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Abstract—We describe the development of the ESIF-HPC-2 
benchmark suite, a collection of kernel and application 
benchmark codes for measuring computational and I/O 
performance from single nodes to full HPC systems that was used 
for acceptance testing in our recent HPC procurement. The 
configurations of the benchmarks used for our system is 
presented. We also describe a set of “dimensions” that can be used 
to classify benchmarks and assess coverage of a suite 
systematically. The collection is offered cost-free as a GitHub 
repository for general usage and further development.  

Keywords—benchmark, HPC, procurement,  

I. INTRODUCTION 
Benchmarking as an activity has the fundamental goal of 

establishing a performance measurement for the object of the 
activity in a standard and reproducible way, often for the purpose 
of ranking this object against others of similar kind. The “object” 
could be a process, or an artifact that executes a process, within 
a context of external factors. So, a business process with the 
associated business policies and strategies can be benchmarked, 
as in the Six Sigma approach to process optimization [1]. Within 
computing, the object is normally a collection of hardware able 
to carry out instructions comprising the benchmark. 
“Performance” can entail throughput, efficiency, completion 
rate, or any metric the optimization of which brings benefit to a 
stakeholder. Finally, the measurement of such performance must 
be quantitative and must establish a field on which different 
objects may be compared evenly, understanding that any such 
comparison has constraints (“apples-to-apples”). The benchmark 
must encapsulate a precise statement of such constraints to make 
comparisons clear and fair. 

The rapid progress in processor performance, once delivered 
mainly through clock frequency updates, has slowed. The end of 
Dennard scaling has led to a diverse set of architectural 
improvements and much greater use of concurrency to deliver 
performance improvements. This new diversity makes 
performance measurement and benchmarking critical to 
understand how and whether these new processors will deliver 
productivity to users. Within the domain of scientific computing, 
the floating-point operation reigns supreme, and the standard by 
which large-scale HPC systems have been benchmarked has 
been the solution of dense systems of linear equations as 
embodied by the high-performance Linpack package [2]. 
Recently, other performance metrics have been targeted as well, 
leading to ranked lists such as the Graph500 for graph-based 

 
1 Usually expressed as “When a measure becomes a metric, it ceases to 
be a good measure.” [5] 

operations [3] and the Green500 for a combined maximization of 
computation and minimization of energy consumption [4]. 

A. Value of a Standard Site-Tailored Set 
However, the value and generalizability of Linpack results 

alone has been questioned. Unsurprisingly, once Linpack 
became a community standard, it fell victim to Goodhart’s law1, 
and the relationship between increases in Linpack performance 
and increases in performance of general floating-point 
applications began to diverge. Another concern arises from the 
complexity of scientific software. Ultimately, the scientist cares 
about the application, not its underlying algorithms, and taken at 
that relatively high level of abstraction, no single algorithmic 
benchmark can reasonably be expected to correlate highly with 
every application of interest. In other words, every application 
has a unique pattern of performance bottlenecks, such that 
creating a useful benchmark depends not on measuring one 
aspect of a system, but enough aspects to capture the complexity 
of both the system and the set of applications it executes. 

Furthermore, the set of applications in which a community 
is interested varies by site. At the National Renewable Energy 
Laboratory (NREL), our HPC systems host a diverse set of 
applications ranging over quantum chemistry and materials 
science, molecular dynamics, fluid dynamics, multiphysics, and 
complex energy systems optimizations. While diverse, these 
applications are still grounded in floating-point computation. 
However, they do not primarily solve dense linear systems as a 
bottleneck. Thus, there is perceived value in a collection of 
benchmark codes and run configurations ranging from kernels 
to full applications that reflect the specific needs of the energy 
research community at NREL. 

