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Quantum chemical calculations for 
over 200,000 organic radical species 
and 40,000 associated closed-shell 
molecules
Peter C. St. John   1 ✉, Yanfei Guan   2, Yeonjoon Kim1, Brian D. Etz1, Seonah Kim   1 ✉ & 
Robert S. Paton   3 ✉

The stabilities of radicals play a central role in determining the thermodynamics and kinetics of many 
reactions in organic chemistry. In this data descriptor, we provide consistent and validated quantum 
chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell 
molecules containing C, H, N and O atoms. These data consist of optimized 3D geometries, enthalpies, 
Gibbs free energy, vibrational frequencies, Mulliken charges and spin densities calculated at the 
M06-2X/def2-TZVP level of theory, which was previously found to have a favorable trade-off between 
experimental accuracy and computational efficiency. We expect this data to be useful in the further 
development of machine learning techniques to predict reaction pathways, bond strengths, and other 
phenomena closely related to organic radical chemistry.

Background & Summary
Accurate determination of reaction energies is a central step in exploring organic chemistry mechanisms. The 
majority of chemical reactions consist of multiple elementary steps involving reactive intermediates. Short-lived 
reactive intermediates are difficult to isolate and analyze experimentally, resulting in increased dependence 
on accurate mechanistic insight gained from computational techniques1. Calculating reaction energies with 
quantum chemistry techniques, such as density functional theory (DFT), is therefore a central effort of com-
putational organic chemistry. However, the combinatorial complexity of potential reaction pathways requires 
significant experience on the part of the computational chemist to determine which pathways are most likely 
to be feasible, and considerable computational resources to ensure enough pathways are explored that nonin-
tuitive reactive intermediates and products are not missed. Enthalpies of radicals in particular, as important 
intermediates in combustion2,3, atmospheric4, redox5, (bio)-polymer chemistry6,7, and the functionalization of 
medicinally-relevant aromatic compounds8, are frequently calculated to determine the thermodynamics and 
kinetics of reaction pathways. Fast and accurate predictions for the enthalpy changes of radical reactions will 
substantially improve the throughput of computational chemistry research and allow detailed calculations to be 
targeted towards pathways that have the highest likelihood of being experimentally relevant.

The accuracy of Machine Learning (ML) models in predicting the results of quantum mechanical calculations 
has increased substantially in recent years as techniques for connecting molecular structures to deep neural net-
works have improved9–11. These approaches, known as graph neural networks (GNNs)12, replace the traditional 
featurization of molecules using fingerprints or descriptors with a framework in which molecular representations 
are learned from the underlying data13. These frameworks therefore continue to increase in accuracy as more 
data is collected far beyond traditional machine learning approaches. ML approaches to quickly and accurately 
predict enthalpy14, ground state energy15, bond dissociation energy16, and even transition-state activation ener-
gies17 have been developed by leveraging increasingly large databases of DFT calculations. The public distribu-
tion of large quantum chemistry databases, such as ioChem-BD18, is an important part of advancing the field of 
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machine learning research in computational chemistry, as prior publications of equilibrium19, off-equilibrium20, 
and transition-state structures21 have found applicability beyond their original purpose. Datasets such as QM722, 
QM919, ANI-1x23, and ANI-1ccx24 consist of closed-shell organic molecules and so a dataset containing reactive 
intermediates, such as radical species, is required for the further development of machine learning models.

In this data descriptor, we report a quantum chemistry dataset focused on determining the enthalpies of rad-
ical reactions for small organic molecules. The database contains over 200,000 organic radical species and more 
than 40,000 associated closed-shell molecules, which were generated by breaking single, non-cyclic bonds in 
molecules taken from the PubChem Compound database25. Carbon, nitrogen and oxygen centered radicals are 
represented. Geometry optimizations and enthalpy calculations were performed at the M06-2X/def2-TZVP level 
of theory26, which was previously found to have a favorable trade-off between experimental accuracy and com-
putational efficiency. For calculating the bond dissociation enthalpies specifically, results from this DFT meth-
odology were benchmarked against experimental bond dissociation energies and calculations at higher levels 
of theory16. The calculation pipeline showed similar performance to CCSD(T), and is able to capture changes in 
enthalpy relative to experiment with an accuracy of approximately 2 kcal mol−1.

The resulting database consists of optimized 3D geometries, vibrational frequencies, IR intensities, Mulliken 
atomic charges, spin densities, enthalpies and free energies for each molecule, calculated using Gaussian 1627. 
While this data was developed primarily for calculating bond strengths of organic molecules28, we expect this 
comprehensive database of radical and closed-shell calculations to be useful for a wide range of applications in 
chemistry.

Methods
Selection of closed-shell molecules and radicals.  SMILES strings for closed-shell molecules were 
selected from the PubChem Compound database25 where the entry had a valid CAS number, ten or fewer heavy 
atoms, consisted of only C, H, N, and O atoms, did not contain formal charges on any atoms, and for which 
all atoms were connected via covalent bonds (i.e., entries containing multiple molecules or ionic bonds were 
removed). From these parent molecules, SMILES strings for child radicals were generated by iteratively breaking 
all single, non-ring bonds in the parent molecule. The resulting list of SMILES strings was canonicalized and 
de-duplicated using RDKit29.

