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Estimation of Large-scale Wind Field Characteristics
using Supervisory Control and Data Acquisition Measurements

Michael Sinner1,2, Lucy Y. Pao1, and Jennifer King2

Abstract— As the wind energy industry continues to push 
for increased power production and lower cost of energy, the 
focus of research has expanded from individual turbines to 
entire wind farms. Among a host of interesting problems to be 
solved when considering the wind farm as a whole, we consider 
the challenge of scalar field e stimation, b ased o n information 
already collected at the individual turbine level. We aim to 
estimate the large-scale, low-frequency characteristics of the 
wind field, s uch a s t he m ean w ind d irection a nd t he overall 
decrease in wind speed across the farm, and employ a Kalman 
filter t hat m odels t he w ind fi eld us ing a po lynomial function. 
We compare the proposed method’s performance to both a 
simple averaging technique and filtering o f i ndividual turbine 
measurements. The method presented is not limited to wind 
turbines and is applicable in other situations where multiple 
remote agents are used to estimate a scalar field.

I. INTRODUCTION

Wind energy now plays an important role in the energy
market with 591 GW of installed capacity worldwide, 14%
market penetration in the European Union, and 6.5% mar-
ket penetration in the United States [1]. In recent years,
researchers have begun to look at the wind farm as a whole,
as opposed to considering individual turbine behavior and
power production. This shift has led to the idea of treating
the wind farm as a ‘wind plant’ and produced a host of
wind farm/plant-related control problems, including optimal
power production [2]–[7] and load mitigation [2], [3], [5];
power reference tracking (active power control) [8]–[11]; and
communication and consensus [11]–[16].

This work focuses on the latter of these problems. Various
elements of the turbine control system, most notably the yaw
controller, rely on measurements of the local wind conditions
at the turbine, such as the wind speed and wind direction.
These measurements are usually taken on the turbine nacelle,
behind the rotor in the turbulent wake region, but are taken to
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be representative of the wind condition directly in front of the
turbine rotor. To the authors’ knowledge, the standard method
is to apply simple filtering to the measured signals and make
no use of external information in producing a better-informed
estimate of the local wind condition.

Several approaches addressing this issue are presented in
Annoni et al. [14]. The main approach used is a wind direc-
tion consensus solved by distributed optimization, which is
shown to perform well compared to averaging techniques
[14]. Although the distributed algorithm used allows the
problem to be solved quickly enough for real-time imple-
mentation, the method still relies on solving an optimization
problem online (iteratively), which could be prohibitive in
applications where high-rate communication is infeasible.
Further, the consensus and averaging approaches presented
do not take into account the time dependency of the wind,
essentially assuming a new wind condition at every time step.

In contrast, the Kalman filtering method we present here
has the benefits of being computationally simple, including
a dynamic model of the wind field, and having well-defined
probabilistic properties, albeit limited to the nominal case.
Wind field modeling for the purpose of estimation has
been approached using various techniques [17]–[19]. Our
approach is to consider only the lowest-frequency charac-
teristics: the mean wind speed and direction. We do not aim
to provide resolution to the level of individual turbine wakes
[17]–[19], time-varying turbulent structures [17], or complex
terrain, although we suggest an approach for addressing the
latter in Sec. VI-C. However, our method could be used to
provide insight into the overall losses in wind speed resulting
from waking of turbines [20], and how these losses are
distributed through the farm, based on data that are already
gathered at the turbines.

This paper is organized as follows. Sec. II describes the
wind field model. Sec. III presents the Kalman filtering
method used in this work. Sec. IV verifies the approach
on a nominal case, and Sec. V applies our method to data
gathered from a large wind farm. Extensions and conclusions
are discussed in Secs. VI & VII, respectively.

A. Motivations

The main motivation behind this work is to provide more
accurate estimates of the wind field at the turbines than can
be generated using the locally gathered wind speed and wind
direction measurements alone, without adding extra sensors.
These estimates can then be used to improve the performance
of individual turbines as well as of larger-scale wind plants.
Further, the proposed method can be used to estimate values
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at locations where measured data are unavailable, such as
turbines with faulty sensors or coordinates where a turbine
does not exist (see Sec. VI-A).