B. ESIF-HPC-2 
The following describes the process undertaken to create an 

initial benchmark suite for NREL’s most recent large-scale HPC 
procurement, dubbed ESIF-HPC-2. This new system, named 
Eagle and released to general production early in 2019, is a 
follow-on to the Peregrine system that has served as NREL’s 
and DOE/EERE’s primary HPC resource [6]. The system was 
specified as predominantly x86_64-based, with node-local 
persistent storage, high-reliability shared filesystem storage, and 
large shared parallel filesystem storage. Subsets of nodes were 
also specified for visualization, data-intensive computing, and 
accelerated computing as limited testbeds for emerging 
workloads. The set of benchmarks chosen and the rationale for 
them is discussed, and a strategy for a public release of the 
current snapshot and future plans are considered. 



2 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

II. METHODS 
A. Purposes 

Benchmarking activity can serve a number of purposes 
within a production environment, including 

1. acting as a quantitative performance discriminator for 
choosing an optimal system; 

2. enabling responsive vendor system design; 
3. validating the delivered system; 
4. ensuring burst reliability of system at speed (e.g., stress 

testing); 
5. continuous verification of the system in production; 
6. providing information for detailed understanding of 

requirements to achieve performance; and, 
7. setting expectations for future runs that cannot be done 

on a current system. 

For the ESIF-HPC-2 procurement, points 1-3 were of primary 
concern. Of course, as the system moves online, points 4 and 5 
will become crucial. Points 6 and 7 are indirect but important 
outcomes of benchmarking activity. In production, the hardware 
and software of an HPC system is generally viewed in an 
abstract and coarse-grained manner, in which one may not be 
able to exploit the full capability of hardware performance. The 
efforts of those who are charged with actively pursuing peak 
performance in a competitive environment can demonstrate 
what is needed to obtain such performance. Furthermore, any 
HPC procurement will involve acquiring a system that reflects 
the substantial pace of technological evolution of the 
marketplace. Without constant exposure to this evolution, one 
can become accustomed to one’s present environment, such that 
it can be difficult to design projects and goals appropriate to the 
current state of technology. Benchmark results can serve to 
update that thinking, oftentimes dramatically given the period of 
system refreshes (in our experience, ~3-5 years) and the pace of 
hardware and software performance improvement. 

B. Dimensions 
As a component of initial discussions and in an attempt to 

provide some systematic structure for this activity, an initial set 
of dimensions was proposed. The idea behind this discussion 
was to think of a particular benchmark as residing in a space of 
features (Table 1). Thinking in this way would have the primary 
goals of preventing duplication and an over-abundance of 
benchmark choices in one region of this space, and making 

manifest neglected considerations. A more precise formulation 
might be in terms of subspaces and dimensions within them, 
with some breakdown as correlations exist between subspaces. 
For example, “scalable” parallel scope may often go hand-in-
hand “network” as a hardware subsystem and “memory-to-
memory” data transfer (i.e., MPI communication as a key 
component of the benchmark), implying some non-
orthogonality among these dimensions. This exercise is similar 
in spirit to the analysis expressed as “Ogres” [8] for big data 
benchmarking, with “facets” and “views” there replaced by 
“dimensions” and “subspaces” here. 

It should be recognized that for some dimensions, there is a 
degree of judgment involved in assigning values. For example, 
“algorithm” in particular can include a well defined and well 
recognized computational process (e.g., LU factorization), or a less 
defined but well recognized category (e.g., dense linear algebra). 
One could conceivably extend this to complex collections that 
involves many different actual computational actions, but signify 
such a common process that they can be reliably grouped together 
as a unit (e.g., computational fluid dynamics in terms of grid 
computation and sparse linear algebra, although the distinction 
between structured and unstructured grids can make such a 
grouping fuzzy if a benchmark uses one or the other, like Nalu). 
Primarily, these categories are simply examples of an increasing 
degree of abstraction as the benchmark progresses along the 
“software scope,” and there is a degree of non-orthogonality to be 
expected between these two dimensions. Similarly, one can debate 
the degree of task coupling, and precisely what type of data transfer 
is being exercised. To a degree, the answers are a matter of intent 
and circumstance; nonetheless, we believe there is a value in 
having a space in which to place benchmarks, whether as points or 
figures of greater extent. 

