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Real-Time Modal Analysis of Electric Power Grids– 
The Need for Dynamic State Estimation 

Marcos Netto, Member, IEEE, Venkat Krishnan, Senior Member, IEEE, Lamine Mili, Life Fellow, IEEE, 
Pranav Sharma, Student Member, IEEE, Venkataramana Ajjarapu, Fellow, IEEE 

Abstract—We articulate the reason why dynamic state estima-
tion is needed to push the boundaries of the modal analysis of
electric power grids in real-time operation. Then, we demonstrate
how to unravel linear and nonlinear modes by using the ex-
tended dynamic mode decomposition along with estimates of the
synchronous generators’ rotor angles and rotor speed deviations
from nominal speed. The estimated modes are associated with 
electromechanical oscillations that take place continuously in 
electric power grids because of imbalances between power gener-
ation and demand. The numerical simulations are performed on
a synthetic, albeit realistic, 2,000-bus network that was designed
to resemble the electric power grid of Texas. 

Index Terms—Dynamic state estimation, extended dynamic
mode decomposition, Koopman operator, modal analysis. 

I. INTRODUCTION 
Modal analysis of electric power grids based on system models 

is a suitable approach for planning studies [1]. Conversely, data-
driven methods are preferred for real-time operation [2], [3]. 
Data-driven modal analysis methods are classifed b ased o n the 
type of data—ambient [4], probing [5] or ringdown [6]—they 
are suitable for [7]. The basic assumption for ambient data is that 
the system is in a quasi-steady-state condition, slightly perturbed 
by random variations in power demand. Conversely, ringdown 
data arise following major disturbances, in which case the system 
states experience large excursions. Probing data stems from an 
intrusive approach—that is, signals are injected into the grid to aid 
in revealing otherwise hidden information. The current practice in 
real-time operation is to rely on either ambient or probing signals 
to monitor the system modes. If an excited mode is underdamped, 
then a corrective measure is taken by the system operator. Note 
that this philosophy of design “is that of preventive control, i.e., 
changing system operating conditions before a fault happens to 
ensure the system can withstand the fault” [8]. Preventive control 
is important in real-time operation; however, our interest is in 
designing modal control schemes that will automatically steer 
the system after an unforeseen fault happens. Timing is mission 
critical under these circumstances, and hence automatic control 
is necessary. For this reason, we focus exclusively on ringdown 
signals. 

Our investigation is motivated by the fact that synchrophasor 
measurements of bus voltage angle (or frequency) have been 
used as a proxy for synchronous generators’ rotor angle (or 
speed) [9]; this is done because measurements of synchronous 
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generators’ rotor angle and speed are not available [10]. However, 
using synchrophasor measurements as a proxy for dynamic state 
variables might lead to poor estimation of the system modes. One 
reason for this lies in the discontinuities caused by, e.g., switching 
or short-circuit, which occur on the quantities measured by phasor 
measurement units (PMUs). These quantities are represented 
by algebraic variables within the set of differential-algebraic 
equations that model the power grid, wherein the continuous 
differential equations dictate the actual dynamic states of the 
system. Discontinuities alter the spectrum of the signal. This is 
well-known in signal processing [11] and carefully addressed by 
the dynamical systems community. See, for instance, [12], where 
it is assumed that the space of observable functions is F ⊆ C0 , 
and C0 denotes all continuous functions. Along the same lines, 
the synchronous generators’ rotor angle and speed are continuous 
quantities, i.e., they are not allowed by the laws of physics to vary 
instantly. 

