus on
wind direction amongst different nodes within the wind
farm cluster (Section III), and to provide fault tolerance
against any arbitrary sensor, communication, calculation, or
malicious fault within the system. The implementation of
this algorithm will significantly increase wind farm resilience
and bring us closer to a wind farm that is capable of
operating autonomously. At the same time, the algorithm will
dramatically increase fault tolerance to fail-stop faults and
improve information on likely wind direction by leveraging
information from neighboring clusters of turbines. Results
are shown in Section IV. Finally, conclusions and future
directions for this work are presented in Section V.

II. PROBLEM FORMULATION

This paper integrates wind direction consensus using
ADMM with a variant of Raft-BFT [14], [15]. Figure 1
shows the interaction between the two algorithms. The left
block (described in more detail in Section II-A) determines
the wind direction across the wind farm and the right block
determines the accuracy of the communicated information
(described in detail in Section II-B).

A. Wind Direction Consensus

To determine the wind direction across the wind farm, as
shown in the left block of Figure 1, we apply a consensus-
based approach that uses a network to reliably determine the
wind direction at every turbine, considering both the turbine’s
measurement and those of the wind farm. Currently, turbines
typically rely on wind vanes and anemometers mounted on

the back of the nacelle to provide measurements to their
controllers. Individual measurements, on their own, can be
unreliable because of the complex flow created as the wind
passes through the rotor, preventing accurate measurements
and thus inputs into the individual turbine yaw controller.

In this paper, the SCADA measurements recorded at each
turbine are used to determine an estimate of the wind direc-
tion at every turbine, as is done in [11]. The turbine receives
wind direction measurements from every other turbine. In
future work, only measurements from the nearby neighbors
will be included.

1) Node and Edge Objective Functions: Each turbine uses
its own wind direction measurement, as well as the wind
direction measurement from the connected turbines (all other
turbines in this case) to determine its local wind direction.
The objective of the individual turbine, i, is to minimize the
error between the wind direction measurement at turbine i
and the estimated wind direction. The edge objective incor-
porates information from each turbine to ensure a reliable
estimate of the wind direction at an individual turbine. The
optimization problem can be written as:

minimize
x

N∑
i∈V

(xi,measure − xi)2 + α|bi|︸ ︷︷ ︸
node objective

+
∑

(j,k)∈E

wjk|xj − xk|︸ ︷︷ ︸
edge objective

(1)

where N is the number of turbines, xi,measure is the wind
direction measurement recorded at the turbine i, bi is the
measurement bias in the wind direction with respect to true
north, wjk is a weight placed on the connection between
turbines j and k, xj is the estimated wind direction at turbine
j, and xk is the estimated wind direction at turbine k. In
this case, the node objective function is convex and can be
updated with a closed-form solution. The edge objective min-
imizes the differences in estimated wind direction between
neighboring turbines. The weights, wjk, are set based on the
distance to the turbine.

2) Alternating Direction Method of Multipliers: To solve
the objective function posed in the previous section, we
use the ADMM approach. This algorithm is particularly
useful in this case, as each individual turbine can solve its
own optimization in parallel, communicate the solution to
neighboring turbines, and iterate this process until each node
within the wind farm network has converged. In this paper,
each turbine determines the local wind direction at each
individual turbine by using information from all turbines
in the wind farm. ADMM is used to solve a network

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
2

Fig. 2: Raft-BFT: 1) Process of leader and follower election, 2) ADMM computation of consensus wind direction, and 3)
Raft-BFT checking and replication of “true” wind values

optimization with connecting nodes, such that:

minimize
xi,zi

N∑
i

(xi,measure − xi)2

+λ
∑

(j,k)∈E

wj,k‖zjk − zkj‖2 (2)

subject to: xi = zij , j ∈ N(i) (3)

where zjk is a copy of xj at turbine k, such that the wind
farm reaches an “almost” consensus of the wind direction
across the wind farm.

The optimization problem is solved by minimizing the
augmented Lagrangian:

Lρ(x, b, z, u) =
∑
i∈V

fi(xi, bi) +
∑

(j,k)∈E

λwjk‖zjk − zkj‖2

+
ρ

2

(
‖ujk‖22 + ‖ukj‖22

)
+
ρ

2

(
‖xj + zjk + ujk‖22 + ‖xk − zkj + ukj‖22

)
(4)

where u is the scaled dual variable and ρ > 0 is the penalty
parameter. The following steps are used in an iterative way
to solve for x, z, u:

xk+1 = argmin
x

Lρ(x, zk, uk) (5)

zk+1 = argmin
z

Lρ(xk+1, z, uk) (6)

uk+1 = uk + (xk+1 − zk+1) (7)

The variables x, b, z, and u are updated in serial. In this
setup, the bias, bi, does not have a z or u update step because
the biases are only known to the individual turbines (i.e., they
are not communicated to nearby turbines).