Conformer optimization.  An initial guess for the lowest-energy conformer was performed via a search 
using the MMFF94s force-field, as implemented in RDKit30. The number of sampled conformers was determined 
by min (max (3n, 100), 1000, where n is the number of rotatable bonds in the molecule. The lowest-energy con-
former was then used as the initial geometry guess for subsequent DFT calculations. In order to obtain realistic 
geometry guesses for radical species (on which MMFF94s was not parameterized), H-atoms were added to radi-
cal centers prior to conformer generation. Basic knowledge of chemical structure, including ring conformations, 
was also incorporated into initial guesses for conformer structure31.

Density functional theory calculations.  Gaussian input files were created from the lowest-energy con-
former using OpenBabel32. DFT calculations were performed using Gaussian 1627 with the M06-2X functional 
and def2-TZVP basis set with the default ultra-fine grid for all numerical integrations. For radical calculations, 
additional care was taken to ensure the correct electronic structure. Specifically, spatial and spin symmetry of 
orbitals were broken through an initial guess of mixed HOMO-LUMO and assuming no point-group symmetry. 
Stability of the DFT “wavefunction” was also tested, and the geometry was reoptimized if an instability was found. 
Results were parsed in Python using the cclib package33.

Parallel QM calculations.  Calculations were distributed across a high-performance computing (HPC) clus-
ter (Fig. 1). A PostgreSQL database was used to coordinate calculations for a pool of worker nodes. Each worker, 

Fig. 1  Overview of the calculation pipeline and associated software. On each worker, closed-shell molecules 
and radicals (in SMILES format) are pulled from a central database. Optimized, validated 3D geometries are 
stored in the database after completed, and a new molecule is started.
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in a loop, selects a single SMILES entry, locks the row to prevent duplicate calculations, performs the force field 
optimization and DFT calculation, validate the resulting calculations, write results to the database, and repeat for 
a new molecule.

Data Records
The data set is provided in a chemical table file format, specifically an SDF molfile containing all optimized 
geometries with additional property fields including SMILES, Enthalpy, FreeEnergy, SCFEnergy, AtomCharges, 
RotConstants, VibFreqs, and IRIntensity. All raw Gaussian M062X/def2TZVP logfiles for optimization and fre-
quency calculations are also provided34. Code to read the dataset and process the associated data in Python is 
provided in an associated github repository (https://github.com/pstjohn/bde). A description of the data fields 
in the SDF file are given in Table 1. In addition to the processed SDF file, raw Gaussian logfiles are provided in a 
separate zipped directory.

As molecules with more heavy atoms allow a greater number of possible arrangements, the database contains 
more examples of larger molecules than smaller molecules. A complete breakdown of the number of calculations 
in the database by number of heavy atoms is given in Table 2 and a breakdown of the formal radical center by 
element and degree is given in Table 3. Further characterization of the radical database to determine proximity 
of the radicals to stabilizing substituents. SMILES arbitrary target specification (SMARTS) patterns were used to 
determine whether each radical contains neighboring stabilizing features. Radicals are classified as allylic (adja-
cent to a C=C double bond), propargylic (adjacent to a C≡C triple bond), benzylic (adjacent to an aromatic 
carbon), adjacent to a π-acceptor group (an electron-withdrawing group, EWG), adjacent to a lone-pair (an 
electron-donating group, EDG), and captodative (alpha to both a π-acceptor and a lone-pair donor). Counts of 
radicals by neighboring substituents is given in Table 4.

As a set of consistent enthalpies between closed-shell molecules and radicals, this data has been used to cal-
culate a large number of bond dissociation energies (BDEs)28. With calculated bond strengths and 3D atomic 
structures of the parent molecules, we can examine bond strength vs. bond length curves for several common 

Data Field Description

SMILES String representation of the 2D connectivity of the molecule. Radicals are denoted using the bracket notation.

Enthalpy Molecular enthalpies, specified to six decimal places. In Hartree

FreeEnergy Gibbs energy at standard temperature (298.15 K) and pressure (1 atm). In Hartree

SCFEnergy Total SCF energy (electronic + nuclear). In Hartree

AtomCharges Mulliken atomic charges, one for each atom. The values are formatted as a python list, beginning and ending with brackets 
and separated with commas. Values correspond to the atom order as given in the 3D coordinates.

AtomSpins Atomic spin densities (for radicals only). In the same format as AtomCharges.

VibFreqs Vibrational frequencies in wavenumbers (cm−1). Formatted as a python list of length 3N-6 (or 3N-5 for linear molecules)

RotConstants Rotational constants (GHz). A formatted python list of length 3.

IRIntensity Infrared intensities (km/mol). In the same format as VibFreqs.

Table 1.  Description of the associated data fields, their formats, and units.

# Heavy Atoms Molecules Radicals

0 0 1

1 3 4

2 11 17

3 50 89

4 167 404

5 485 1867

6 1326 6570

7 3452 19931

8 7573 46163

9 13594 86499

10 16615 84818

Table 2.  Number of optimized closed-shell molecules and radicals by number of heavy atoms.

