
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Contract No. DE-AC36-08GO28308 

Conference Paper  
NREL/CP-5D00-76334 
July 2020 

Data-Driven Linear Parameter-Varying 
Modeling and Control of Flexible Loads 
for Grid Services 
Preprint
Yue Chen and Andrey Bernstein 

National Renewable Energy Laboratory 

Presented at the 2020 American Control Conference (ACC) 
July 1–3, 2020  



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5D00-76334 
July 2020 

Data-Driven Linear Parameter-Varying 
Modeling and Control of Flexible Loads 
for Grid Services 

Preprint  
Yue Chen and Andrey Bernstein  

National Renewable Energy Laboratory  

Suggested Citation  
Chen, Yue, and Andrey Bernstein. 2020. Data-Driven Linear Parameter-Varying Modeling 
and Control of Flexible Loads for Grid Services: Preprint. Golden, CO: National 
Renewable Energy Laboratory. NREL/CP-5D00-76334. 
https://www.nrel.gov/docs/fy20osti/76334.pdf.  

https://www.nrel.gov/docs/fy20osti/76334.pdf


NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This 
work was supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The 
views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097, 
NREL 46526.

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


Data-Driven Linear Parameter-Varying Modeling and Control
of Flexible Loads for Grid Services

Yue Chen, Andrey Bernstein

Abstract— Flexible loads have great potential to improve the 
electric grid’s flexibility a nd s tability. T o e ffectively control 
large ensembles of heterogeneous loads, reliable models thereof 
are required. This paper presents a data-driven modeling and 
control approach to manage flexible l oads f or p roviding grid 
services. We leverage a linear parameter-varying autoregressive 
moving average (LPV-ARMA) model to describe the aggregate 
load response, where the parameters in the model are used 
to capture external environmental impacts (e.g., weather). A 
gain-scheduling feedback controller is then developed to adapt 
to environmental variations. This data-driven approach can 
be easily applied to different types of loads in various envi-
ronmental conditions. In addition to the ensemble controller, 
distributed load controllers are designed to deliver grid services, 
while maintaining the quality of service of inherent load tasks. 
We demonstrate the work on the IEEE 37-node distribution 
system for real-time power regulation services through control 
of thermostatically controlled loads.

I. INTRODUCTION

Modern power systems require increased flexibility to
adapt to the widespread penetration of volatile renewable
energy resources. It has been widely acknowledged that the
flexibility i n e lectric l oads can be harnessed t o provide grid
services. Compared to expensive and limited-lifetime batter-
ies, demand-side loads are more economic and sustainable
[1]; however, the performance of demand response is largely
restricted by the nature of working patterns of each type
of load, and current demand response programs are mainly
applied to event-based load shedding services [2].

Extensive work in the literature explores the potential
of flexible l oads t o e nhance t he fl exibility an d st ability of
power systems [3]–[10]. The main idea is to transform the
flexibility f rom l oads t o t he g rid b y s hifting l oad power
consumption. Electric loads, such as plug-in electric vehicles
(EVs), heating, ventilation, and air conditioning (HVAC)
systems, data centers, residential thermostatically controlled
loads (TCLs), pool pumps, and agricultural irrigation systems
have sufficient fl exibility to  su pport an d pr ovide se rvices to
the grid.

Y. Chen and A. Bernstein are with the Power Systems Engineering 
Center, National Renewable Energy Laboratory, Golden, CO 80401, USA 
{yue.chen, andrey.bernstein}@nrel.gov

Because the contribution from a single load is negligible
to the grid (especially for low-power residential loads), it
is important to develop aggregate load models that will be
used in demand response control schemes. An ensemble of
loads can be modeled as a dynamic system whose dynamics
depend on the internal load operation physics as well as the
external signal that is used to engage them. Most existing
works consider or approximate the aggregate system by a
linear time-invariant (LTI) model, e.g., [4], [11], [12], where
it is assumed that the load working environment is time
invariant. LTI systems have attractive properties that make
the controller design easier. In many situations, however, the
LTI model is not sufficient to capture the load response.
As an example, the power consumption of a water heater
is largely related to the incoming water temperature.