This paper addresses this problem by using synchrophasor 
measurements, along with models of the synchronous generators, 
to estimate the dynamic state variables. Therefore, a real-time 
modal analysis that can use the state estimates of rotor angle (or 
speed) is ideal, rather than analysis that uses direct measurements 
of bus voltage angle (or frequency). To the authors’ knowledge, 
this is the frst attempt to use dynamic state estimation to aid 
in real-time modal analysis of electric power grids. We proceed 
further on the use case of real-time modal analysis aided by 
dynamic state estimation (DSE). Specifcally, we study the effec-
tiveness of extended dynamic mode decomposition (EDMD) [13], 
[14] in uncovering linear and nonlinear modes from estimates 
of the synchronous generators’ rotor angle and speed, which are 
obtained from DSE. We aim to assess the benefts of relying on 
EDMD to carry out modal analysis of electric power grids in real 
time. Last, note that it is common for the terms modal analysis 
and small-signal stability analysis to be used interchangeably in 
power system literature. This is not the case in this paper. The 
modal analysis approach we adopt is based on the Koopman 
operator-theoretic framework [15]. The stability inferred from the 
spectrum of the Koopman operator is valid for the entire domain 
of attraction [16], and it provides a global, rather than a local, 
measure of stability. 

The paper proceeds as follows. Section II introduces the 
concept of linear and nonlinear modes. The DSE-aided modal 
analysis of a realistic power grid is performed and analyzed in 
Section III. Conclusions are given in Section IV. 

II. PRELIMINARIES 
Consider the nonlinear dynamical system ẋ(t) = f(x(t)), 

where x(t) ∈ Rn is the state vector, and f : Rn → Rn is a smooth 
vector feld satisfying f(0) = 0. We can formally construct the 
Taylor expansion of f about 0: 

x ˙ = Ax + X2 + ... + Xk + O(|x|k+1), (1) 

where Xp ∈ H p, the real vector space of vector felds whose 
components are homogeneous polynomials of degree p. If we 
neglect second- and higher order nonlinear terms in (1), then: 
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x ˙ = Ax. (2) 

Now, assume that the matrix A has n distinct eigenvalues 
(λ1, ..., λn). Let ri be the i-th right eigenvector of matrix A. 
Let ` i denote the i-th left (row) eigenvector of matrix A. The 
solution of (2) is given by a sum of modal components, or linear 
modes: nX 

λit x = e ci, (3) 
i=1 

where ci are constant vectors defned by the initial state vector 
x(0) = x0, and by the eigenvectors ri and ` i. 

Defnition 1. The i-th linear mode is given by: e λi t (` ix0) ri. 

The defnition of nonlinear modes adopted in electric power 
grids relies on the normal forms for vector felds [17]. If the 
third- and higher order terms in (1) are neglected, then: 

x ˙ = Ax + X2. (4) 

It was shown in [18] that the solution of (4) is given by: ⎡ ⎤ 
n n n nX X XX 

λit (λj +λk )tx = e ci + ri ⎣ e di ⎦ , (5) 
i=1 i=1 j=1 k=1 

where di are vectors obtained from x0, r, ` and a sequence 
of coordinate transformations that are executed in the process of 
putting (4) in its normal form. See [19] and references therein for 
more details. The rightmost sum of the modal components in (5) 
defnes the second-order nonlinear modes. Recently, third-order 
nonlinear modes have also been considered [20]. 

Defnition 2. The damping ratio, ξ, of the i-th linear mode is 
defned as: 

Re(λi) σi ξi := − = − q . (6) |λi| σ2 + ω2 
i i 

Proposition 1. In a stable system, the damping ratio of any 
second-order nonlinear mode is larger than or equal to the 
smallest damping ratio among all linear modes. 

Proof. It is straightforward to verify this result geometrically; see 
Fig. 1. 
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threshold—then so is the damping ratio of the nonlinear modes. 
Hence, it might be enough to rely exclusively on linear modes 
if the objective is to ensure that electromechanical oscillations 
will be suffciently damped. The damping ratio provides a certain 
measure of stability margin and is informative for preventive 
control actions. If a disturbance takes the system far from the 
equilibrium point, however, then it is necessary to forecast the 
trajectory before taking automatic control actions to steer the 
system to a safe operating region. In this case, the linear modes 
only provide an incomplete picture, and thus nonlinear modes are 
required. This is promptly realized by comparing (3) to (5), and it 
has motivated recent investigations; see, e.g., [21], [22]. Example 
1 is used to further demonstrate this fact about the importance of 
nonlinear modes. 

