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Collaborative Exploration of Scientific Datasets using Immersive and
Statistical Visualization

NICHOLAS BRUNHART-LUPO, BRIAN BUSH, KENNY GRUCHALLA, and KRISTIN POTTER,  
National Renewable Energy Laboratory

STEVE SMITH, Los Alamos Visualization Associates

We discuss the value of collaborative, immersive visualization for the exploration of scientific datasets and review techniques and 
tools that have been developed and deployed at the National Renewable Energy Laboratory (NREL). We believe that collaborative 
visualizations linking statistical interfaces and graphics on laptops and high-performance computing (HPC) with 3D visualizations on 
immersive displays (head-mounted displays and large-scale immersive environments) enable scientific workflows that further rapid 
exploration of large, high-dimensional datasets by teams of analysts. We present a framework, PlottyVR, that blends statistical tools, 
general-purpose programming environments, and simulation with 3D visualizations. To contextualize this framework, we propose a 
categorization and loose taxonomy of collaborative visualization and analysis techniques. Finally, we describe how scientists and 
engineers have adopted this framework to investigate large, complex datasets.

Additional Key Words and Phrases: datasets, collaborative visualization, statistical graphics, scientific workflow

1 INTRODUCTION

Immersive visualization is poised to advance analysis for certain classes of complex scientific and engineering data, 
through rapid advances in virtual reality (VR) and augmented reality (AR). In our daily usage of the large-scale 
immersive virtual environment at the National Renewable Energy Laboratory (NREL), we have observed how immersive 
visualizations enhance scientific workflows [27]. Many scientists and engineers across NREL are beginning to adopt 
commodity AR/VR head-mounted displays (HMDs). While these immersive displays may provide unique qualitative 
insights, they are relatively limited for quantitative examinations. To deepen our analyses, we have been blending 
statistical interfaces and statistical graphics on traditional displays with 3D visualizations in immersive displays, 
providing a collaborative visualization framework with the objective of gaining the best of both worlds.

Collaboration has long been named one of the grand challenges for visual analytics [63]. There has been signifi-
cant research into distributed and co-located visualization and sense-making [5, 30, 41]. However, this collaborative 
visualization research has focused on a shared visual representation, either synchronously or asynchronously, among 
analysts. We are specifically interested in supporting workflows where analysts collaborate through heterogeneous 
imagery, as shown in Figure 1. The views into the data may be different, tailored to each analyst, but the views are 
directly linked together. For example, we describe use cases where some analysts have immersive views of a dataset, 
while other analysts have more quantitative statistical views of that same dataset. When one analyst introduces derived 
data or flags regions of interest, those actions are visible and available in all the views.

2 BACKGROUND

Increases in computational power has lead to growth in the size and complexity of scientific datasets. There has been a 
corresponding growth in both need and opportunity for teams, diverse in terms of location and expertise, to extract
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Fig. 1. Left: In traditional collaborative visualization users share common imagery. Right: We propose linking different types of
imagery of the same data, facilitating analysis by providing to stakeholders visualizations customized to their tasks and expertise,
while directly linking and coordinating the data and actions of the team.

usable knowledge from these sets. The technical progress in collaborative visualization has been likewise advancing;
however, the challenges in creating compelling, useful, and accessible visualization environments hold ubiquitous
collaborative visualization still at arm’s length. These obstacles include technical challenges relating to factors like
a limitation of network bandwidth [29], trade-offs between centralized or disparate data management [61], and the
targeting of different types of display hardware. Several surveys have addressed the evolution of these challenges
throughout the years [10, 19, 21, 26, 30, 57]; however, many of the software tools and environments have become
outdated. Similarly, there has been research on human issues relating to how people operate in immersive spaces [69]
and how they use shared visualization [68].