This paper proposes linear parameter-varying (LPV) mod-
eling and control of the aggregate loads, where the parame-
ters capture the environment variables that affect load behav-
ior. The model is identified using a data-driven approach so
that the general framework can be applied to different loads
in various environments. The LPV model presents a set of
linear approximations for the system with respect to varying
parameters. As a result, the standard analysis tools for the
LTI systems are still applicable to the LPV system. In this
regard, we design a gain-scheduling feedback controller to
deal with the variability of the environmental parameters.

In addition to the aggregate controller, local load con-
trollers need careful design to ensure that loads complete
their routine operation tasks while providing grid services.
The decision-making methods for local controllers can be
classified into two categories: centralized methods and dis-
tributed methods. The centralized methods usually need
full load information to make decisions for each individual
load. In contrast, the distributed methods allow each local
controller to make its own decision to balance the grid
objective and its load quality of service (QoS). It relieves
the computation and communications requirements in the
centralized methods and protects the local privacy. This paper
adopts the distributed approach for local load control. In
addition, we employ a randomized policy in the local control
to desynchronize load responses.

The proposed hierarchical control architecture is illustrated
in Fig. 1. At the upper level, there is a central controller at
a utility that receives grid measurements (e.g., frequency,
voltage) and computes a control common for flexible loads.
At the local level, we propose a parallel distributed control
architecture where each load has its own controller. Each
local controller is designed to balance the utility’s grid
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Fig. 1. Schematic diagram of the control architecture.

service and the local objective that maintains the QoS to the
load owner. To desynchronize loads and unlock flexibility, a
stochastic method is introduced to randomize load behaviors
so that two identical loads could arrive at different decisions.

In summary, the contributions of this paper are: 1) we
develop an LPV model to capture the aggregate load re-
sponse through a data-driven approach; 2) we design a gain-
scheduling feedback controller based on the developed LPV
model; and 3) we develop distributed local controllers to
respond to the grid-level controller and maintain its own load
QoS within a strict bound.

The rest of the paper is organized as follows. Section II
introduces the load QoS metric and proposes a distributed
randomized local control. Section III presents the data-driven
LPV modeling and control techniques. Section IV presents
simulation results on the IEEE 37-node distribution system
with 500 residential homes. Section V concludes the paper
and discusses future research.

II. INDIVIDUAL LOAD QOS AND CONTROL

Under nominal operation, loads are controlled to complete
their routine tasks, e.g., an air conditioner keeps the room
temperature within a comfortable range. We use the concept
of QoS to represent the load work performance on its routine
tasks. Without loss of generality, the QoS for an individual
load can be expressed as [5]:

Qt =

Tf∑
τ=0

βτq(Xt−τ , ut−τ ) (1)

Xt+1 =f(Xt, ut) (2)

where Xt represents the load state; ut is the control signal
applied on the load; the function q extracts QoS features
from the load state and control; and the QoS is defined as
the discounted sum of the q values, in which the discount
factor β ∈ [0, 1] and Tf defines the moving window size.

With proper selection of Tf , β, and q(X,u), the QoS
function Qt can be designed to represent a broad range of
load QoS. For example, if β = 0 and/or Tf = 0 (we use
the convention 00 = 1), then Qt = q(Xt, ut) can be used
to define an instant load QoS, such as the temperature of
a TCL. When Tf > 0 and 0 < β ≤ 1, QoS value Qt

considers historical trajectory of relevant quantities, such as
energy consumption and cycling behavior of an on/off load.

Generally, the load QoS is determined by an adjustable
setpoint. For example, the cleanliness of a swimming pool
is controlled by the setpoint of daily operation time, and the
room temperature is maintained by the temperature setpoint
of an air conditioner. In this paper, we assume that the
load QoS has some level of flexibility, such that Qt ∈ Qt
is considered good QoS. Typically, Qt represents a box
constraint: Qt = [Q̄t, Qt].

Using (1), the constraint Qt ∈ Qt can be transformed to
the control variable ut ∈ Ut, such that

Ut :=

u :

Tf∑
τ=1

βτq(Xt−τ , ut−τ ) + q(f(Xt, u)) ∈ Qt


(3)

Thus, each load has its real-time control variable constraints,
according to its predefined QoS flexibility.

We propose a randomized control policy to avoid load syn-
chronization. Assuming a load received a control command
ūt from the grid operator, it is randomized by a uniform
distribution:

ut = PUt{ūt(1 + αNt)} (4)

where PUt is the closest point projection operator that
ensures good load QoS; the random variable Nt follows
the uniform distribution on [−1, 1]; and α > 0 is a small
constant.