For the wind farm example, turbines near each other
should have similar wind direction estimates. There are two
penalty parameters, λ and ρ, that can be used to weight an
individual turbine’s measurement against the measurements
of the connected turbines. A small λ corresponds to almost
no consensus among the turbines. A large λ corresponds
to total consensus among the turbines. The value of λ
can change based on how accurate/reliable another turbine’s
information is perceived to be. In this paper, λ is held
constant. However, in future work, λ will be updated based
on the results of the Byzantine Fault-Tolerant step (featured
in the right block in Figure 1).

B. Byzantine Fault Tolerance

Next, this process uses Byzantine Fault Tolerance to
provide a layer of resiliency to the wind farm. In particular,
Byzantine Fault Tolerance is the characteristic defining a
system that tolerates the class of failures that belong to
the Byzantine Generals problem [16]. A Byzantine fault
presents different symptoms to different observers. These
are faults that have no restrictions and can have any kind
of arbitrary value, which they deliver to other nodes while
posing as an honest actor. These faults are particularly
severe and difficult to deal with, and many systems that
require extreme robustness (particularly networks with large
numbers of sensors) will require Byzantine Fault Tolerance
to operate correctly in all cases. The algorithm discussed
above is Byzantine Fault Tolerant, provided the number of
bad actors does not exceed 1/3 of the nodes.

A Byzantine failure, on the other hand, occurs when
there is a loss of a system service because of a Byzantine
fault in systems that require consensus. For a system to
exhibit a Byzantine failure, its operation must require con-
sensus. Many distributed systems have an implied system-

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
3

level consensus requirement, such as a synchronized timing
aspect, which requires consensus for coordinated operation.
A message transmitted slightly too early, for example, would
be accepted only by the nodes of the system that have slightly
faster clocks, or whose values matched that of the node
sending the early message.

1) Raft-BFT: The Byzantine Fault Tolerant method used
in this paper is known as Raft-BFT, a modification of Raft in
which cryptographic hashes are used to generate a fingerprint
for the actual data/messages. Raft is a consensus algorithm
for managing a replicated log and a subset of Byzantine Fault
Tolerance. Raft bears a lot of similarities to other consensus
algorithms, but a number of novel features have motivated
the decision to use Raft, and subsequently Raft-BFT for the
work in this paper.

Raft uses a stronger form of leadership than other consen-
sus algorithms. In Raft’s implementation, log entries only
flow from the leader to other servers. This simplifies the
management of the replicated log. Traditional Raft uses
randomized timers to elect leaders, which helps resolve new
leadership election conflicts simply and rapidly. Raft addi-
tionally features a robust mechanism to handle changing or
increasing the number of servers a cluster uses. This mecha-
nism uses a joint consensus approach, where the majorities of
two different configurations overlap during transitions. This
overlap allows the cluster to continue operating normally
during configuration changes.

These measures ensure safety and further enhance re-
siliency in wind turbine operation. In addition to this, Raft is
simpler and more understandable than competing algorithms,
with a description available that enables full implementation.
There are many open-source implementations available with
efficiency comparable to other algorithms, and more impor-
tantly, its safety properties have been formally specified and
proven.

The implementation of the Raft-BFT algorithm also en-
sures safety under all non-Byzantine conditions, including
network delays, partitions, packet loss, duplication, and re-
ordering. They are fully functional (available), as long as any
majority of the servers are operational and can communicate
with each other and with clients. Thus, a typical cluster
of five servers can tolerate the failure of any two servers.
Servers are assumed to fail by stopping; they may later
recover from a stored state on stable storage and rejoin the
cluster.

Though Raft is adept at handling fail-stop bugs, it does not
guarantee full resilience, as systems in a distributed system
can exhibit arbitrary behavior that makes them vulnerable
to bugs, hardware faults, and malicious faults. In order to
give higher guarantees on correctness, its desirable to have
a Byzantine Fault Tolerant system. In the Byzantine Fault
Tolerant version of Raft, The use of hashing allows nodes to
verify their agreement on a certain value.