B. Notation

We let x ∈ Rnx and y ∈ Rny be the state and (noise-
corrupted) output of a generic dynamical system and use
(Xi, Yi) ∈ R2 to refer to the Cartesian coordinates of point
i. We denote by ŷ and yt an estimated output and ‘true’
(noiseless) output, respectively. Let zi ∈ Rnx be the vector
of regressors for point i, which is the generalized input
to a polynomial of degree d with input dimension m. By
‘generalized input,’ we mean that if we are considering a
second-order polynomial (d = 2) with two inputs (m = 2)

f(Xi, Yi) = pX2X2
i +pY 2Y 2

i +pXYXiYi+pXXi+pY Yi+p0,

where the p are the polynomial coefficients, then

zi =
[
X2
i Y 2

i XiYi Xi Yi 1
]>

and
x =

[
pX2 pY 2 pXY pX pY p0

]>
so that we can equivalently write f(zi) = x>zi. In general,
for a polynomial, nx = (d+m)!/(d!m!).

Further notation will be introduced as it appears.

II. WIND FIELD MODEL

Although various models have been suggested for wind
field estimation [17]–[19], the approach we take considers
only a very coarse wind field model.

A. Static Field Model

The basic notion that we follow is that of linear regression,
using a least-squares approach: given a set of (noisy) data
points, we would like to find the function f ∈ F that
minimizes the `2 norm of the residual between the function
and the data. The function space F (which should be linear
in its parameters) is specified beforehand; for this work, we
consider the space of polynomials of degree d with input
dimension m. Because we are modeling a scalar field over
physical space, we use m = 2 to define a two-dimensional
wind farm, although the method we present can be easily
extended to a three-dimensional case.

The polynomial is then represented as an inner product

f(z) = x>z (1)

where z is the regressor vector and x is the vector of
polynomial coefficients (see Sec. I-B).

The (static) least-squares regression problem for polyno-
mials is then

minimize
x

N∑
i=1

ε2i (2a)

subject to εi = x>zi − yi (2b)

where {(zi, yi)}i=1,...,N are the problem data.

B. Dynamic Field Model

Since the large-scale wind characteristics (speed, direc-
tion) change over time, the solution to problem (2) de-
grades over time. While (2) could be solved repeatedly,
this approach does not account for the wind field dynamics.
As such, we propose a simple discrete-time model for the
dynamic behavior of the wind field

x(k + 1) = x(k) + w(k) (3)

where w(k) ∼ N (0, Q) is process noise that causes the
wind field to vary with time in a stochastic way. The
dynamics (3) represent a random walk with Gaussian steps
in nx dimensions, and model variations in the wind field by
allowing the field at time k+1 to be slightly different from
that at time k.

C. Measurement Model

A single point in the scalar field defined by f is found
as f(z) = x>z = z>x. Stacking outputs from N different
inputs zi, we have

yt
def
=

 f(z1)...
f(zN )

 =

z
>
1
...
z>N

x = Cx (4)

where C
def
=
[
z1 · · · zN

]>
. Using the example given in

Sec. I-B (quadratic polynomial, two inputs), we would have

C =

X
2
1 Y 2

1 X1Y1 X1 Y1 1
...

...
...

...
...

...
X2
N Y 2

N XNYN XN YN 1


for a set of N measurement points {(Xi, Yi)}i=1,...,N .

D. Standard State-Space Form

By adding measurement noise v(k) ∼ N (0, R) to the true
output (4) and combining with the dynamic model (3), we
have the standard (uncontrolled) state-space form

x(k + 1) = Ax(k) + w(k) (5a)
y(k) = Cx(k) + v(k) (5b)

where the system matrix A = Inx , the nx × nx identity
matrix, and the output matrix C ∈ Rny×nx is constructed by
stacking the generalized inputs zi at the points i = 1, . . . , N .

III. KALMAN FILTER APPROACH
The steady-state Kalman filtering method [21] is applied

to the system model (5) to produce estimates x̂(k) and ŷ(k)
given a history of noisy observations y(k), y(k−1), ..., y(0).
For the Kalman filter to be realized, we assume that (A,C)
is observable. Because A = Inx

, the observability condition
reduces to a requirement that C has rank nx, which is the
same condition needed for uniqueness of the solution to the
static least-squares problem (2).

The steady-state state and output estimates are

x̂(k + 1) = A (x̂(k) + L (y(k)− Cx̂(k))) (6a)
ŷ(k) = Cx̂(k) (6b)
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2



where L = PC>
(
CPC> +R

)−1
is the steady-state

Kalman gain and P is the positive definite solution to the
discrete algebraic Riccati equation (DARE)

P = APA> +Q−APC>
(
CPC> +R

)−1
CPA> . (7)

The gain L is optimal in that it minimizes the trace of the
posterior state error covariance

P+(k)
def
= E

[(
x(k)− x̂+(k)

) (
x(k)− x̂+(k)

)>]
as k → ∞ (steady state), where x̂+(k) = x̂(k) +
L (y(k)− Cx̂(k)) is the posterior state estimate at time k.