For the specific purposes of the ESIF-HPC-2 procurement, 
development focused on sampling along what might be considered 
traditional benchmarking dimensions of hardware subsystem, 
parallel scope, and data transfer, with some mind paid to software 
scope. These dimensions are natural first foci, in that they do not 
require detailed knowledge of implemented algorithms, can rely 
on a number of standard packages (e.g., STREAM[9], Intel MPI 
Benchmarks), and provide a reasonable high-level snapshot of 
system performance for decisions on hardware acquisition. 
Sampling of other dimensions certainly occurred, but was 
incidental. Consideration of the other dimensions will be of interest 
in guiding future benchmark development, particularly for the 
other purposes to which benchmarking may be put. 

TABLE I. A PROVISIONAL SET OF DIMENSIONS OR FEATURES, THAT DEFINE A BENCHMARKING SPACE. 

Subspace Type Dimensions 
Hardware subsystem Categorical processor, memory, storage, network 
Parallel scope Ordinal serial, MT/MP1 single node, multi-node, many-node/scalable 
Software scope Ordinal kernel, mini-application, full application, workflow 
Degree of task coupling Ordinal loose, medium, tight 
Data transfer Categorical Cache-core, memory-core, LFS-memory, NFS-memory, PFS-memory, external-memory, memory-

memory2 
Performance type Categorical Maximum application, sustained 
Algorithms Categorical See [7], [8] 
Interactive productivity Categorical Job scheduler delay, GUI latency, framework support 
1 Abbrevations: MT/MP, multi-threaded or multi-process; LFS, local filesystem; NFS, networked serial filesystem; PFS, parallel filesystem; GUI, graphical user 
interface 
2 Here LFS, NFS, PFS, and external refer to filesystem types and localities to, e.g., DRAM. Memory-memory refers to transfer between separate address spaces 
through, e.g., MPI. 
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C. Identification 
With a set of purposes in mind and an understanding that 

benchmarks should primarily focus on serial and parallel 
performance of key hardware, a set of benchmarks was 
identified. These mainly fell into two categories: community-
standard kernel benchmarks, and application benchmarks [10] 
reflecting the bulk of our current system’s node-hour usage. The 
former included STREAM, high-performance Linpack, Intel 
MPI Benchmarks, IOR, mdtest, and Bonnie++. For 
consideration of graphical processing unit (GPU) performance, 
we also included the SHOC benchmark [11]. The latter category 
of benchmarks reflected our internal workload analysis, which 
shows that most of NREL’s computing has, and is projected to 
continue to, focused on (a) materials and chemical electronic 
structure, (b) large-scale computational fluid dynamics and 
fluid-structure interaction, and (c) classical atomistic molecular 
dynamics. The set of benchmarks included as part of the ESIF-
HPC-2 suite is listed in Table 2. 

Bonnie++: Although the question was raised in external 
review what Bonnie++ could add to results from properly 
configured IOR, we elected to include this I/O kernel in the suite 
for two reasons. First, it has in the past been a standard test that 
can easily test local filesystems on nodes and produce results 
directly comparable with past results. Second, we have observed 
in the past that Bonnie++ runs in an overall way that reflects 
realistic I/O workflows of computational scientists who are less 
HPC-aware, and exercises resources in a corresponding way that 
other benchmarks like IOR may not. For example, testing of 
network-attached filesystems will probably reflect CPU and 
network rather than disk limits per se [12], and user-level calls 
may well engage interactions with default buffer sizes [13]; 
nevertheless, this will reflect what our average user will see. By 
default, Bonnie++ will detect DRAM size of the machine on 
which it runs, and should use a dataset large enough to prevent 
client-side caching. Runs were single-node, and were requested 
to use a single core, half the available cores on the node, and all 
cores on the node with synchronization in the case of multiple 
threads (-y), and to skip per-character tests (-f). 