Experimentation and practice at NREL have revealed myriad considerations for designing workflows to explore
datasets using collaborative, immersive visualization. A primary concern is whether collaborators are physically present
in the same room and, if so, whether they jointly use the same immersive display or individually use separate displays.
If they jointly use a display, then the collaborators may share the point of view with a single, privileged collaborator
or have their own points of view for the shared display. (Multiple points of view for the same display pose technical
challenges for walk-in immersive spaces, but not for individual AR or VR headsets.) Furthermore, with the joint use of a
display, either a single collaborator or multiple collaborators might have control, being able to manipulate the view with
user-input devices such as gamepads, joysticks, gloves, or wands. For display hardware that supports multiple points of
view, each collaborator can be presented with a customized rendering of the model. For instance, some collaborators
might view a simpler rendering of the dataset whereas others might see richer renderings that include uncertainty
information or high-density details, but the basic geometric skeleton of the renderings likely would be common to all of
the collaborators.

In situations where collaborators do not jointly use the same display, each collaborator might see and manipulate
radically different renderings and subsets of the underlying raw dataset. For example, some renderings might be
scatterplots, others might be maps, and still others might be abstract statistical graphics. Selections or highlighting of
data records by one collaborator might automatically propagate to the views of the other collaborators; this linkage
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of data records across views might be total, targeted, or absent. Collaborators might work on subsets of the data,
each having their own scene graph. The combination of disparate views with linked selections or highlights enables
simultaneous, coordinated exploration among collaborators probing different aspects of the same dataset, essentially
combining the insightfulness of the team and opening dialogs scrutinizing patterns, correlations, and hypotheses
regarding the dataset.

Immersive collaboration can extend beyond the confines of a single room and a particular time. Moreover, recording,
annotation, and bookmarking of visualization sessions allows for their revisiting and replay at later times, perhaps by
different subsets of the collaborative team. These techniques further extend the exploratory dialog beyond single sessions
and allow supplemental “offline”, asynchronous exploration between the immersive sessions. Moreover, collaborators
might be geographically distributed, so all of the aforementioned interactions can occur at distant locations.

Real-time statistical and data-analytic tools can supplement and drive immersive explorations.When collaborators find
interesting paradigmatic features or form hypotheses regarding some aspect of a dataset, an analyst at a workstation or
laptop might locate additional interesting features based on the paradigm or perform tests of the hypothesis, respectively,
“pushing” the statistical results into the immersive display for scrutiny by the other collaborators. One might sometimes
have several collaborators working in immersive spaces and several others working in statistical applications such as R,
Python, or Julia, but with all of the collaborators’ work linked in a common information space where results propagate
among renderings. This approach combines the power of statistics and machine learning with the intuitive interactivity
of immersive visualization.

2.1 Taxonomy

While a full taxonomy of work in collaborative visualization is out of scope for this publication, we present a loose
classification of literature in the area to help establish the focus of previous works in this field and highlight directions
for future work. We have broken our sampling of previous work into eight categories: location, imagery, viewpoint,
data sources, number of display devices, type of display devices, interaction, and epoch. These categories are meant to
summarize aspects of collaborative visualization and may not reflect details of those aspects.

The first category in our taxonomy is location, which refers to where participants are joining the collaboration. This
category is loosely divided into remote and colocated participation. However, there has been a collection of research that
focuses on mixed-presence [33], that is, support for both remote and in-person participation. Many of the challenges
for remote and colocated participation are quite disparate: remote participation requires high-bandwidth, low-latency
networking in models where data and imagery are shared from a centralized server, or for users to have high-powered
computers to do that processing at each remote location. With the advances in new web-based technologies, some of
these concerns are being alleviated; however, for large-scale scientific computing, these issues are still paramount. For
colocated users, more prevalent issues include how to facilitate multiple user inputs and interactions, how to physically
locate users in a space, and how to target imagery for different user tasks in a single location. There has also been work
on representing remote participants as virtual avatars [59]. However, we did not capture that work in this taxonomy as
the challenges to using avatars include technical issues related to motion capture of remote users and representational
challenges of including avatars in a visualization environment, as well as issues relating to human interactions with
avatars and other human factors. While this work is very relevant to collaborative visualization, the broad scope of
such work is outside the focus of this paper.

