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Background

Data-Enabled Predictive Control (DeePC)
I Follow the streamflow of data-driven rather than model-based

approach: an alternative for model predictive control (MPC)
I Learn system “behaviour” instead of classical approaches that

constructing parametric models
I DeePC is equivalent to MPC for linear time invariant (LTI) systems

[J Coulson, J Lygeros, F Dörfler, 2019]
I The advantage over MPC may be limited for LTI cases as system

identification together with predictive control for LTI systems is well
established

I The potential of DeePC lies in nonlinear or time-varying black-box
systems that post challenges on system identification for MPC

Behavioural Model for DeePC
1. Given a input/output sequence (ut, yt), t = 1, · · · , T of a system,

construct the Hankel matrices in the following (T0 < L < T )

[
Up
Uf

]
=



u1 u2 . . . uT−L+1
... ... . . . ...

uT0 uT0+1 . . . uT−L+T0
uT0+1 uT0+2 . . . ...
... ... . . . ...

uL uL+1 . . . uT


,

[
Yp
Yf

]
=



y1 y2 . . . yT−L+1
... ... . . . ...

yT0 yT0+1 . . . yT−L+T0
yT0+1 yT0+2 . . . ...
... ... . . . ...

yL yL+1 . . . yT


2. For LTI systems,
• If [U>p ,U>f ]

> is of full row rank, then for every possible input/output trajectory
[u>ini, y

>
ini, u

>, y>]>, there exists g such that

Hg =


uini
yini
u
y

 , H :=


Up
Yp
Uf
Yf

 (1)

• If T0 is large enough, then for a given [u>iniy
>
ini]>, then there exists a unique

output y associated with control u

Contributions

Update the Behavioural Model Online
Update H in (1) based on the real-time input/output data =⇒
applicable to nonlinear or time-varying black-box systems in
principle

Address the Complexity Issues
I Model (1) can involve a high dimensional H as (1) can be viewed as a

“li�ed linear model” for a nonlinear system
I Solving the predictive control problem with a high dimensional

model (1) can be computational prohibited in real time
I Proposed a computational e�icient method based on primal-dual

gradient method and Fast Fourier Transform (FFT) to solve the
predictive control problem in real time

Predictive Control based on the Behavioural Model
Solve the predictive control problem with time horizon N and the
behavioural model constructed by real-time data

minimize
g∈R^,u∈U,y∈Y

N−1∑
k=0

f (uk, yk), subject to H tg =


utini
ytini
u
y

 (2)

I The equality constraint replaces the state-space dynamical system in MPC
I Only the first element of the control of u, u0, is implemented on the system,

u = [u>0 , · · · , u>N−1]>
I Whenever the control u0 is implemented, update the optimization for t + 1

by updating H t, utini and ytini
I Online control with (2) requires solving and updating

optimization (2) frequently −→ computational prohibit in real-time

Online DeePC
Apply primal-dual gradient method and implement the control u0 with NI
number of iterations (even if the algorithm has not reached the optimum)

zg+1 = ProjU×Y×R^+Na{zg − UgΨg (zg)} (3)

I g captures the algorithmic iteration number
I zg = [ug> yg> gg> ag>]> and ag is the dual variable

Ψg refers to two di�erent mappings depending on whether (2) is updated
based on the latest input/output pair (or the control ug−10 is implemented on
the system) :
I If (2) is not updated: Ψg is the gradient of the augmented Lagrangian of (2)
I If (2) is updated: Ψg is a composite mapping of element shi�ing of zg and

the gradient of the augmented Lagrangian
I The element shi�ing of zg “initializes” the solution for optimization at t + 1

from the one of t
Under assumptions of bounded variation of the optima over time, strong
monotonicity and Lipschitz continuity of Ψg , we show that (3) converges
Q-linearly to a bounded neighborhood of the optimal point

Computational E�icient Fast Fourier Transform (FFT)
I The most computational heavy parts of (3) lies in the matrix-vector

multiplications H tgg and H t>ag

I H t is a concatenation of block Hankel matrices which have the structures
such that FFT is useful

I Developed a FFT-based method to reduce the complexity of H tgg ,
H t ∈ <m·T×^, from O(m · T · ^) to O

(
m ·max(T , ^) log(max(T , ^))

)
I Considerably faster than direct multiplication for large T and ^

Numerical Validation
I Consider a time-varying dynamical system

xt+1 = Atxt + Btut (4)
yt = Cxt

I Aim to track the output yt to a reference signal. The objective
function is given by

u>Qu + (yt − rt)>R(yt − rt), Q � 0, R � 0
I A biased variation on Bt: the magnitude of each entry of Bt increases

p% of its value whenever t changes to t + 1, where p is randomly
generated with a uniformly distribution in [0, 0.01]

I Initialize H by a sequence of input/output pair generated from (4)
I DeePC becomes infeasible with only a few updates of uini and yini (H

kept unchanged)
I We simulate Gradient-DeePC which keeps H unchanged and

updates zg by the gradient method
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I As shown in the figures above, ODeePC keeps the cost close to zero
while Gradient-DeePC gradually deviates from the optimum.

I Figures below show that the tracking performance of y for ODeePC
and Gradient-DeePC. Gradient-DeePC again deviates from the
reference due to the outdated behavioural model
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I With the moderate size system of xt, ut, yt ∈ <10, FFT-based ODeePC
takes 0.51 seconds on average with NI = 50 inner gradient iterations,
while the average for the direct multiplication is around 1.1 seconds.

Future E�orts

Address the Challenges for Real World Implementation
I High requirement on the measurement accuracy: the accuracy of the

behavioural model drops noticeably with the increase of the
measurement noise

I Can only be entirely model-free: the system may not be a black box
in many applications. It could be grey box with limited knowledge of
physics. DeePC or ODeePC can not incorporate those knowledge
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