Example 1. Single-machine infnite-bus system. 
V ej0 

Gen. 
jXd Eejδ 

Pe 

Qe ∞ 

Fig. 2. One-line diagram of single-machine infnite bus system. 

The system in Fig. 2 is mathematically represented by: 

δ̇i = ωi, (7) 

Mω̇i = 0.9 − 
EV 

sin(δ − δsep), (8) 
Xd 

where Pe = 100 MVA, Qe = 50 MVA, Sbase = 100 MVA, 
fbase = 60 Hz, V = 1.05 per unit, M = 5/60π seconds, and 
Xd = 1.2 per unit. Note that the stable equilibrium point is shifted 
to the origin and δsep = 0.545 radians. This system has a pair of 
complex-conjugate eigenvalues: λ1,2 = ±j7.4801. 

Now, suppose that x0 = (1.5, 1.5). Fig. 3 shows that the 
forecast of the state trajectory using exclusively linear modes 
is poor, and the inclusion of nonlinear modes enhances the 
forecasting. Therefore, the modal analysis discussed in the rest 
of this paper will include both linear and nonlinear modes. 
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Fig. 3. State trajectory starting at x0 = (1.5, 1.5). In the legend, ‘Nonlinear Fig. 1. Geometric picture of Proposition 1. modes (2)’ indicates that linear and second-order nonlinear modes are used to 
perform the forecasting. Likewise, ‘Nonlinear modes (3)’ indicates that linear, 

Proposition 1 implies that if the damping ratio of all lin- second-, and third-order nonlinear modes are used to perform the forecasting. 
ear modes is adequate—that is, it is larger than a predefned 
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(a) All computed eigenvalues. 
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TABLE I 
DESCRIPTION OF THE GENERATORS. 

Number Type Installed Capacity Model Controls 
87 Wind 15,089 MVA WT4G1 WT4E1 
457 Synchronous 102,405 MVA GENROU Turbine-governor, 

and GENSAL. excitation, and stabilizer. 

III. DATA-DRIVEN MODAL ANALYSIS OF A LARGE ELECTRIC 
POWER GRID 

The results in this section are obtained by numerical simula-
tions of the 2,000-bus network that resembles the footprint of 
the Texas power grid1. This synthetic model has been developed 
under the Generating Realistic Information for Development of 
Distribution And Transmission Algorithms (GRID DATA) pro-
gram2, sponsored by Advanced Research Projects Agency-Energy 
(ARPA-E). This model has been validated to respond like a real 
power grid [23]. Table I summarizes the generator’s models in the 
base case. Note that the WT4G1 model is adopted for all wind 
machines; this implies that they are equipped with full back-to-
back converters and do not contribute to the electromechanical 
oscillations. All the synchronous machines are modeled with 
turbine-governor and excitation systems, as well as power system 
stabilizers, of various degrees of complexity. The fnal system 
model has 6,147 state variables. 

A total of 6,147 linear modes is obtained by small-signal 
analysis of the base case. The eigenvalues associated with these 
linear modes are plotted in the complex plane in Fig. 4a. Of those, 
Table II presents the ones with a damping ratio smaller than 10%. 
Our interest is in the reduced frequency range shown in Fig. 4b, 
which spans most electromechanical phenomena. A subset of the 
eigenvalues associated with second-order nonlinear modes [19] is 
computed based on the eigenvalues in Table II. For example, the 
eigenvalue: 

λ215 + λ260 = (−0.391 + j11.885) + (−0.502 + j12.294) 

is associated with a second-order nonlinear mode of frequency 
3.848 Hz. Recall that all complex eigenvalues appear in complex 
conjugate pairs because the Jacobian matrix is real-valued. Hence, 
there are 116 complex-conjugate eigenvalues associated with the 
58 linear modes in Table II. From the combination of 116 two-
by-two, 6,670 eigenvalues associated with second-order nonlinear 
modes are calculated. They are also shown in Figs. 4a and 4b. 

