

The Los Angeles 100% Renewable Energy Study

The Los Angeles 100% Renewable Energy Study (LA100)

Rob Leland, PhD

Associate Laboratory Director for Scientific Computing and Energy Analysis

National Renewable Energy Laboratory

June 2020

The Los Angeles 100% Renewable Energy Study

Detailed, high resolution analysis evaluating a range of future scenarios to equip LA decisionmakers to understand:

What are the pathways and costs to achieve a 100% renewable electricity supply while electrifying key end uses

and maintaining the current high degree of reliability?

What is the impact on the environment?

How might the **economy** and **rates** respond to such a change?

What Is Unique About LA100?

LADWP must balance electricity supply and demand at all times

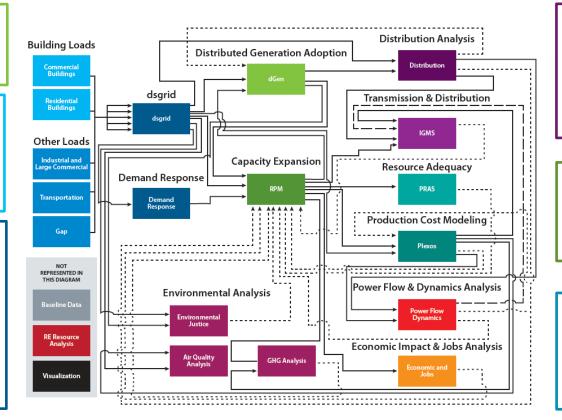
First-of-its-kind, ultrahigh resolution modeling Objective, transparent, stakeholder-based analysis of pathways to 100% RE

LA100 does **not** present recommendations or suggest policies

Scenarios Based on LA Advisory Group Priorities

		LA100 Scenarios								
		Moderate Load Electrification				High Load Electrification (Load Modernization)				High Load Stress
		SB100	LA-Leads, Emissions Free (No Biofuels)	Transmission Renaissance	High Distributed Energy Future	SB100	LA-Leads, Emissions Free (No Biofuels)	Transmission Renaissance	High Distributed Energy Future	\$8100
	RE Target in 2030 with RECs	60%	100%	100%	100%	60%	100%	100%	100%	60%
	Compliance Year for 100% RE	2045	2035	2045	2045	2045	2035	2045	2045	2045
Technologies that do not vary in eligibility across scenarios	Solid Biomass Fuel Cells Hydro - Existing Hydro - New Hydro - Upgrades Nuclear - New Wind, Solar, Geothermal Storage	N Y Y N Y N	N Y Y N Y N Y	N Y Y N Y N Y	N Y Y N Y N	N Y Y N Y N	N Y Y N Y N Y	N Y Y N Y N	N Y Y N Y N	N Y Y N Y N Y
Technologies that <u>do</u> vary	Biofuel Combustion RE-derived Fuel Combustion (e.g., hydrogen) Natural Gas Nuclear - Existing	Y Y Y	No No No Y	Y Y No No	Y Y No No	Y Y Y	No No No Y	Y Y No No	Y Y No No	Y Y Y
Repowering OTC	Haynes, Scattergood, Harbor	N	N	N	N	N	N	N	N	N
RECS	Financial Mechanisms (RECS/Allowances)	Yes	N	N	N	Yes	N	N	N	Yes
DG	Distributed Adoption	Moderate	High	Moderate	High	Moderate	High	Moderate	High	Moderate
Load	Energy Efficiency Demand Response Electrification	Moderate Moderate Moderate	Moderate Moderate Moderate	Moderate Moderate Moderate	Moderate Moderate Moderate	High High High	High High High	High High High	High High High	Reference Reference High
Transmission	New or Upgraded Transmission Allowed?	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	New Corridors Allowed	No New Transmission	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	New Corridors Allowed	No New Transmission	Only Along Existing or Planned Corridors
WECC	WECC VRE Penetration	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate

dGen


Modeled every property in LA (625,291 agents), totaling >65M simulations

Buildings

Modeled >7M buildings using 3.6M processor hours, which would take >60 years to finish on a laptop

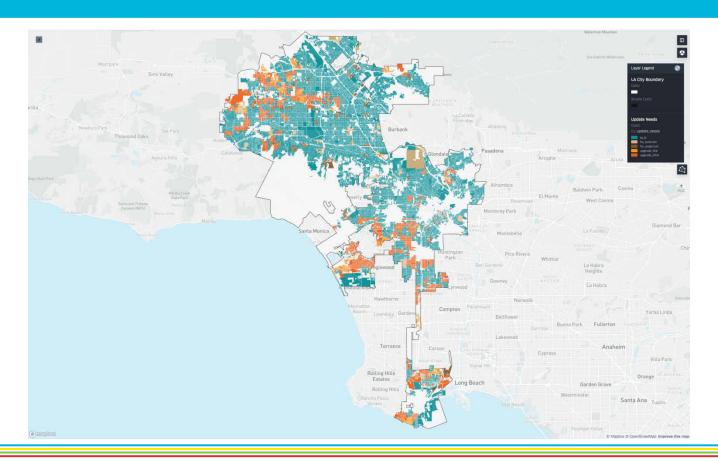
dsgrid

Allocated 5 modeling teams' loads to 625,291 geographic locations, generating >3.5M combinations and producing 50 TB of data; if stored in CDs, this would be taller than a 16-story building

Distribution

Modeled every electric wire in LA (over **1,600** circuits) for thousands of scenarios each—totaling >**25M** detailed engineering simulations

RPM


Simulated >8,000 years of dispatch, which would require 2 decades worth of computing on a laptop

Plexos

Ran >7.6 node-years on Eagle, which is like conducting a simulation 24/7 for 7.6 years straight on a laptop

= Approximately 100M simulations required

Example of results: Transmission Planning

Preliminary Insights

- 1. Multiple cost-effective pathways to get to ~90% RE
- 2. Last 10% will likely employ new technologies
- 3. Many uncertainties about the last 10%, but the broader the eligible solutions, the lower the costs
- 4. Cross-economy impacts require careful analysis

Closing Thoughts

 LA100 offers unprecedented scale, scope, and detail for energy planning

But next analyses will be even more complex as we further integrate modeling

- High-performance computing—at the scale of a national laboratory—is essential to provide robust insights
- The study findings help identify characteristics of new technologies to meet market demand as more cities and states adopt 100% clean energy targets

Thank you!

NREL/PR-6A70-77043

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy for Energy Analysis & Decision Support. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