IOR: This benchmark (currently along with mdtest hosted at 
https://github.com/hpc/ior) was included as our primary parallel 

filesystem test. The I/O parameters in which we were most 
interested were read vs. write; sequential vs. random access, 
which was controlled through transfer size settings of 4 MB and 
4 kB, respectively, as well as explicitly requesting random 
offsets for the latter (-z); and, performance range over a single 
process, half the available cores, and all available cores on the 
test system. Tests were configured only for the POSIX API, file-
per-process access, a single segment, and a block size equal to 
the total file size, which was mandated simply to be a multiple 
of available DRAM to prevent caching [14]. This configuration 
leaves out certain differentiated cases (e.g., MPI-IO on a shared 
file with certain access patterns), but given that a well 
established parallel filesystem technology was anticipated and 
that POSIX has shown similar performance to MPI-IO in certain 
circumstances [15], it was felt simplicity outweighed the 
additional overhead of completeness for our purposes. The 
chosen configuration was also not chosen to mirror a particular 
application I/O pattern, as the target system must serve a diverse 
set of current and future applications with indeterminate I/O 
patterns. Overall, our IOR benchmark was designed for easy 
interpretation and to stress the filesystem in ways compatible 
with our observed workload (which is predominantly high-
throughput, small node-count jobs). 

mdtest: To test metadata performance of the high-
performance parallel filesystem, creating, statting, and removing 
files in three basic run configurations were requested. 

1. 220 (1,048,576) files in a single directory; 
2. 220 files in 220 directories, with each directory held by 

only one MPI rank; and, 
3. A single file split among N ranks 
Four run configurations were requested for each test, 
1. a single rank, 
2. m1 ranks on a single node yielding optimal 

performance, 
3. mn ranks over n nodes yielding optimal global 

performance for the system; and, 
4. N×C ranks over all N nodes of a given type, with C 

hardware cores/node (i.e., a fully packed system). 

 
TABLE II. BENCHMARKS IN THE ESIF-HPC-2 SUITE AND PARAMETERS EXPLORED. 

Benchmark Parameter Summary 
STREAM Triad Threads = 1, numcores, maximum performance; Default memory and 60% of total on-node 
HPL 2N node runs up to ½ and all nodes; all runtime parameters tunable 
SHOC Triad 1 or 2 GPUs; BusSpeed and Triad tests 
Bonnie++ 1, ½, all cores on node; 2×DRAM; local and NFS 
IOR 1, maximum, all nodes; 1.5×DRAM; NFS; POSIX + MPI-IO; 1 file, 1 file/process 
mdtest 1, all, and maximum performing # nodes; 1 or 220 files, 1 file/directory or 1 directory; create/stat/remove 
Intel MPI Benchmarks 2{1,6–10} nodes; 0, 64k, 512k, 4M messages; PingPong, SendRecv, Exchange, 0B Barrier, Uniband, Biband, Allreduce, Allgather, 

Alltoall 
HPGMG-FV 2{6-10}, N/4, N/2, N ranks; 27-unit box, 8 boxes/rank 
Nalu 2{1,7-10} and N nodes; 256 mesh 
VASP 2{4-8}, 320 ranks; GW small unit-cell band structure, and Γ-only catalysis 
LAMMPS 2{0,2,4,6,7} nodes, 35% salt solution, 7e5 – 5e7 atoms 
Gaussian 1 & 2 nodes; Mn-aquo DFT single point, 175 e-/520 BF 
HiBench 5 nodes; Hadoop & Spark, Wordcount, Sort, Bayes, K-means, DFS I/O Enhanced; “Gigantic” problem size 

https://github.com/hpc/ior
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HPL and HPGMG-FV: Two additional benchmarks listed in 
Table 2 deserve further comment. It has been documented 
thoroughly that HPL, the primary determinant of Top 500 
rankings, has become increasingly disconnected from the 
practical performance achieved on production workloads in HPC 
[16], [17]. HPL has been engineered to highlight the raw floating-
point performance of highly parallel systems, but the kernel’s 
computational intensity (Flop/byte) is high enough [16] that it 
fails to exercise other hardware subsystems that can bottleneck 
parallel codes on application problems, e.g., memory and 
interconnect latency and bandwidth. For that reason, even though 
HPL was included to provide a “standard candle,” we included 
the finite-volume formulation of High Performance Geometric 
Multigrid [17]. This benchmark provides a cleanly packaged 
body of code that exercises the hardware subsystems in a more 
balanced way [18], and directly reflective of computational 
patterns found in modern large-scale parallel algorithms. The 
finite volume implementation exercises the memory subsystem’s 
bandwidth more so than the CPU floating-point units or caches. 