A. Synthetic Measurements 
In the system described in the previous section, a three-phase 

short-circuit is applied at Bus 6031 and cleared after 10 ms. This 
event is designed to excite the linear mode 215 shown in Table II. 
Note that the type, location, and duration of the fault will affect 
the extent by which modes are excited. Different events will lead 
to modes being excited differently. Nonetheless, the conclusions 
presented here will remain valid. The rationale of the design can 
be explained as follows: 

‚ Mode-in-state participation factors [24] are computed. 
‚ The linear mode 215 has a participation factor of 1.00 in 

the state variables associated with the synchronous generator 
connected to Bus 6272, i.e., mode 215 is strongly affected 
by the generator connected to Bus 6272. 

‚ The short-circuit is applied at Bus 6031 because it is the 
closest, in the sense of electrical distance, to Bus 6272. 

The event is simulated in PSS/E software and time-series data 
are recorded for 10 s after the fault is cleared. An additive random 

1Available at https://electricgrids.engr.tamu.edu/electric-grid-test-cases/. 
2For more details, https://arpa-e.energy.gov/?q=arpa-e-programs/grid-data. 

(b) Eigenvalues in the frequency range of interest. 

Fig. 4. Eigenvalues associated with linear and second-order nonlinear modes. 

Gaussian noise with zero mean and standard deviation σ = 10−2 

is assumed for each of the following: 
‚ Synchronous generator real (P ) and reactive (Q) power; 
‚ Bus voltage magnitude (V ), phase angle (θ), and frequency 

deviation from nominal (f ). 

B. Dynamic State Estimation 
Many DSE algorithms conceived in a centralized [25]–[30], 

decentralized [31]–[33], and hierarchical decentralized [34] fash-
ion have been proposed; see [35] for a review. Here, we adopt 
the robust, decentralized algorithm proposed in [33], which relies 
on P , Q, V , and θ at the generators’ terminal bus to estimate δ 
and ω. The generators are represented by the subtransient model. 
This model is widely accepted and not presented here because of 
space constraints; see, e.g., [31]. Figs. 5a and 5b (top) show δ and 
ω obtained from the PSS/E software, as well as their estimated 
values, δ ̂ and ω̂. 

C. Amplitude Spectrum 
Fig. 5c shows that a frequency of 1.89 Hz is clearly distin-

guishable from the amplitude spectrum of δ̂. The same qualitative 
result is obtained for ω ˆ in Fig. 5d. Conversely, in Figs. 5e– 
5h, the amplitude spectrum of variables measured by PMUs 
is inconclusive. The diffculties associated with estimating the 
modes from the signals of the bus voltage angle and frequency 
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TABLE II 
LIST OF EIGENVALUES ASSOCIATED WITH LINEAR MODES THAT HAVE DAMPING RATIO SMALLER THAN 10%. 