The second category of our taxonomy is imagery: what the users are seeing while using a system. We classify the
imagery as either constant, that is all users see the same representation of data, or targeted where imagery is designed for
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particular types of users or tasks. For example, the SAGE and SAGE2 frameworks [52, 61] aim at providing a workspace
for multiple users to present windows from their individual machines to a powerwall. Thus, users can look at the same
data but design disparate visualizations that investigate different aspects of that data and share those visualizations on
a single powerwall. Similarly, systems could target volume rendering type displays for users whose main interest is
the 3D aspects of the data, while also providing statistical charts and graphs for analysts looking at general 1 and 2D
summaries of a data set.

Next, we look at viewpoint, which defines where in the scene a user is looking. The two classes in this category are
privileged and independent. Privileged viewpoints constrain all users to see what the privileged user sees (WISIWYS—
“what I see is what you see”) with no support for multiple view points. Independent viewpoints allow users to individually
explore the data, and oftentimes share their viewpoint with collaborators. Thus, one can imagine privileged viewing of
a a volume rendering that is similar to a guided tour, versus allowing a user to actually navigate around the rendering.
The challenges in disparate viewpoints include the computational expense of those different rendering viewpoints as
well as how to indicate disparate viewpoints across all collaborators.

Interaction is related to viewpoint in that support for independent viewpoints often provides support for asynchronous
interactions. However, asynchronous interactions may also refer to actions taken on a data set such as filtering, etc.,
and may be reflected back to all users in a privileged viewpoint environment, possibly through a queue of interactions
or through sharing of a viewpoint. Synchronous interactions can be thought of as passing the baton such that only one
user is performing an interaction and all other users are essentially an audience.

The data sources category considers whether the virtual environment provides methods for looking at different data
sources simultaneously. Homogeneous environments support a single data source, while heterogeneous environments
can handle disparate data sets. For example, a materials scientist may want to look at a volume rendering of a
proposed molecule, whereas a techno-economist may want to look at cost sheets and graphs for the new material.
The visualizations that support multiple data sets may actually use constant imagery across all users or can target
visualizations for data set or user type. NREL is actively looking at how to support these sorts of heterogeneous data
sets in collaborative spaces. The main challenges include how to visually connect disparate data sets and how to manage
these data sets at scale.

The number of displays category simply defines how many display devices are targeted by a system. For example, is
the collaboration environment a single cave-like immersive environment or powerwall, or is there a network of display
devices, either remotely or co-located? Much of the early work on immersive displays focused on hardware and software
issues in the design of single displays and not on the collaborative aspects of such spaces, and thus much of that work is
out of scope of this taxonomy. However, the utility of collaboration quickly shifted the need to connect multiple users
and thus multiple display devices. This category is not solely captured by the location category, specifically because
multiple displays may be used in both remote and in-person collaborations.

The type of devices category is separated as its own category to capture targeting homogeneous or heterogeneous
display types. For example, connecting two immersive cave-like displays is homogeneous, whereas connecting HMDs
and laptops is a heterogeneous environment. This type of situation is becoming more prevalent as HMDs, table-top
displays, and other state-of-the-art displays are becoming more main stream.

Finally, the last category, epoch relates to when a user is collaborating within a system. Most often, realtime

collaboration is what is thought of in terms of immersive spaces, where people gather at the same time and supplement
technological collaboration with personal interactions such as speech. However, there is also a group of work looking at
playback collaborations where users can use the collaborative system independently, and share their work with others.
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Table 1. Collaborative visualization taxonomy of systems with default configurations. Specifically, systems in this table support
remote locations, constant imagery, privileged viewpoints, simultaneous interactions, homogeneous data sources and display types,
multiple display devices, and a realtime epoch

The categorization of our taxonomy is fluid in that some categories are clearly disparate while others are closely
related, but broken out based on findings in the literature. Some of this is due to the maturation of the technologies behind
collaborative environments. Hardware challenges of the late 1990s, including networking and compute bandwidth,
have, for the most part, been solved and replaced with challenges of new and novel display technologies, as well as
expectations regarding speed of interactions and targeted support of certain devices, such as mobile. We expect this
taxonomy to evolve and perhaps combine or divide categories along with the advances enabling this technology.