Application Benchmarks: Gaussian, VASP, LAMMPS, and 
Nalu: At the time of the ESIF-HPC-2 procurement, the bulk of 
the application load on our first cluster, Peregrine [6], comprised 
physics codes including molecular and materials electronic 
structure, classical molecular dynamics, and computational fluid 
dynamics. The choices of Gaussian[19] and VASP[20]–[23] 
were based primarily on existing workflows on Peregrine. 
LAMMPS[24] had the benefits of a GPLv2 license, and a focus 
on performance at scale. Nalu is a CFD code likewise targeting 
massively parallel systems, and is representative of applications 
supporting important engineering work at NREL. The differing 
formulations of these benchmarks reflected some finer points of 
our intent. For Gaussian, the intent was to ensure that the 
program’s shared and distributed memory runtime models were 
simply supported, and to assess performance relationships. For 
VASP on the other hand, the intent was to optimize performance 
by highlighting system design points against a critical workflow, 
and to assess problem-specific performance scaling against 
Peregrine. LAMMPS and Nalu had similar aims, but a focus on 
nodes rather than ranks forced a minimum degree of internode 
communication, and so highlighted interconnect performance as 
opposed to memory capacity (which the memory-constrained 
problem in bench1 of the VASP benchmark could emphasize).  

HiBench: The ESIF-HPC-2 procurement activity recognized 
that the world, and the scientific and engineering activity within 
it, is becoming more data-intensive. In recognition, a part of the 
requested resources included nodes that could be deployed for 
“big data” types of work. To this end, the open-source HiBench 
[25] was included to ascertain the differential value of new 
hardware against our current environment. We were specifically 
interested in Hadoop and Spark performance on some basic 
patterns over large data sets, e.g., binning (in HiBench: 
Wordcount), sorting (Sort), clustering (K-Means), and 
classification (Bayes), as well as a basic measurement of 
Hadoop I/O (enhanced DFSIO). Given the current and foreseen 
near-future workloads at NREL, we requested performance runs 
on a cluster of 5 data nodes and 1 name node, using HiBench’s 
pre-defined “gigantic” set of data. 

D. Development workflow 
The Git revision control system was employed to enable 

simple content development and issue tracking. Content was 
based in an institutional GitHub, permitting private development 
and simple management of ancillary concerns such as access 
control. A Git Organization was created as a containing entity for 
the benchmarks, each of which was assigned its own repository. 
Each repository was made write-accessible to the Organization 
Owner roles, as well as the assigned developer. Development 
decisions were left largely to the developers themselves, beyond 
an understanding that the default markdown README.md file 
(present by default in every Git repo) would serve as the primary 
vehicle for instructions specific to each benchmark. Questions 
and issues were tracked through the standard GitHub mechanism, 
enabling provenance, locality (i.e., a single place to find items), 
and persistence for future reference. Development via Git also 
permits facile ongoing development and public release. 

E. Testing 
The Git system provides a convenient means to establish 

parallel co-existing repository versions through its branching 
mechanism. By branching each repo to a “3PT” version for 
third-party testing, instructions could be customized for this 
purpose and preserving the same mechanism that final 
benchmark users would employ (i.e., start at README.md) 
without requiring error-prone change and reversion. 

Third-party testing was intended to ensure that a user 
reasonably familiar with and skilled in the use of the computing 
environment could (a) acquire the benchmark materials, (b) 
build the required binary components by following the 
instructions in README.md, (c) run the benchmark according 
to the instructions provided, and (d) interpret reporting 
instructions adequately to complete a subset of desired reporting 
requirements for each benchmark. To these ends, a set of testers 
mostly disjoint with the development team was chosen. In some 
cases, the test team was simply a permutation of the 
development team, but in any case such that no person who 
developed a benchmark was involved in testing. Issues were 
reported through the Git tracking system, and results were then 
checked into the 3PT repo branch by the third-party testers. 