In Raft-BFT, nodes transmit a hash value instead of the
actual data chunk until the transaction is to be committed,
which reduces message overhead for transactions that do not
proceed. Hashing is additionally used to verify the consis-

tency of the local states at different nodes, thus ensuring
that transactions are processed in the same order across
them. Additional measures are taken to make the Raft leader
election process fault-tolerant. Whereas in Raft, a faulty node
could ignore the time-out and trigger the leader election, and
two collaborating nodes could exploit this by then switching
leaders back and forth; in Raft-BFT, the leader selection
algorithm from Practical Byzantine Fault Tolerance (PBFT)
is adopted. In this rigged leader election, which happens after
a fixed time-out per node, each node votes in a way that
increases the possibility of consensus forming.

Figure 2 provides a detailed view of what the Raft
algorithm does to provide resiliency to the wind farm.
Raft implements consensus by first electing a leader, then
giving the leader complete responsibility for managing the
replicated log. The leader accepts log entries from clients,
replicates them on other servers, and tells servers when it
is safe to apply log entries to their state machines. A Raft
cluster contains several servers, typically five, which allows
the system to tolerate two failures. Each server can be in
one of three states: leader, follower, or candidate. In normal
operation, there is one leader and all the other servers are
followers. The followers are passive, not issuing requests
on their own, but simply responding to requests from the
leaders and candidates. The leader handles all client requests.
When servers start up, they begin as followers. A server will
remain in the follower state as long as it receives a valid
Remote Procedure Call (RPC) from a leader or candidate.
Leaders send periodic heartbeats to all followers to retain
their authority. In the candidate state, a new leader is elected.
If a follower receives no communication over a period of
time, called the election time-out, then it assumes there is
no viable leader and begins a new election.

Having a leader simplifies the management of the repli-
cated log. For example, the leader can decide where to place
new entries in the log without consulting other servers, and
data can flow in a simple fashion from the leader to other
servers. A leader can fail or become disconnected from the
other servers, in which case a new leader is elected. In
summary, Raft decomposes the consensus problem into three
relatively independent subproblems:
• Leader election
• Log replication
• State machine safety.

III. RAFT-ADMM APPLIED TO WIND FARMS

The Raft-ADMM approach was demonstrated using a 25-
turbine setup, shown in Figure 3. In this case, the wind
direction was coming from the west, i.e., 270◦ and the
turbines were spaced 500 m apart in the streamwise and
spanwise directions.

The wind turbines are first split into five clusters, selected
based on the wind direction (i.e., the turbines are clustered
along the rows, as shown in Figure 3). The clustering has two
primary motivations. First, the turbines are clustered such
that their information and/or behavior is influenced primarily
by their neighboring turbines, which are most likely to share

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
4

Fig. 3: Simulation setup with 25 turbines split into 5 clusters.
The wind direction is assumed to be coming from the west.

a characteristic wind direction. Second, the clustering allows
for a reduction in communication and overhead for the
Raft-BFT algorithm in operation. Again, Figure 1 shows a
graphical representation of the communication interactions
between the layers generated by Raft-ADMM, known as
classical full exchange. This method requires each bus unit
to take values from general purpose nodes (i.e., turbines) and
send their values to all the redundancy units (nodes/generals).
The values at each turbine are used by a central client to
compute the consensus wind direction at all turbines. These
wind direction values are then averaged across the clusters
of turbines. The leader node takes these cluster average
values and propagates them out to the nodes, which also
run the ADMM wind direction consensus calculation for
each turbine, and report their own averaged cluster directions.
Each node checks the transaction hash of the message sent
to it by the leader, verifying that the information the leader
wishes to add to the log is the same as what they have
calculated. If a quorum of responses matching the leader’s
value is received, consensus on the cluster wind direction
values is achieved, and the values are stored to a log.

IV. RESULTS

A. Practical Test Cases for Raft-BFT/ADMM Algorithm

These Byzantine faults are not merely theoretical, but have
been shown to occur in real-world usage, and occur with a
frequency far higher than what might typically be expected
[17]. The following test cases show how errors can pass
checks that would typically be expected to contain faults
within supposedly redundant systems.