Example: Thermostatically Controlled Loads

This paper considers TCLs as the example to demonstrate
the proposed approach. TCLs such as air conditioners, elec-
tric water heaters, and refrigerators are the major power
consumers in residential households. The power flexibility
is extracted from the thermal inertia in TCLs that allows for
a slight shift in the power consumption without a noticeable
change in the temperature. Under proper control, TCLs are
great demand-side resources to improve the grid’s flexibility
and stability without significant impact on load owners’
comfort.

The dynamics for one TCL can be approximated by an
RC model [4], [13]:

Tt+1 = aTt + (1− a)(T ot −mtRP
trans) + wt (5)

where Tt is the object temperature; a ∈ (0, 1) is the factor
of inertia, defined as a = e−τ/(CR), where τ > 0 is the time
step, and C and R are the TCL’s thermal capacitance and
resistance, respectively; T ot is the outdoor temperature; wt is
the modeling noise; and P trans is the TCL’s energy transfer
rate, which is positive for cooling and negative for heating.
The internal control variable mt equals to 1 when the TCL
is ON and 0 when the TCL is OFF. It is defined as follows
for a cooling device:

mt =


0, Tt < min(Ωt)

1, Tt > max(Ωt)

mt−1, otherwise

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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where Ωt is the TCL’s temperature deadband, which is
defined by the temperature setpoint T sett and the deadband
width δ as Ωt := [T sett − δ/2, T sett + δ/2].

Each TCL has its nominal temperature setpoint that
reflects the load owner’s preference. We define the QoS
function as the deviation from the preferred temperature
setpoint T set• :

Qt := T sett − T set• (6)

A large |Qt| indicates bad QoS.
In this particular TCL application, we define the control

variable the same as the deviation from the nominal QoS
setpoint:

T sett :=

{
T set• − ut, for a cooling TCL
T set• + ut, for a heating TCL

(7)

The purpose of proposing two different interpretations for
the control signal is to ensure all TCLs respond in the
same direction towards a given control signal, i.e., a positive
(negative) u encourages power consumption (saving).

Based on (6) and (7), we obtain a simple expression for
QoS function (1):

Qt =

{
ut, for a cooling TCL
−ut, for a heating TCL

(8)

Therefore, the load QoS constraint can be easily transformed
to the control constraint to restrict the maximal temperature
setpoint deviation from the preferred value.

III. LPV SYSTEM MODELING AND CONTROL

In this section, we propose techniques to find an LPV
model for the grid-level load response, and we design the
controller for grid services. The grid operator needs only a
grid-level model that captures the aggregate load response,
without detailed individual dynamics. It largely reduces the
communications and computation requirements at the central
controller. We consider a data-driven approach to identify the
load response model so that it can be applied to various types
of loads.

To understand the load response over time, the input-
output data are collected as a time series. The autoregressive
moving average (ARMA) model is a typical tool to model
time-series data. For a single-input-single-output system, the
ARMA model is given by

yt + a1yt−1 + a2yt−2 + · · ·+ amyt−m

= b1ut−1 + b2ut−2 + · · ·+ bnut−n
(9)

where ut and yt are system input and output at t, re-
spectively; and {a1, . . . am, b1, . . . , bn} are the model coef-
ficients. Here, the control signal ut is the command sent to
flexible loads, e.g., the change in temperature setpoint of
air conditioners; the output signal yt represents the power
system outputs, such as the feeder head power and node
voltages.

One benefit of using the ARMA model is that it can be
easily converted to frequency domain for analysis. By taking
the z-transform of (9), we obtain

H(z) =
Y (z)

U(z)
=

b1z
−1 + b2z

−2 + . . . bnz
−n

1 + a1z−1 + a2z−2 + . . . amz−m
(10)

Because of the environmental variation, however, the
ARMA model cannot accurately represent the load response
in many situations. To address this issue, the ARMA model
is improved to include the impact from the external environ-
ment.

A. Linear Parameter-Varying Model

The following proposed method is motivated by [14].
In this paper, we consider multiple environment features
and propose coefficient-identification algorithms with a reg-
ularization term to prevent model overfitting. For practical
applications, we add the data normalization process so that
model coefficients are “fairly” treated.