Additional input was provided by an external review panel 
comprised of established experts in leadership-class high-
performance computing. This valuable process allows for 
integration of leading expertise in the field, a diversity of 
experience with procurement in multiple institutional settings, 
and up-to-the-minute knowledge of technology trends and status. 
In this particular scenario, external review served as both a sanity 
check and a credibility multiplier, adding to our confidence in the 
scope and coverage of the benchmarking process. 

III. RESULTS 

A. Benchmark Collection 
Categories. In terms of the dimensions outlined in Table 1 

above and the assignments in Table 3, the initially released 
benchmark suite described here occupies a limited subspace of 
hardware subsystem, parallel scope, and software scope. This 
might be considered a fairly traditional choice for purposes of 
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(a) system procurement (b) for general-purpose HPC (c) within 
a limited technological scope (e.g., where the available high-
speed networking protocols have similar latency and bandwidth 
figures). Other dimensions, like task coupling or data transfer, 
might have greater predictive value for systems with more 
focused application domains or a broader palette of technology 
choices, or for other purposes like stress testing. 

B. Definitions of Dimensions 
Hardware subsystem. Each subsystem (processor, memory, 

storage, and network) contributes to a benchmark if it is at least 
likely to contribute substantively to the overall rate limitation. 
So, even though STREAM Triad involves floating-point 
operations, it is limited primarily by memory bandwidth. 
Although HPL is at least partially limited by interconnect [26], 
it predominantly reflects processing power (vide supra). 
“Memory” limitation can also include data movement between 
memory pools on a single server, e.g., from host to accelerator. 
Application benchmarks are not so clearly limited by a single 
hardware factor, and the particular formulation of these 
benchmarks determines which factors were included. So, 
whereas the VASP tests as formulated exercise all the 
subsystems besides storage, Gaussian is only formulated to 
validate functionality of single- and multi-node capabilities, and 
Nalu runs were constructed to exercise all four subsystems. 

Parallel scope. This category reflects the main focus of each 
benchmark as we have constructed it, not all of its capabilities. 
For example, HPL can of course be run at smaller scales, but we 
(and arguably, the HPC community as a whole) primarily use it 
to test computation at scale. Similarly, IOR and mdtest may 
inform single-node performance, but our concern was more 
focused on I/O performance as jobs scale up. Our four categories 
were defined as 

a. Serial: no explicit shared memory or distributed memory 
parallelism. Any computational parallelism (e.g., 
pipelining, SIMD) would be discovered and implemented 
by the compiler. 

b. Multi-threaded or multi-process parallelism on a single 
node. We have defined a “node” as a single hardware 
entity not requiring communication through an external  
switch (e.g., Infiniband) to enable inter-process 
communication. This class reflects much of the observed 
demand at NREL, nicely balancing parallel acceleration 
through a limited scaling regime and overall throughput 
of completely independent jobs for, e.g., high-throughput 
parameter exploration. 

c. Multi-node parallelism. A second class of demand we 
have observed involves codes and problems which do not 
scale especially well, but for which there is enough 
acceleration over < 10 nodes to, e.g., fit a job inside a 
walltime limit, or to acquire intermediate results which 
will guide further exploration. 

d. Scalable. This is the traditional HPC category of work, 
involving carefully parallelized code and a single 
substantial computation with memory or time demands 
prohibiting solution on smaller numbers of nodes. At 
NREL, these have typically involved classical molecular 
dynamics or fluid dynamics-heavy multiphysics runs. 