The base assumption is that all nodes will receive the same
data, as they are connected to the same source; and that they
will propagate these values to the leader. However, Byzan-
tine fault propagation may invalidate these system failure
assumptions. There are essentially four possible overarching
manifestations of the results (with some nuance in how these
are handled by the algorithm):
• Message arrived on time with a good checksum
• Message arrived on time with a bad checksum
• Message arrived late with a good checksum
• Message arrived late with a bad checksum.
1) General (Node) Fault/Malicious General/Outside Ac-

tor: In the case of a single node fault (as shown in Figure 4),
a single general reports either intentionally or unintentionally
incorrect information for any of the wind turbine cluster’s
wind directions. In the former scenario, the outside party

will not have access to the private key required to sign the
transaction being returned to the leader, and the information
will be rejected. In the latter scenario, the hash value of
the data will not match that agreed upon by the node
and the leader in the pre-append phase. As a result, the
transaction hashes sent by the leader containing the “true”
wind direction information are not mirrored by the general
with false information. This results in an invalid transaction
hash, and the result from this node is not added to the
replicated state log.

2) Delayed Response from General: In the case of de-
layed transmission by a node (as shown in Figure 5), the
algorithm will time out. If a quorum of results has been
reached from all nodes, this will not impact the ability to
reach consensus. However, if a sufficient number of node
transmissions are delayed or lost to prevent consensus being
reached, the consensus process will fail.

3) Delayed Transmission + Fault: In the case of delayed
transmission by a node coupled with a fault in the values
returned by another general (as shown in Figure 6), the
algorithm will not be able to reach consensus.

Fig. 4: Consensus is reached despite a fault at a single
General, General 4, which contained the incorrect values
for cluster wind direction—resulting in an invalid transaction
hash sent to the leader.

Fig. 5: Consensus is reached despite a delayed response
from a single General (General 4), as 4 correct responses
are sufficient to reach a quorum.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
5

Fig. 6: Consensus is not reached, with both a fault and a
delayed response preventing the algorithm from reaching the
number of correct responses required to reach consensus.

Fig. 7: Consensus is not reached, because of a fault with the
leader itself.

4) Leader Fault: The Raft-BFT algorithm relies heavily
on the leader to manage the state of the replicated log.
While this provides a number of advantages, as previously
discussed, it does make consensus particularly reliant on the
values reported by the leader. In the case that the leader
reports incorrect values (shown in Figure 7), no consensus
can be reached—and a new leader is elected to take their
place.

V. CONCLUSIONS

This paper has demonstrated the implementation of the
Raft-BFT algorithm to enable distributed fault-tolerant op-
eration of a wind farm; a crucial step in enabling full
autonomous control and operation. The robustness of this
approach to tolerating malfunctioning nodes, sensors, trans-
mitters, connectors, and arbitrary classes of faults has been
explored, explained, and demonstrated; with faults classified
by their observable impact and subsequently tested. The
algorithm implemented has proven its ability to achieve
overall consensus, provided the number of reliable nodes
is greater than 3n+1 (where n is the number of turbine
cluster faults that may occur). As part of the development of
this approach, a large number of consensus algorithms have

been investigated and trialed, with the reason for the ultimate
selection of the Raft-BFT algorithm outlined.

The BFT method has additionally been layered with
ADMM, enabling the determination of wind farm direction
consensus, which, in itself, is robust and adaptive to faults.
The result is a crucial step toward enabling autonomous
and resilient operation of wind farms that is resistant to
cyberattacks and malicious actors, thereby acting to secure
the nation’s energy future.

Future work will explore several different topologies, with
an eye toward practical and implementable ways of actually
applying this methodology to a real farm. In addition, future
work will examine different adaptations of the ADMM/Raft-
BFT methodology, which will help to further improve the
robustness, utility, and applicability of the consensus process
for wind farms, including:
• Implementing ADMM at the cluster level, rather than

across the entire farm.
• Implementing ADMM at the cluster level, determining

consensus amongst clusters, then implementing ADMM
again between clusters for the farm. In this fashion, and
combined with the Scalable Processor-Independent De-
sign for Electromagnetic Resilience (SPIDER)/Reliable
Optical Bus (ROBUS) topology, clusters can be isolated
from each other, which is a further step in advancing
robust operation.

• Performing consensus calculation within a cluster if it
repeatedly fails in the overall cluster consensus calcula-
tion. In the current approach, the general can be changed
when consensus is not reached in any case, but this
method would offer a method of diagnosing the root
cause of persistent problems in cluster consensus.