A. Implicit Assumptions and Validity

Using the state-space model (5) to represent the wind field,
we can proceed to apply the Kalman filter directly under two
important assumptions:

1) (A,C) is an accurate model of the wind field.
2) The process noise w(k) and measurement noise v(k)

are additive white Gaussian noise sequences with co-
variances Q and R, respectively.

Under these assumptions, many properties and guarantees
of performance of the Kalman filter can be derived [21]. Our
application, however, is unlikely to strictly meet them. In
particular, modeling a turbulent wind field using a low-order
polynomial can only hope to capture large, low-frequency
variations, and small, high-frequency turbulent structures
will not be captured. On the other hand, Kalman filters
are popular in the literature across various fields where the
assumptions made cannot be shown to strictly hold, and even
without technical guarantees they can perform well in many
applications. We also demonstrate this to be the case.

B. Theory on Output Covariance

The Kalman filter, under assumptions 1) and 2), has well-
known properties regarding the statistics of the estimate.
Of interest are the properties of the output estimate ŷ(k).
In particular, it can be shown that as k →∞, the output
estimation error ey(k) = yt(k) − ŷ(k) is distributed as
ey(k) ∼ N (0, CPC>). This allows us to quantify the error
in our estimate of the field characteristics, although we again
stress that this result holds only when the assumptions are
valid.

IV. VERIFICATION TESTING

We verify the proposed algorithm using a simulated wind
farm with N = 16 turbines in an evenly-spaced 4-by-4 grid
with 800 m spacing. We consider a wind field with speed
and direction components in a two-dimensional (m = 2)
farm, and choose a linear fit (d = 1) for each scalar field
for ease of illustrating the method (higher-order polynomials
could be used to improve the model fit and capture more
local effects). Thus, zi =

[
Xi Yi 1

]>
. Because we are

producing estimates for both speed U and direction θ, there
are two outputs for every point in the field, so ny = 2N = 32
and

C =

[
Cspeed 0

0 Cdirection

]
∈ R32×6

where, in this case,

Cspeed = Cdirection =


0 0 1
800 0 1

...
...

...
2400 2400 1

 .

The simulated wind field is generated by setting an initial
value x(0) =

[
0 0 5 0 0 −π/2

]>
(uniform 5 m/s

winds from the west) and propagating x according to (3)
by drawing the w(k) from N (0, Q) with

Q =

[
Qspeed 0

0 Qdirection

]
where Qspeed = diag

([
2× 10−9 2× 10−9 2× 10−3

])
relates to wind speed magnitude (in m/s) and
Qdirection = diag

([
1× 10−9 1× 10−9 1× 10−3

])
to wind direction (in radians). Turbine measurements are
generated using (5b) with v(k) sampled from N (0, R) with
R = I32.
Q and R have not been carefully tuned for this illustrative

study. In a practical application, we suggest that the user set
R = IN (assuming that the sensor properties at each turbine
are the same), and then manually tune the entries of Q to
achieve good performance for a set of test data. The user
should also experiment with the polynomial order d.

By our formulation, the models involved with speed mea-
surement/estimation and direction measurement/estimation
are completely decoupled scalar fields and could just as
easily be run using two separate Kalman filters; however, this
need not be the case (especially if there is known correlation
between different sensors). If a coupled estimator is used,
more care will be required to select appropriate covariances
Q and R.

Once ‘truth’ data have been generated, we apply the
Kalman filtering approach to generate estimates of the
wind speed and direction at each turbine (initializing with
x̂(0) = 0). For the wind direction estimates, we apply the
heuristic that the innovation y(k)−Cx̂(k) should be wrapped
to the interval (−π, π] [22].

Results from verification testing have been omitted for
brevity, but we confirm that the Kalman filter is operating as
designed, and proceed to present results testing our method
on field data.

V. TESTING ON FIELD DATA

For realistic testing, we apply our method to supervisory
control and data acquisition (SCADA) data collected at a
functioning wind farm, where the assumptions in Sec. III-A
are unlikely to hold. The Kalman filter implementation is
the same as that described in Sec. IV, with the dimension
of the measurement noise covariance matrix scaled up ap-
propriately. We use the following alternative approaches for
comparison to the Kalman filter approach of Secs. III & IV.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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A. Simple Mean

Perhaps the simplest ‘consensus’ approach to produce an
estimate of the wind field at point i is to simply take the
average over all N measurement points at the previous time
[14], i.e.,

ŷi(k + 1) =
1

N

N∑
j=1

yj(k) . (8)

The spatial mean (8) takes account of neither time evolution
nor spatial variations of the field.

