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Importance of Short-Term Load Forecasting (STLF)

[1] K. Hong, S. Fan, “Energy Resilience Assessment Methodology,” 
International journal of forecasting, 32, p.914-938, 2016.

• Long term:
 Power system planning 
 Energy policy analysis.

• Medium term:
 Maintenance and fuel 

planning
 Energy trading.

• Short term:
 Generation scheduling 

(hydro-thermal coordination, 
transaction planning, 

 Power system security
 Economic dispatch and 

reliability.

Fig.1 Load forecasting application and classification
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Data for Short-Term Load Forecasting 

• Seasonal input variables:
 Load variation from air 

conditioning and heating.

• Historical data:
 Previous hour
 Previous date
 Same day of previous week.

• Weather forecast:
 Temperature
 Humidity
 Wind
 Cloud cover.

[2]E. Kyriakides & M. Polycarpou , “Short term electric load forecasting: A tutorial,” Trends in Neural computation, 16, p.391-418, 2007.

Fig.2 Input data of STLF and application of information
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Short-Term Load Forecasting Methods

Statistical methods:
Time series statistical methods:
 Auto regressive
 Auto regressive moving average
 Auto regressive integrated moving 

average
 Seasonal auto regressive integrated 

moving average
 Seasonal auto regressive integrated 

moving average with exogenous 
variable.

Machine learning methods:
 Support vector machine
 Neural networks
 Neural networks combining with 

wavelet analysis
 Neural networks combining with fuzzy 

functions.
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Short-Term Load Forecasting Methods

Artificial Neural Network

𝐿𝐿𝑡𝑡 = g 𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

W𝑗𝑗𝑖𝑖 𝐿𝐿𝑡𝑡−𝑖𝑖

𝐿𝐿𝑡𝑡: future load
𝐿𝐿𝑡𝑡−𝑖𝑖: past values of load
W𝑗𝑗𝑗𝑗: weights
b : bias
g : activation function

[1] Mohammad Qamar Raza, Abbas Khosravi “A review on artificial intelligence based load demand forecasting techniques for smart grid and 
buildings ,” Renewable and Sustainable Energy Reviews, 50, p.1352-1372, 2015.
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Autocorrelation 
(ACF) and Partial 
Autocorrelation 

(PACF)
•ACF: Correlation of a time 
series observations with 
previous time steps, called 
lags. 
•PACF: Correlation of a time 
series with lags, by 
removing the effect of 
correlation due to the 
other lags.
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Time Series Statistical Methods

𝐿𝐿𝑡𝑡 = 𝐶𝐶 + ∅1𝐿𝐿𝑡𝑡−1 + ∅2𝐿𝐿𝑡𝑡−2+. .∅𝑝𝑝𝐿𝐿𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 AR

𝐿𝐿𝑡𝑡 = 𝐶𝐶 + ∅1𝐿𝐿𝑡𝑡−1+. . + ∅𝑝𝑝𝐿𝐿𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2+. . + 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 ARMA

𝐿𝐿𝑡𝑡 = 𝐶𝐶 + ∑𝑖𝑖=1
𝑝𝑝 ∅𝑖𝑖 𝐿𝐿𝑡𝑡−𝑖𝑖 + ∑𝑗𝑗=1

𝑞𝑞 𝜃𝜃𝑗𝑗 𝜖𝜖𝑡𝑡−𝑗𝑗 + ∑𝑘𝑘=1𝑟𝑟 𝜔𝜔𝑘𝑘𝑊𝑊𝑘𝑘 + 𝜖𝜖𝑡𝑡 SARIMAX

𝐿𝐿𝑡𝑡: future load 𝐿𝐿𝑡𝑡−𝑖𝑖: past values of load
𝐶𝐶: constant ∅𝑝𝑝 : coefficients
𝜖𝜖𝑡𝑡 : forecasting error 𝜖𝜖𝑡𝑡−𝑗𝑗: lag forecasted error
𝜃𝜃𝑞𝑞: coefficients
𝑊𝑊𝑘𝑘: exogenous variable 𝜔𝜔𝑘𝑘: coefficients
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Building of SARIMAX Models

SARIMAX model (p, d, q, P,D,Q)

• Categorize the similar pattern of days 
(working days, holidays, weekends)

• Divide the data into training set and testing set (85%, 15%)
• Build the model for given parameter values
• Guarantee the goodness of fit of model (AIC, BIC)
• Select the model based on AIC and BIC
• Automate the series using your programming language
• We use Auto.ARIMA function of pyramid.arima package of 

python.
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Results
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Time (hour)
Monday -Thursday (I) Sunday (III)

(a)

(b)

(d)

(c)

Do we get higher accuracy 
using more information:
• Longer period of 

records
• Many variables.

Friday-Saturday (II)

Forecast from the models from:
(a) 2015–2018 temp and load
(b) 2015–2018 load
(c) 2018 temp and load
(d) 2018 load.

Predicted load
Actual load

* Analysis 
presented here 
based on data 
provided by 
ONEE for 
geographical 
region of 
Morocco
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Results

Do we get higher 
accuracy using more 
information:
• Longer records
• Many variables.

Error between actual and 
prediction:
(a) 2015–2018 temp and load
(b) 2015–2018 load
(c) 2018 temp and load
(d) 2018 load.

Error = actual load-prediction %
actual load

* Analysis 
presented here 
based on data 
provided by 
ONEE for 
geographical 
region of 
Morocco



NREL    |    12

Summary and Next Steps

• Short-term load forecasting important for generator scheduling, economic dispatch, and 
power system security studies.

• Historical load and temperature data and time series statistical methods are used.
• Modeling results from different combination of data inform errors of peak and shape of 

the load profile prediction.
• Average temperatures do not improve the model prediction accuracy.

Summary

• Spatial forecasting is important. Spatial load and weather will provide more 
information.

• Behind the consumer meter data (e.g., solar net metering) correction is important in 
load data.

• Information of consumer behavior can be added to the models. 
• Machine learning techniques also can be applied for the forecasting.

Next Steps



NREL    |    13

Key Points

• Short-term load forecasting is important for generator scheduling, economic 
dispatch, and power system security studies.

• Seasonal input variables, historical data of load, historical and forecasted weather 
data, and time series statistical methods and machine learning methods are used for 
the short-term load forecasting.

• Seasonal auto regressive integrated moving average with exogenous variable method 
(SARIMAX) with hourly load and temperature data used for this study.

• Three categories of days were identified, and different load and temperature past 
records combinations were used to build the load forecasting models.

• Long-term load records gave the better accuracy of the peak value; however, average 
temperature data have not improved the forecasting accuracy.

• Spatial load forecasting using regional-level load and temperature data is important.
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