Element Primary Secondary Tertiary

C 56,067 121,369 28,135

N 11,349 14,048

O 15,354

Table 3.  Distribution of the 246,363 radicals by location of the unpaired electron. Primary, secondary, and 
tertiary refers to atoms having 1, 2, or 3 non-hydrogen neighbors.
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single bonds. Figure 2 shows bond strengths versus bond lengths as calculated using this dataset. Correlation 
coefficients indicate that bond length vs. strength correlations are strongest for C–C single bonds, followed by 
similar, slightly weaker correlations for C–N, C–H, and C–O bonds. As expected, longer bond lengths are symp-
tomatic of weaker dissociation enthalpies. In contrast, almost no correlation between bond length and strength 
exists for N–H, N–N, N–O or O–H bonds.

We also demonstrate how the dataset could also be used to investigate if radical stabilization (through delo-
calization of the resulting electron’s spin density) affects bond strength. Figure 3a plots BDE versus the maximum 
spin density on any atom in the resulting radical for hydrogen atom abstraction reactions. For O-H and C-H 
bonds, there is a strong correlation (ρ = 0.76 and 0.71, respectively) between maximum spin density and BDE, 
suggesting that radical delocalization plays an important role in determining bond enthalpies. However, for N-H 
bonds, correlations are much weaker.

Name SMARTS Count

Allylic [#6;X3v3 + 0]-[#6] = [#6 × 3] 16,229

Propargylic [#6;X3v3 + 0]-[#6]#[#6] 1,887

Benzylic [#6;X3v3 + 0]-[c] 8,286

α- to π-acceptor [#6;X3v3 + 0]-[C,N] = ,#[N,O] 18,758

α-to lone-pair [#6;X3v3 + 0]-[O,N] 55,136

Captodative [#6;X3v3 + 0](-[O,N])-[C,N]=,#[N,O] 43,86

Table 4.  Characterization of carbon-centered radicals by neighboring substituents.

-1

Fig. 2  Bond strength versus bond length for several common single bonds. Bond dissociation enthalpies are 
inversely correlated with bond lengths for carbon-containing bonds, but less so for other species.

a b

Fig. 3  Radical stabilization and enthalpy validation (a). BDE versus maximum atom spin density. Maximum 
spin density is calculated across all atoms in the resulting radical, with lower numbers indicating a more even 
distribution of electron spin across all atoms. (b) Distribution of calculated minus predicted enthalpies (in kcal 
mol−1) following a linear model of atomic composition. The shaded grey region indicates the inner quartile 
range. Vertical grey dashed lines indicate the thresholds used for outlier detection, defined as ±3 inner quartile 
ranges away from the first or third quartile.
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Technical Validation
A series of convergence checks were performed to ensure the calculated enthalpies are as reliable as possible. Of the 
322,871 total enthalpy calculations performed for this work, 30,327 (9.39%) were discarded due to various validation 
checks. Molecules with failures of any steps of the calculation pipeline, including the conformer embedding (5,079 
molecules) and not reaching normal termination of the DFT calculations (2,213 molecules) were discarded. This 
was either due to a failure to converge the geometry optimization within the maximum number of steps of the Berny 
algorithm or due to a failure to converge the SCF procedure within the maximum number of cycles. Vibrational 
frequencies of the optimized molecules computed at the same level of theory as geometry optimization and were 
checked to ensure that the optimized stationary point was an energy minimum, with zero imaginary frequencies. 
If any frequencies were imaginary, the optimization was discarded (18,263 optimizations resulted in at least one 
imaginary frequency). The 3D structure of the resulting optimization was also inspected to ensure that the connec-
tivity matched the Lewis structure of the input structure. The interatomic distances of formally bonded atom pairs 
were checked to ensure no bonds were greater than 0.4 Å plus the sum of the covalent radii of the two participating 
atoms (2,134 molecules failed the covalent radii check)35. Finally, molecules were checked for an unreasonably high 
enthalpy per atom. A linear model was fit to each result’s enthalpy, with the number of C, H, N, and O atoms as the 
independent variables. Residuals were close to normally distributed (Fig. 3b). Outliers were defined as those calcu-
lations that were more than 3 inner quartile ranges away from the first or third quartile. No molecules were outliers 
in the more stable direction, but 235 molecules had higher enthalpy residuals than the maximum cutoff, indicating 
they likely converged to highly unstable conformers and were removed.

Usage Notes
While the SDF file containing optimized geometry and extracted properties can be read with a number of differ-
ent cheminformatic tools, we provide a simple example of processing the file with Python 3 and RDKit and using 
the data to calculate bond dissociation energies at https://github.com/pstjohn/bde.

Code availability
Code used to perform the high-throughput calculations are available at https://github.com/pstjohn/bde. The 
code relies on cclib and RDKit to process molecular information in Python, Gaussian to perform the DFT 
calculation, and pandas for data processing. Some of the code relating to the PostgreSQL database and NREL’s 
HPC infrastructure is site-specific and will likely need to altered to run these types of calculations on alternative 
HPC systems.
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