Tables 1 and 2 lay out a selection of related publications that target collaborative visualization systems. These works,
for the most part, look at software systems to support collaboration, and papers discussing the use of these software for
specific applications have not been included. Tables 1 and 2 are divided by the most common and novel categorizations.
The most common configurations, shown in Table 1, consists of systems that support collaborations with remote
locations, constant imagery, privileged viewpoints, simultaneous interactions, homogeneous data sources and display
types, multiple display devices, and a realtime epoch. Many of these systems are older and reflect the state of the art for
mid-1990s to mid-2000s systems. Table 2 shows a taxonomy for novel configurations that vary across all categories.
Many of these systems reflect innovations in computational power and bandwidth, visualization hardware and software,
and ways of using collaborative environments. Future work for this taxonomy includes researching applications in
which collaboration systems have been used and understanding the success rate of those efforts. In addition, it will
be useful to understand which systems support newer rendering clients (see Figure 2) such as virtual and augmented
reality goggles, touch-panels, and web browsers.
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Table 2. Parallel Collaborative visualization taxonomy of novel system configurations.
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Fig. 2. Example 3D rendering clients: a) web browser with WebVR support; b) virtual reality (VR) headset; c) NREL’s immersive
visualization environment; d) augmented reality (AR) headset. (c) Photo by Dennis Schroeder, NREL 97821, (d) Photo by Dennis Schroeder,
34387
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3 PLOTTYVR

PlottyVR represents a collection of tools to facilitate collaborative visualization. In terms of our taxonomy, this
framework provides real-time, synchronous colocated or remote collaboration, with distinct imagery, distinct viewpoints,
homogeneous data sources, on multiple heterogeneous displays. The primary objective is to combine the qualitative
reasoning and intuition of immersive displays with the quantitative power of programming languages like R and
Python. The toolset provides a bidirectional link between the Python or R programming language environments and an
immersive 3D visualization, supporting both VR HMDs and large-scale, walk-in immersive environments. Using this
software package, an analyst at a laptop can push data into an immersive visualization environment. The representation
of that data can take the form of primitives, like points or line segments, or of more advanced objects like images and
text. Developing immersive visualizations mirrors plot development in base R graphics [43] but with a third dimension.
For example, R users can instantiate a 3D scatter plot in a connected immersive display by issuing a plot command with
three arrays x,y,z for each data point, optionally providing point colors and diameters (scaling each point in cardinal
directions to create ellipsoids). The immersive users can then interact with the visualization by selecting or querying
data points. In our scatter plot example, textual annotations can also be linked to points so that the immersive users
can, using this immersive system’s interaction device, “click” on a point to quickly query relevant information, like a
record identifier or notes about that data point. The immersive users can select regions of interest, which immediately
become available to the R users for further quantitative analysis of the selected cluster.