Mode Freq.[Hz] Damp.[%] ω[rad/s] σ[rad/s] Mode Freq.[Hz] Damp. [%] ω[rad/s] σ[rad/s] Mode Freq.[Hz] Damp. [%] ω[rad/s] σ[rad/s] 
215 1.892 3.284 11.885 -0.391 182 0.677 7.829 4.256 -0.334 355 1.513 8.688 9.504 -0.829 
260 1.957 4.077 12.294 -0.502 915 21.204 7.839 133.227 -10.476 501 2.350 8.806 14.766 -1.305 
364 3.153 4.589 19.809 -0.910 636 3.721 7.861 23.378 -1.844 464 2.020 8.811 12.693 -1.123 
338 2.452 4.619 15.404 -0.712 292 1.180 8.007 7.411 -0.595 488 2.209 8.957 13.882 -1.248 
229 1.423 4.633 8.938 -0.415 369 1.860 8.098 11.687 -0.950 467 1.981 9.101 12.447 -1.138 
283 1.867 4.861 11.732 -0.571 924 21.204 8.119 133.226 -10.852 149 0.510 9.233 3.207 -0.297 
254 1.470 5.279 9.237 -0.488 925 21.204 8.119 133.226 -10.853 497 2.217 9.270 13.929 -1.297 
341 2.109 5.502 13.250 -0.730 933 21.362 8.138 134.220 -10.960 602 2.801 9.448 17.598 -1.670 
330 1.870 5.831 11.747 -0.686 931 21.203 8.172 133.221 -10.923 475 1.999 9.468 12.563 -1.195 
336 1.843 6.063 11.583 -0.704 372 1.878 8.203 11.797 -0.971 308 1.021 9.571 6.413 -0.617 
335 1.637 6.734 10.284 -0.694 331 1.326 8.215 8.330 -0.687 443 1.662 9.682 10.443 -1.016 
343 1.704 6.859 10.709 -0.736 450 1.986 8.228 12.479 -1.030 357 1.399 9.687 8.791 -0.856 
901 21.300 6.968 133.830 -9.348 378 1.890 8.297 11.873 -0.989 540 2.304 9.777 14.474 -1.422 
301 1.361 7.094 8.552 -0.608 360 1.706 8.310 10.717 -0.894 448 1.661 9.813 10.439 -1.029 
329 1.496 7.224 9.397 -0.681 896 13.824 8.391 86.856 -7.313 487 2.010 9.829 12.631 -1.248 
231 0.900 7.428 5.657 -0.421 939 21.202 8.532 133.215 -11.408 710 3.441 9.831 21.620 -2.136 
320 1.289 7.700 8.102 -0.626 940 21.202 8.532 133.215 -11.408 349 1.239 9.842 7.782 -0.770 
362 1.862 7.726 11.702 -0.907 365 1.714 8.545 10.769 -0.924 604 2.692 9.859 16.912 -1.676 
494 2.623 7.748 16.483 -1.281 379 1.843 8.560 11.582 -0.995 
916 21.353 7.792 134.166 -10.487 373 1.794 8.586 11.274 -0.972 

have also been observed by other researchers; see, e.g., [36]. 
One important drawback of relying on these signals for modal 
analysis is that they are not continuous in the strict sense. Now, 
discontinuities can (arguably) be removed from the signals. To 
this end, two approaches have been proposed in the literature: 

1) Pass the signal through a flter. One proposal made in [37] 
is to remove the samples that deviate more than 3σ from 
the moving median of a median flter. This method suffers 
from two major drawbacks. First, in power systems, the 
standard deviations of the noise of the metering devices 
and their associated communications channels, including the 
PMUs, are estimated with large uncertainties [38]. Second, 
the median flter does not account for temporal correlation 
[39], which is precisely the case for the PMU metered values. 
Therefore, the simple 3σ rejection rule is not a reliable 
method for identifying spikes in correlated signals or time 
series. Similar proposals are encountered in the literature 
without much success; most are intrusive and inevitably 
modify the original signal as well as its spectrum content. 

2) Remove part of the signal containing discontinuities. It is 
plausible to suppose that one could select a window of data 
for offine studies. The same does not apply for real-time 
analysis, in which case one must frst be able to detect the 
discontinuity in the signal before removing it. There have 
been some attempts to detect events directly from the PMU 
measurements, but it is challenging to distinguish real events 
from measurement noises. If one could successfully detect 
an event from the measurements, the next step would be to 
remove the spike generated by that event from the signal. We 
did that by removing the frst consecutive 25, 50, and 100 
samples from the recorded data and redoing the analysis. The 
removal of the discontinuity led to an overall improvement 
of the amplitude spectrum in Figs. 5e–5h; however, the 
frequency of 1.89 Hz remained indistinguishable. 

D. Unraveling Linear and Nonlinear Modes of Oscillation 

EDMD [14] is used in this work to estimate the linear and 
nonlinear modes; see, e.g., [13], [14], [24] for details on the 
algorithm. 