Consider the following parameter-varying ARMA model

yt + a1(p)yt−1 + a2(p)yt−2 + · · ·+ am(p)yt−m

= b1(p)ut−1 + b2(p)ut−2 + · · ·+ bn(p)ut−n + ηt
(11)

where ηt is the modeling error; the vector p ∈ Rv collects
v environmental features, and

ai(p) := ai,0 + ai,1p1 + · · ·+ ai,vpv, for i = 1, . . . ,m

bi(p) := bi,0 + bi,1p1 + · · ·+ bi,vpv, for i = 1, . . . , n

The model (11) can be represented by a standard linear
regression form:

ŷt = θTφt−1 (12)

where ŷt is the estimate of system output; the matrix θ
collects all model coefficients to be identified; the vector φ
collects input-output data and environmental feature values.
The detailed representations of θ and φ can be found in
appendix.

Consider the loss function that penalizes the modeling
error and the L2 regularization term (standard ridge regres-
sion):

J(θ) =
1

N

N∑
t=1

1

2
(yt − ŷt)2 +

λ

2
||θ||22 (13)

where λ is a weighting factor. It is not hard to find the
gradient

∇J(θ) =
1

N

N∑
t=1

(yt − θTφt−1)(−φt−1) + λθ.

Setting the gradient to zero, we obtain the least-square
solution:

θ =

[
1

N
φ̄φ̄T + λI

]−1
1

N
φ̄ȳ (14)

where φ̄ = [φ0, φ1, . . . , φN−1] and ȳ = [y1, y2, . . . , yN ]T .
Online Algorithm. For some applications, especially when

the system process is nonstationary, it is useful to update the

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 2. Schematic of gain-scheduling feedback control.

model in an online fashion. Consider the loss function (13)
in one time step:

Jt =
1

2
(yt − ŷt)2 +

γ

2
||θ||22 (15)

We obtain its gradient:

∇Jt = −(yt − ŷt)φt−1 + γθt−1

It motivates the following online stochastic gradient descent
algorithm:

et =yt − θTt−1φt−1
θt =(1− αγ)θt−1 + αetφt−1

This algorithm is also known as the on-line ridge regression.
Data Normalization. Because the environmental variables

are collected in different units with different ranges, data
normalization is required to ensure that all features are
weighted equally in the model identification. Typical nor-
malization techniques include centering, min-max scaling,
standardization, and other transformations [15]. In many
applications, normalization also improves the running time
of data-driven optimization algorithms.

B. Gain-Scheduling Feedback Control

The LPV-ARMA model (11) can be viewed as a set
of LTI approximations with respect to the environmental
parameters. For fixed parameters, the model is simply LTI.
So the tools for LTI system analysis and controller design
are still applicable. Different from fixed controller gains for
an LTI system, the gains for an LPV system are adaptable
to environmental parameters p.

The structure for the gain-scheduling feedback control
is given in Fig. 2. Grid services are represented by the
reference signal, which is expected to be followed by the
distribution system. Based on the error between the reference
signal and the system outputs, the controller computes the
control signal for loads. We assume that the environmental
parameters (such as the weather data) are measurable so
that the controller can adjust the gains to adapt to the
environment.

In this paper, we apply classic frequency domain tech-
niques (e.g., [16]) to analyze the system and design the con-
troller. For a discrete-time system, the closed-loop transfer
function can be expressed in z-domain as

H(z,p) =
Y (z,p)

R(z,p)
=

C(z,p)P (z,p)

1 + C(z,p)P (z,p)
(16)

where Y (z,p), R(z,p), C(z,p), P (z,p) are the z-domain
representations of the output, reference signal, controller, and
system plant, respectively, with respect to the environmental
parameter p.

It is suggested by (16) that Y (z,p)/R(z,p) ≈ 1 can be
achieved by choosing high gains in C(z,p); however, the
system would become unstable if the gains cross a certain
critical point. Note that the closed-loop system (16) has
infinite gain when C(z,p)P (z,p) = −1, which is equivalent
to |C(z,p)P (z,p)| = 1 and ∠C(z,p)P (z,p) = −180o.
Two commonly used stability criteria are the gain margin and
phase margin, which define the amount of gain and phase lag
that can be increased before instability results.