The simple mean is a limiting case of the Kalman filter
estimate as Q becomes large and d = 0 (constant poly-
nomial function). Assuming that all point measurements
are equally noisy (and uncorrelated), then R = rIN .
Because d = 0, nx = 1 regardless of m. This means
that Q = q, P = p ∈ R≥0, A = 1, and C = 1N (the N -
dimensional vector of 1s). x represents the spatially constant
quantity of interest (mean wind speed or direction).

The DARE (7) then reduces to p2 − qp − qr/N = 0 with
positive-definite solution

p =
q

2
+

√
q2 + 4r

N q

2
(9)

and the estimates (6) become

x̂(k + 1) =
r

r +Np
x̂(k) +

p

r +Np

n∑
j=1

yi(k) (10a)

ŷ(k) = 1N x̂(k) . (10b)

As q →∞ while r stays fixed, p→ q →∞ from (9), and

lim
p→∞

ŷ(k + 1) = 1N
1

N

N∑
j=1

yj(k) .

B. Individual Measurement Filtering

To our knowledge, a common technique used in industry
for smoothing measured data obtained at a turbine is to filter
the measured signal to remove both measurement noise and
higher-frequency turbulent effects. We therefore use a single-
input single-output (SISO) Kalman filter (6).

In the SISO case (y(k), ŷ(k) ∈ R), the state is observable
only for d = 0, because no information about the spatial
gradient (or higher derivatives) can be provided from a
single point measurement. We therefore use x̂ ∈ R, and
let Qspeed = 2 × 10−3, Qdirection = 1 × 10−3, and
Rspeed = Rdirection = 1. We thus arrive at a first-order filter
for both the wind direction and speed at each turbine.

The main drawback of this method is that it cannot
remove any local bias from the measurements. Further, under
a sensor fault, the turbine likely has to be taken out of
operation (see Sec. VI-A). On the other hand, this method
requires no communication.

C. Test Scenario

We test the proposed method, as well as the alterna-
tives described in Secs. V-A and V-B, on 1000 minutes of
0.0167 Hz data from an operational wind farm with ap-
proximately 200 turbines [14]. All simulations are initialized
with x̂(0) = 0 to represent no prior knowledge of the wind
condition. We provide only a subset of normalized results to
protect the anonymity of the wind farm operator.

D. Results

The time series results of the test are shown for two tur-
bines in the farm (Figs. 1 and 2) to visually identify features
of the different estimates. A faulty direction measurement
is apparent in Fig. 1. While the full Kalman filter (full KF)
and simple mean are comparable, the individual Kalman filter
(SISO KF) does not benefit from measurements from other
turbines and is unable to handle a wind direction sensor fault.
The SISO KF also has significant delay, but this can likely
be improved with different choices of Q and R.
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Fig. 1. Estimates for one wind turbine in the farm: raw 1-minute data
(measurement), simple mean (Sec. V-A), individual measurement filter
(SISO KF, Sec. V-B), and proposed Kalman filter method (full KF, Sec. III).

Sensors appear to be behaving correctly in Fig. 2 and
the SISO KF estimate aligns moderately well with the other
estimates. However, both the simple mean and full KF are
better able to track the wind direction change that occurs
around 200 s as a result of other turbines’ measurements.

We also include a spatial representation of the estimates
in Fig. 3. The figure shows only a subset of the turbines
in the farm, but provides some insight into the algorithm
behavior. In particular, we can see that the Kalman filter
behaves similarly to the simple mean except in the lower-
right region, whereas the individual measurement filter shows
significant disagreement between some neighboring turbines.

Although ‘truth’ measurements are difficult to obtain at
the turbine location, the estimates can be validated against a
met mast near the farm, which (at least in principle) provides
an accurate measure of the wind at its location. The Kalman
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Fig. 2. Estimates for a second turbine in the farm: raw 1-minute data
(measurement), simple mean (Sec. V-A), individual measurement filter
(SISO KF, Sec. V-B), and proposed Kalman filter method (full KF, Sec. III).
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Fig. 3. A subset of the turbines in the farm, chosen randomly, at a single
time step. Raw 1-minute data (measurement), simple mean (Sec. V-A),
individual measurement filter (SISO KF, Sec. V-B), and proposed Kalman
filter method (full KF, Sec. III). Arrow direction indicates the estimated wind
direction while arrow length indicates speed. For data protection reasons,
the X- and Y -direction unit lengths are not equal.

filter output can be extended to provide an estimate at the
met mast location using the method described in Sec. VI-A,
while the simple average can also be used as an estimate
of the speed at the met mast location. On the other hand,
the SISO Kalman filter estimates only the wind speed at the
turbine location, and is therefore not compared here. The met
mast provides only wind speed data, so only wind speed (and
not wind direction) estimates are analyzed.