• Modifying the existing algorithm to feed a penalization
value back to the ADMM calculation for clusters that
routinely do not reach consensus. This approach will
remove the need to manually select penalization values
for the ADMM calculation.

Other BFT algorithms will be explored, some of which can
handle nondeterminism, such as SIEVE [18], which uses a
modular approach and filters out nondeterministic operations
in an application; ensuring that all correct processes produce
the same outputs and that their internal states do not diverge.

In summary, this paper outlines the framework for dis-
tributed consensus amongst wind turbines, and moves toward
cooperative, robust, and redundant autonomous wind farms.

REFERENCES

[1] M. Amin, “Challenges in reliability, security, efficiency, and resilience
of energy infrastructure: Toward smart self-healing electric power
grid,” in 2008 IEEE Power and energy society general meeting-
conversion and delivery of electrical energy in the 21st century. IEEE,
2008, pp. 1–5.

[2] P. E. Roege, Z. A. Collier, J. Mancillas, J. A. McDonagh, and
I. Linkov, “Metrics for energy resilience,” Energy Policy, vol. 72, pp.
249–256, 2014.

[3] B. Unel and A. Zevin, “Toward resilience: Defining, measuring,
and monetizing resilience in the electricity system.” Institute for
Policy Integrity, New York University School of Law, Wilf Hall, 139
MacDougal Street, New York, New York 10012, 2018.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
6

[4] S. Boersma, B. Doekemeijer, P. M. Gebraad, P. A. Fleming, J. Annoni,
A. K. Scholbrock, J. Frederik, and J.-W. van Wingerden, “A tutorial
on control-oriented modeling and control of wind farms,” in American
Control Conference (ACC), 2017. IEEE, 2017, pp. 1–18.

[5] P. A. Fleming, A. Ning, P. M. Gebraad, and K. Dykes, “Wind plant
system engineering through optimization of layout and yaw control,”
Wind Energy, vol. 19, no. 2, pp. 329–344, 2016.

[6] A. P. Stanley, J. Thomas, A. Ning, J. Annoni, K. Dykes, and P. Flem-
ing, “Gradient-based optimization of wind farms with different turbine
heights,” in 35th Wind Energy Symposium, 2017, p. 1619.

[7] P. A. Fleming, P. M. Gebraad, S. Lee, J.-W. van Wingerden, K. John-
son, M. Churchfield, J. Michalakes, P. Spalart, and P. Moriarty,
“Evaluating techniques for redirecting turbine wakes using sowfa,”
Renewable Energy, vol. 70, pp. 211–218, 2014.

[8] P. Gebraad, F. Teeuwisse, J. Wingerden, P. A. Fleming, S. Ruben,
J. Marden, and L. Pao, “Wind plant power optimization through yaw
control using a parametric model for wake effects a cfd simulation
study,” Wind Energy, vol. 19, no. 1, pp. 95–114, 2016.

[9] M. Bastankhah and F. Porté-Agel, “Experimental and theoretical
study of wind turbine wakes in yawed conditions,” Journal of Fluid
Mechanics, vol. 806, pp. 506–541, 2016.

[10] M. F. Howland, J. Bossuyt, L. A. Martı́nez-Tossas, J. Meyers, and
C. Meneveau, “Wake structure in actuator disk models of wind turbines
in yaw under uniform inflow conditions,” Journal of Renewable and
Sustainable Energy, vol. 8, no. 4, p. 043301, 2016.

[11] J. R. Annoni, C. Bay, K. E. Johnson, E. Dall’Anese, E. W. Quon,
T. W. Kemper, and P. A. Fleming, “Wind direction estimation using
scada data with consensus-based optimization,” Wind Energy Science
(Online), vol. 4, no. NREL/JA-5000-74366, 2019.

[12] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering
and optimization in large graphs,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data
mining. ACM, 2015, pp. 387–396.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends R© in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[14] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[15] J. Clow and Z. Jiang, “A byzantine fault tolerant raft.”
[16] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals

problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[17] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona,
“The real byzantine generals,” in The 23rd Digital Avionics Systems
Conference (IEEE Cat. No.04CH37576), vol. 2, Oct 2004, pp. 6.D.4–
61.

[18] C. Cachin, S. Schubert, and M. Vukolic, “Non-determinism in
byzantine fault-tolerant replication,” CoRR, vol. abs/1603.07351,
2016. [Online]. Available: http://arxiv.org/abs/1603.07351

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
7