Therefore, the controller depends on the dynamics of the
grid-level loads response P (z,p), which is the z-transform
of the LPV model (11). The details of LPV modeling and
controller design are illustrated in Section IV.

IV. NUMERICAL DEMONSTRATION

In this section, we demonstrate the data-driven approach
for real-time power regulation through control of TCLs. The
numerical results described here are based on simulations
of 500 residential households on the balanced IEEE 37-node
distribution system [17]. It was observed from the simulation
results that a collection of residential TCLs can provide high-
quality grid services, with little impact on load QoS.

A. Data Acquisition

We simulated 500 residential households, where each
household has an air conditioner, a refrigerator, and a heat
pump. In total, 1, 500 TCLs were modeled by (5) with
the parameters provided in Table I, where U refers to the
uniform distribution. These 500 households were distributed
throughout the load nodes in the IEEE 37-node test feeder.

The aggregate load response was modeled using the LPV
model (11). Because the air conditioners and heat pumps do
not operate at the same time, we developed two different
LPV models for hot and cold weather, respectively. For
brevity, we show only the LPV modeling and controller
design process under hot weather, when air conditioners
and refrigerators are engaged. The modeling and control
techniques used for cold weather are the same.

To mimic a hot summer environment, we created a 24-hour
outdoor temperature profile, as shown on the top in Fig. 3.
The corresponding power at the feeder head is plotted on
the bottom in Fig. 3. It is found that the feeder head power
is closely related with the outdoor temperature because the
power is dominated by air conditioners and the contribution
from refrigerators is insignificant.

To collect input-output data for system identification, a
swept-sine signal (top in Fig. 4) was created to change
the TCL temperature setpoints. It allows us to observe the
system response to various frequencies of the input signal.
Under the same temperature in Fig. 3, the distribution system
feeder head power was plotted in the middle of Fig. 4. Its
deviation from the nominal power consumption in Fig. 3
was considered as the system output, which is shown on the

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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TABLE I
TCL PARAMETER VALUES.

Parameter Air Conditioners Heat Pumps Refrigerators

Dead-band width, δ(◦C) ∼ U [0.5 1] ∼ U [0.5 1] ∼ U [0.5 1]

Temperature set point, T set (◦C) ∼ U [23 25] ∼ U [19 21] ∼ U [1.7 3.3]

Thermal resistance, R(◦C/kW) ∼ U [1.5 2.5] ∼ U [1.5 2.5] ∼ U [60 80]

Thermal capacitance, C(kWh/◦C) ∼ U [1.5 2.5] ∼ U [1.5 2.5] ∼ U [.05 0.15]

Energy transfer rate, P trans(kW) ∼ U [12 16] ∼ U [25 30] ∼ U [0.6 0.9]

Coefficient of performance 2.5 3.5 3
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bottom in Fig. 4. The goal is to identify the LPV model using
input-output simulation data along with the temperature data.

B. System Identification

We used the following two polynomial features:

p1,t =
T ot − p̄
σ1

, p2,t =
(T ot − p̄)2

σ2

where T ot is the outdoor temperature; p̄ = 20 oC; and σ1
and σ2 are standard deviations for the quantities in the
numerators, respectively.
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Fig. 5. Modeling result and error.

A 10-day simulation was performed to collect the input-
output data. For brevity, we present only the first 24-hour
results in 10 days. The top subplot in Fig. 5 shows the LPV
modeling results (11), with modeling orders m = 31 and
n = 31. It closely matches the real system output that shown
on the bottom in Fig. 4, and the modeling error is given on
the bottom in Fig. 5.

C. Ensemble Controller Design
We designed the controller in the frequency domain. Fig.

7 shows the frequency response of the system with various
outdoor temperatures. When the temperature is 25 oC, be-
cause most air conditioners are idling, a slight change in
the temperature setpoint has little impact on the power con-
sumption. So the response magnitude is very small when the
outdoor temperature is 25 oC. As the temperature increases,
air conditioners start to actively respond to the temperature
setpoint change, and they eventually saturate around 35 oC.
The resonant frequencies in these bode plots are in the
neighborhood of 5 × 10−2 rad/s, which is consistent with
the nominal on-off cycle frequencies of the air conditioners
in simulation.