The results are presented in Table III. Note that three different 
sets of input variables are considered: 

‚ δ ̂ and ω ˆ

TABLE III 
MODES ESTIMATED VIA EXTENDED DYNAMIC MODE DECOMPOSITION. 

δ̂ and ω̂ 
Mode Freq.[Hz] Damp.[%] 

θ and f at Bus 6272 
Mode Freq.[Hz] Damp.[%] 

θ and f at Bus 6265 
Mode Freq.[Hz] Damp.[%] 

1 3.616 1.239 1 1.569 51.737 
2 10.119 76.434 
3 37.149 45.397 
4 60.000 30.833 
5 0.000 100.000 
6 0.000 100.000 

1 1.393 69.450 
2 11.177 72.062 
3 60.000 28.425 
4 37.836 43.057 
5 0.000 100.000 
6 60.000 99.515 

2 1.822 4.615 
3 5.528 5.234 
4 4.963 12.061 
5 0.000 100.000 
6 7.991 13.472 

‚ θ and f at Bus 6272 
‚ θ and f at Bus 6265 

and the algorithm is executed separately for each set. 
We observe that the linear mode 215 with the frequency close 

to 1.8 Hz is captured if δ ̂ and ω ˆ are provided as inputs to the 
algorithm, and it is missed otherwise. This result is to be expected; 
it concurs with what was observed from the amplitude spectra in 
Fig. 5. Further, the second- and third-order nonlinear modes are 
also captured by executing the EDMD with δ ̂and ω̂, as shown by 
the shaded cells in Table III. For instance, we observe that mode 
1 presents approximately twice the frequency of mode 2. 

In summary, the discussion in this section supports to some 
degree the claim that DSE enhances the modal analysis of electric 
power grids. Further work is necessary to improve the accuracy of 
the EDMD in estimating the modal frequency and damping ratio, 
and to validate the estimated nonlinear modes. In this regard, a 
comparison with the model-based normal forms for vector felds 
is of interest. We are currently working along these lines, and 
the results will be reported elsewhere. It is remarkable that the 
EDMD algorithm has the potential to capture linear and nonlinear 
modes by using high-resolution data only, without relying on any 
model. 

IV. CONCLUSIONS 
We demonstrated through simulations, and we elaborated on 

the reasons why DSE is required for real-time modal analysis. 
Our simulations concur with the existing literature—in particular, 
in signal processing—as to why PMU measurements (raw sensor 
data) might not be a viable option for real-time stability assess-
ments of a power system. We also illustrated how a DSE-aided, 
real-time dynamic stability assessment might be realized using 
EDMD. 
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(a) (top) Generator rotor angle. (bottom) Bus voltage angle. (b) (top) Generator rotor speed. (bottom) Bus frequency. 
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(c) Spectrum of the estimated generator rotor angle, δ̂. (d) Spectrum of the estimated generator rotor speed, ω̂. 

(f) Spectrum of frequency at Bus 6272. 

(g) Spectrum of voltage angle at Bus 6265. (h) Spectrum of frequency at Bus 6265. 

Fig. 5. Comparison between amplitude spectrum of state variables and algebraic variables. Bus 6272 is the generator terminal, and Bus 6265 is the high-voltage
side of the step-up transformer connected to the same generator. 
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The capability to identify power system oscillations and the 
associated dynamic stability in real time will be desirable under 
future scenarios with higher shares of power electronics-interfaced 
variable renewable generation. The real-time system identifcation 
and estimation capabilities will also enable time-critical control, 
including exploiting fast-responding power electronics converters 
and realizing the goals of autonomous energy grids. If poorly 
damped modes are detected, then appropriate controls, such as 
modulating power injections from converters, shall be triggered 
to damp them out. In alignment with this vision, the European 
network code already establishes that all new power plants shall 
be equipped with damping controls, including wind power plants. 
The presented research is a cog in the wheel for pushing forward 
the state of the art to realize such advanced, real-time system 
identifcation and control capabilities. 
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