One of our primary guiding design principle was to reduce the friction of incorporating an immersive space into
statistical analyses. We have noticed that when the cost (even just the perception of cost) of using VR or other
technologies is too high (whether that be financial, intellectual, or technical), researchers will not make use of it. This
principle itself is expressed in several forms: (1) Critically, we cannot demand that analysts discard their existing
workflows. Because of this, we chose to avoid a stand-alone, foundational framework. A common complaint for existing
visualization solutions, such as ParaView or other large software packages, is that the researcher must then answer the
question “how do I get my data and decision flow into there?” and re-engineer their entire pipeline. The user must
now figure out the acceptable formats for the package, possibly write scripts to translate data, and then figure out
how to extract features in the data and translate that back into discoveries. This is in addition to the challenges of
learning to navigate an immersive space. In light of this, we chose to integrate with the existing analysis pipelines,
i.e., to augment, not replace. (2) This augmentation must also be friction-free. Even if the package does not require
replacing a researcher’s workflow, it can still be excessively intrusive; researchers may quickly become disaffected
when required to spend tens of minutes setting up a run-time environment on a server, verifying connections, and
copying data for five minutes of exploration. Turnaround and setup times must be kept to a minimum.

To meet the aforementioned requirements, we provide PlottyVR to users as a library for R, Python, and Julia1. All
that a researcher must do is to download and install these libraries for the environment of their choice, using the
language’s standard package manager2, and issue a plot command. If, for example, the user is at a cave-like installation
(such as the one at NREL), the server will already be running and the time from setup to use is on the order of seconds.
If they are on their own private system, there is the additional step of launching the server first (automatic launching is
currently being explored).

These libraries connect via WebSocket to the immersive platform. To reduce friction further, we also provide the most
common plot types in a form that mirror the base graphics in R (see Fig. 3). 3D scatter plots and 3D line plots are direct
1These are the most common environments in use at NREL. There is, however, no technical limitation to supporting other languages or systems.
2These packages are currently internal-only. They will be published in the future; see Section 5.
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Fig. 3. R-code listing that generates the inset immersive visualization.

and straightforward. From just the point (an ellipsoid in 3D) and the line (a tube in 3D) primitives, we can construct a
wide variety of complex plot types, such as plot trajectories and 3D parallel coordinate plots, such as parallel planes [12].
We support images and text, providing context like geospatial plots and custom annotations. These API function calls
are transmitted to a server application, running an interface to the graphics engine that is on the immersive platform.
For the immersive environment at NREL, this engine is Isopach, a custom immersive scene graph library. For HMDs, we
have developed a server application in the Unity engine. The server library is tasked with transforming the WebSocket
messages to the engine’s graphics representation, and relaying selection and other manipulation back to the client-side.

By integrating into environments in this way, not only are researchers given easy access to immersive plotting, but
they are also able to make use of the space as a primitive for larger compositions. An example of this is that researchers
can link together the immersive space and Shiny R [54] webpages, either for using a tablet as a companion in large
immersive environments to furnish supplemental 2D plots and provide more accessible control over what is being seen,
or for providing views for other remote analysts. In a more operational context, streaming data can be pulled in and
joined with the immersive space for real-time analysis.
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Fig. 4. Cities-LEAP analysis exploring a high-dimensional data set of city energy profiles. Foreground: real-time analysis in R-based
Shiny web application. Background: immersive visualization.

4 USE CASES

Using this toolset, we have achieved workflows such as synchronous, collaborative hypothesis testing where a statistician
pushes data into the VR space, a scientist constructs a hypothesis by manipulating plots in that space, and the statistician
applies statistical tests to the hypothesis, all in real-time. This workflow combines the power of statistical analysis
with the insightfulness of rich, multidimensional data visualizations, and we have used this workflow to support both
static datasets and on-demand simulations. PlottyVR has been used at NREL to meaningfully explore multidimensional
time-series in as many as twenty dimensions by teams of as many as six persons, allowing collaborative identification
of features, anomalies, and patterns in datasets that would be difficult and tedious to explore in 2D displays that limit
collaborative interaction. Workflows combining real-time statistical analysis in R-based Shiny web applications [54]
with immersive visualization by PlottyVR have been the most popular, allowing rapid, interactive statistical exploration
of the output of complex dynamic simulation models. We briefly describe three examples, but PlottyVR continues to be
employed regularly for varied applications at NREL.