Based on the aggregate load response shown in Fig. 7 and
the proposed control structure shown in Fig. 2, we designed
the following gain-scheduling PI controller:

ut(T
o
t ) = Kp(T

o
t )et +Ki(T

o
t )

t∑
τ=0

eτ∆t

with proportional and integral gains

Kp(T
o
t ) =

70− T ot
50

, Ki(T
o
t ) = 0.05Kp(T

o
t )

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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where et is the error between the reference and the actual
system output; ∆t = 5 seconds is the simulation time step;
and T ot is the outdoor temperature. The controller provides
gain margins ≥ 10.4 dB and phase margins ≥ 52.8o for
system stability.

The resulting closed-loop frequency response is presented
in Fig. 8. It indicates that these flexible loads can track
reference signals of periods as fast as a few minutes.

For the purpose of maintaining good load QoS, we re-
stricted the control signal u within at most 1 oC deviation
from the nominal TCL temperature setpoints. In addition, we
restricted the integral error eIt within predetermined bounds
to prevent the integral windup situation in PI control.

D. Grid Service

To illustrate the control performance under a wide range
of outdoor temperatures, we created an artificial 48-hour
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Fig. 8. Frequency response of the closed-loop system, using the gain-
scheduling PI control.

temperature profile that spans [−20, 40] oC to engage all
considered TCLs. The temperature is shown on the top in
Fig. 6. The left-hand-side (LHS) in Fig. 6 (the first 24-hour
period) shows the nominal behavior of the TCLs without
control; the right-hand-side (RHS) in Fig. 6 (the second 24-
hour period) shows the control performance when the TCLs
were controlled to provide the grid service.

Based on the nominal power at the feeder head (on the
LHS of Subplot 2 in Fig. 6), we obtain the baseline of 24-
hour power, which is shown as the dotted line on RHS of the
Subplot 2. The goal is to control the TCLs so that the power
deviation from the baseline tracks some reference signal. We
consider the regulation signal from the Bonneville Power
Administration (BPA) [18] as the reference signal. Because
of the capacity limit, the BPA signal was scaled to a proper
magnitude that is trackable by the loads. It is shown as the

Fig. 6. Control performance of the proposed approach in providing power-balancing grid service through control of the TCL temperature setpoint.
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red dashed line on the RHS of Subplot 3 in Fig. 6.
It is found that these TCLs can provide real-time regula-

tion power in the range of [−1, 1] MW with power tracking
root-mean-square-error (RMSE) of 22 kW (see the RHS of
Subplot 3). Considering that the aggregate TCL power is
less than 4 MW, the regulation service extracted from these
TCLs is significant. In addition, note that the fluctuations that
appear in nominal power consumption are also suppressed
under the control.

While providing grid service, the impact to home comfort
is insignificant because the control signal is restricted to
[−1, 1] oC. It is verified from the comparison of two 24-hour
house temperatures on the bottom in Fig. 6. To conclude,
there is a trade-off between the grid service and load QoS:
if these TCLs allow more QoS flexibility, a greater regulation
service can be provided.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a data-driven LPV modeling
and control approach for flexible loads to provide grid
services. The approach enables the controller to tune its gains
to adapt to changes in the environment. It was demonstrated
on the IEEE 37-node distribution system for real-time power
regulation service through control of TCLs.

In the future, we plan to extend the application to a wider
range of loads that involve more environmental parameters.
Other grid services, e.g, voltage regulation, are also of
interest for future work. In addition, it is valuable to estimate
the grid service capacity from the loads. We aim to estimate
the capacity by a similar data-driven approach and use the
capacity information for power system planning.
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APPENDIX I
LINEAR REPRESENTATION OF THE LPV MODEL

We represent the LPV model (11) in the following form

ŷt = trace(ΘTΨt−1) (17)

with

ΘT :=


a1,0 . . . am,0 b1,0 . . . bn,0

...
...

...
... . . .

...

a1,v . . . am,v b1,v . . . bn,v



Ψt−1 :=



−yt−1
...

−yt−m
ut−1

...

ut−n


[
1 p1 . . . pv

]
.

We introduce a vectorization operator vec(·) that trans-
forms a matrix to a column vector by stacking matrix
columns, e.g.,

vec

a1,1 a1,2

a2,1 a2,2

 =
[
a1,1 a2,1 a1,2 a2,2

]T
Letting θ = vec(Θ) and φt−1 = vec(Ψt−1), we obtain (12).
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