Software scope. Community benchmarks have historically 
focused on either single hardware subsystems (processing, 
memory, I/O), or single algorithms (matrix multiplication, FFT, 
etc.). We labeled this benchmark type a “kernel.” Some more 
recent collections, e.g., Mantevo [27], have expanded into 
collections of kernels with common co-occurrence, which we 
have labeled “mini-applications.” Although these two categories 
can capture most of the information needed for a performance 
specialist to draw conclusions regarding hardware and toolset 
suitability, they still represent an indirect measure of 
performance versus representative problems that are commonly 
seen in a particular facility. Thus, we have extended our 
collection to include “full applications.” Obviously, these cannot 
capture everything that a particular application could do, nor 
would comparisons arising from such a comprehensive analysis 
provide much direct value (i.e., small vs. big data). However, as 
formulated they represent common job types important to 
NREL’s research community. For example, the VASP 
benchmark includes two job types: a small unit-cell, high-
accuracy many-body calculation reflecting work on 
semiconductor band structure, and a large unit-cell, DFT GGA 
slab calculation more common for catalysis studies. Finally, a 
straightforward extension toward evolving demands couples 
many applications together, where bottlenecks may involve file-
based communication, software stack complexity, or simply 
usability. This “workflow” category is less a hardware 
benchmark, and more focused on the ability of an HPC 
ecosystem to scale up to heterogeneous computing models. 

Task coupling. HPC traditionally focuses on what we 
consider here as “tight” task coupling, with a large message rate 
(hence latency-sensitive) and often a large message volume as 
well (hence bandwidth-sensitive). NREL’s workload is 
composed of a mixture of workflows, many of which fall outside 
of this paradigm. We also considered this dimension as 
primarily concerned with tasks as analogous to MPI ranks or 
processes (e.g., with a separate address space, unique process 
and thread group ID) as opposed to threads (i.e., sharing an 
address space, sharing process and/or thread group IDs). So 
from this viewpoint, STREAM has a single task; HPL is 
primarily bound by FPU and cache performance and thus might 
represent medium coupling; and, IMB, HPGMG, Nalu, VASP, 
and LAMMPS would be considered tightly coupled. This 
measure was not defined to be particularly quantitative, but 
rather to understand how a benchmark collection might be 
biased toward one or the other end of coupling strength. 

Data transfer. Except for programs that would reside 
entirely in registers, benchmarks will involve some degree of 
data transfer that is characteristic and may be rate-limiting. HPL 
runs of substantial size may be configured to hold all data in 
cache, and so we would characterize the data transfer character 
of this benchmark as cache-core (although some data obviously 
must be exchanged between nodes). I/O benchmarks are 
primarily concerned with storage, and so would be most 
characterized as involving local (LFS), network-attached 
Ethernet (NFS), or parallel high-performance (PFS)-memory 
transfer. This dimension is intended to indicate where one 
expects the primary bottleneck to reside. 

Performance type. Maximum application performance in the 
context of a benchmark reflects an absolute ceiling that software 
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or algorithms of that type should be able to achieve on the 
system with the, e.g., compiler flags used. This is distinct from 
theoretical peak performance, i.e., assuming that computational 
units are the sole rate-limiting step and are saturated with work, 
as well as sustained performance for a loaded system. The last 
(which we denote simply as “sustained” for brevity) is intended 
to take into account the effects of multiple loads accessing 
shared resources in an average case scenario—neither the ideal 
case of a maximum application performance benchmark, nor 
pathological cases like every running job requiring the resource 
concurrently. A sustained performance benchmark can be useful 
in setting expectations of a system in production. 

Algorithms. These reflect typical atomic computational tasks 
within an application run—neither synthetic microkernels nor 
full applications. They “constitute classes where membership in 
a class is defined by similarity in computation and data 
movement.” [7] So, not so much “LU decomposition” across 
any matrix type, but dense vs. sparse matrix operations. In our 
case, the HPL and HPGMG benchmarks might be considered 
examples of dense linear algebra and unstructured grid (given 
cycles through multiple layers of regular grids, one might 
anticipate a degree of irregular data access somewhere between 
structured and unstructured grids overall), respectively. 

This classification is not universally assignable to 
benchmarks—microkernel and application benchmarks would 
fall outside of it. Thinking of it as a dimension, then, for 
classification purposes those benchmarks would have a null 
projection onto it (i.e., reside in a subspace orthogonal to 
algorithmic classification). 