Fig. 4 (top) displays the met mast wind speed signal as
well as the Kalman filter and simple average estimates of the
wind speed. Fig. 4 (bottom) displays the error between the
met mast data and each of the estimates. The Kalman filter
reduces the root-mean-squared wind speed estimation error
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Fig. 4. Wind speed estimates at the met mast location. The top plot shows
the met mast wind speed data along with speed estimates from the Kalman
filter (full KF) and simple average, whereas the lower plot shows the error
between the met mast data and the estimates.

by 4.8% compared to the simple average.

VI. EXTENSIONS

We now describe extensions to the method of Sec. III.

A. Data Interpolation

While we have considered estimating the wind field at the
turbine locations, the state x contains information about the
wind field everywhere. In particular, a second output matrix
C ′ can be constructed for positions i′ = 1, ..., N ′ such that,
using ŷ′ = C ′x̂, field values at the i′ locations are estimated
without measurements at these locations.

This may have several uses, but one important case is when
a turbine sensor is faulty—in that case, the faulty turbine can
be removed from y and added to y′, so that it may continue
to operate on the measurements received from other turbines
without degrading the estimates at the other turbines. We use
this method in Sec. V-D to estimate quantities at a met mast.

B. Time-Varying Wind Characteristics

Global wind properties, such as turbulence intensity,
change with time (for example, the atmospheric boundary
layer is less turbulent at night than during the day). These
variations could be modeled with time-varying noise covari-
ance matrices, i.e., Q = Q(k) and R = R(k). The dynamic
Kalman filter [21] can then be implemented in place of the
steady-state Kalman filter (6).

C. Breakdown of Farm into Small Pieces

If representing the entire wind field using a single poly-
nomial function is too limiting, the farm can be broken into
M spatially linked subsets, as shown in Fig. 5. The mth
subset, m = 1, ...,M , contains some of the N turbines, i.e.,
Sm ⊆ {1, ..., N} with cardinality Nm = |Sm|.

The Kalman filter algorithm presented in Sec. III can then
be applied to each subset, with (Am, Cm) replacing (A,C) in

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 5. Example breakdown of a wind farm into M = 3 subsets.

the model and with Nm replacing N . Some sort of average is
required to handle turbines that lie in the intersection between
two or more of the Sm.

D. Distributed Implementation

Computationally, the Kalman filter (6) is straightforward,
requiring only relatively small matrix multiplications online,
and can therefore be solved quickly on a single computer.
In contrast, more sophisticated consensus algorithms that
involve solving an optimization problem at each time step
can be made tractable by distributing the problem across
multiple nodes [14]. However, there may be security and
privacy benefits in a distributed approach.

In our model (Sec. II), C contains considerable informa-
tion about the wind farm layout. Although the layout of a
wind farm is perhaps not sensitive information, we imagine
that in some applications the type of information stored in
C could be sensitive. The centralized approach (6) requires
the storage of C at a single location, which creates an easy
target for malicious attacks. It could also be desirable to keep
the measurements yi, i = 1, ..., N, at the N nodes private.

To handle this, we rewrite (6) as

ηi(k) = [L]:,i (yi(k)− [C]i,:x̂(k)) , i = 1, ..., N (11a)

x̂(k + 1) = A

(
x̂(k) +

N∑
i=1

ηi(k)

)
(11b)

ŷi(k) = [C]i,:x̂(k), i = 1, ..., N (11c)

where [L]:,i denotes the ith column of L and [C]i,: the ith
row of C. Now, steps (11a) and (11c) can be carried out
locally at the nodes, whereas step (11b) must be computed
centrally but does not require explicit knowledge or sharing
of C or the yi. The ηi and x̂ must be communicated between
the N nodes and the central solver.

VII. CONCLUSIONS AND FUTURE WORK

The Kalman filter appears to perform well in estimating
large-scale wind field parameters. Major benefits of this
approach include the ability to provide smooth estimates,
even in the case of faulty individual turbine sensors, and
some predictive behavior for turbines toward the center of
the farm, using only measurements already collected at the
wind turbines. On the other hand, it is limited by being a
parametric model and is unlikely to be able to resolve the
wind field down to individual turbine wakes.

A nonparametric, consensus-based optimization approach
is presented by Annoni et al. [14]. In comparison to the
Kalman filter presented here, Annoni et al.’s method is
likely better for resolving around specific terrain features,
but involves significantly more computational burden.
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