The Cities Leading through Energy Analysis (Cities-LEAP) [64] project has developed city energy profiles for over
23,400 U.S. Cities. We combined an R-based Shiny dashboard that allowed cities to be compared on a range of metrics
with immersive 3D scatter plots that revealed correlations, trends, stratification, and outliers in the data (see Figure 4).
An analyst seated at the desktop would choose the metrics of interest, specifying the three axes, color, and size for
the scatter plot. A second analyst in the immersive environment would identify and select cities or clusters of interest.
Those selections would automatically update on the R desktop. The two analysts would iterate, hypothesizing on
relationships, generating new metrics, and applying those metrics to the scatter plot to test the hypotheses.
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Fig. 5. R-based Shinyweb application (left) and immersive visualization environment (right) for controlling and exploring self-organized
maps of ensembles of simulation output [13].

In another application, the R program running on an analyst’s laptop pushes ensembles of simulation output to
the immersive environment displayed as 3D scatter plots. Working in the immersive space, analysts use a handheld
tool to select regions of interest on the scatterplot and send that selection back to R on the laptop. The R program
then performs Monte-Carlo filtering [56], which is a sensitivity analysis technique that infers which input variables
most significantly influence whether data records fall inside versus outside of the selected region. The web application
then displays (sometimes via a standard 2D projector on a wall next to the immersive environment) a ranked list of
input parameters sorted in order of their influence on the output in the selected region. This enables rapid, interactive
sensitivity analysis on ensembles of simulations: users can formulate, test, and discard hypotheses sequentially, gradually
refining their understanding of the correlations and influences of input parameters on output results over ensembles
of simulations. Interspersed with the hypothesis testing, analysts use the system to verify simulation behavior by
scrutinizing input-output relationships and trends that might be present in the model.

We have deployed similar applications that combine Shiny web applications with immersive visualizations of self-
organized maps (SOMs) of ensembles of high dimensional simulation output [13]. The web interface allows analysts to
manipulate the parameters of the dimension-reduction algorithm and to view 2D projections of the SOMs on their
laptops, but simultaneously to push the SOMs into 3D renderings in the immersive environment (see Figure 5). The user
with the laptop can be in a location distant from the immersive environment. For this application, we have developed a
parallel coordinates plotting WebVR client, specifically supporting multiple, simultaneous remote collaborators to view
and jointly manipulate the same 3D scene of SOMs of simulation output.

5 FUTUREWORK

The most immediate improvement for the PlottyVR system is the publishing of server and client libraries to public-facing
package repositories.

While PlottyVR has regularly proven useful, there are some limitations to the current implementation and protocol.
First, the protocol originally was designed for a single client and a single server; while useful for a single researcher or
a small team working in the same room, this has proven limiting in common situations at NREL, such as distributed
analysis where many participants are not in the same locale (i.e. remote locations in the nomenclature of the taxonomy),
and so is sub-optimal for multi-client or multi-server collaborative configurations. In order to share data outside of the
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single client and server model, the researcher must build their own methods of distributing data, updating that data, or
coordinating clients or servers. Further, it was initially envisioned that only the server would be graphically based, and
that there would be a library client.

In response to these limitations, NOODLES (NREL Object Oriented Data Layout and Exploration System) is a work-
in-progress replacement for the protocol and data representation presently used in PlottyVR, updating the model to a
single server with multiple clients. It functions closer to the scene-graph level, where a synchronized 3D scene can be
shared across many clients with support for customizations for different form factors, as well as providing database-like
access to the protocol to support clients3 of any form factor (a more heterogeneous environment). Note that this would
not change the interface for the user; they would still be supplied with a library to provide a low-friction path to simple
plotting. Other clients can now join the session and register simple callbacks or software hooks to automatically watch
for data changes from collaborators or add their own data and plots to the mix. Additional generalized primitives permit
more applications to be developed beyond the domain of simple 3D plotting and statistics, all while still fulfilling the
PlottyVR goals. An initial demonstration of the system can be found in [11].
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