Interactive productivity. The ESIF-HPC computing facility 
supports a variety of work styles beyond bulk batch computing. 
One critical need that it serves is creation and modification of 
meshes, which is often most easily done interactively through a 
GUI. More generally, intermediate visualization (as opposed to 
final generation of publication-quality graphics) can dramatically 
accelerate discovery by tapping into the highly evolved human 
visual system’s abilities. Our strategy has been to provide heavily 
provisioned nodes with hardware rendering capability, which has 
served our user community well. However, it would be beneficial 
to quantify this type of workload. While we define the dimension 
here, the benchmark suite does not currently contain such a 
component. We do anticipate creating one involving remote 
access large-mesh creation and refinement workflows. Such a 
test would exercise not only the central compute capabilities, but 
also graphics rendering and the peripheral networking 
connecting a data center with the outside world. Indeed, having a 
formalized benchmark like this would have caught an issue with 
graphics hardware branding that was only discovered after the 
Eagle system went into production. 

C. Private vs. public release 
 In the course of developing the benchmark suite, we kept 

repository access relatively restricted to a group of developers 
with mutual trust. Our concerns were to make contributors 
comfortable enough to take more initiative than they might 
otherwise in front of a public audience. Nevertheless, the 
potential impact of this work is severely limited without a public 
release, and in the worst case will lead to duplication of effort 
should someone that would have used the repository is forced to 

redevelop the same capability. We have thus released the suite 
at https://github.com/NREL/ESIFHPC2. Licensing information 
is included in each benchmark’s top-level README.md file. 
We hope that the materials will serve as a convenient starting 
point for those tasked with similar evaluations, the source for 
subsequent improvements, a base for improvements submitted 
through pull requests, and our own primary store of knowledge 
for future benchmarking efforts.  

IV. DISCUSSION 

A. Value of a formalized process 
Benchmarking is of growing importance as hardware and 

software grow in complexity and diversity. While there are 
already industry standard collections (e.g., SPEC), we sought to 
create a cost-free collection that can be easily obtained, adapted, 
and built to benchmark multiple elements of an HPC computer 
system (hardware compute performance, memory and network 
latency/bandwidth, I/O subsystems, and key application 
performance). In terms of the ESIF-HPC-2 benchmarking 
activity, the creation and execution of a formal benchmarking 
effort certainly served to increase our own knowledge and 
competence in assessing an HPC system, as well as to socialize 
the importance of performance measurement beyond the core 
group of contributors. Because these benchmarks were 
ultimately used by vendors without easy access to the 
contributors, internal third-party assessment was crucial in 
filling in instructional holes created by contributors’ familiarity 
with the benchmark. Finally, assessment by external HPC 
experts was invaluable in improving the benchmarks and filling 
in knowledge gaps. In the end, we were able to quantify the 
performance of Eagle precisely in terms of individual 
subsystems, at scale, across multiple important application 
categories, under sustained load, and for emergent workloads. 

B. Future targets 
 Computing systems are undergoing rapid evolution as the 

traditional increase in transistor counts is less able to translate 
directly into compute performance, and as new paradigms like 
machine learning begin to take mindshare from model-based 
technical computing. The reliance on accelerators for leading-
edge performance going forward and the rise of data science are 
undoubtedly harbingers for many technical advances in the near 
future, and our benchmark suite will need to adapt to these 
accordingly to stay relevant. By formulating and thinking along 
“dimensions”, we are able to identify gaps systematically and 
grow the suite to ensure balance and add new information. 
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TABLE III. ESIF-HPC-2 BENCHMARK FEATURES. EACH COLUMN IS A FEATURE, AND EACH ROW CAN BE VIEWED AS A VECTOR IN ONE-HOT ENCODING, WITH BLACK DENOTING THAT THE FEATURE IS 
PRESENT OR RELEVANT TO THAT BENCHMARK (A VALUE OF 1) AND WHITE THAT IT IS NOT (A VALUE OF 0). THE SUMS ALONG THE BOTTOM REFLECT HOW MUCH THAT FEATURE IS REPRESENTED IN THE 
SUITE, COLOR-CODED FROM BLUE (HIGHLY REPRESENTED) TO RED (NOT REPRESENTED). 
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