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ABSTRACT Advanced Distribution Management Systems (ADMS) are being widely adopted by elec-
tric utilities for managing and optimizing the operations of their distribution systems. Distributed photo-
voltaic (DPV) systems with smart inverters can be controlled to adjust active power and reactive power
outputs, and they are envisioned to become a part of (centrally or distributed) controllable assets managed
by the ADMS for optimizing grid operations. This paper proposes an optimal energy dispatch strategy
controlling DPV systems for regulating distribution voltages and achieving conservation voltage reduction.
A convex optimization model is proposed with the use of linearized power flow, and the gradient projection
algorithm is used to solve the optimal active power and reactive power outputs of smart inverters. The pro-
posed optimal energy dispatch is implemented using an open-source ADMS platform, and simulation results
have demonstrated the effectiveness of the proposed approach on improving distribution grid operations.

INDEX TERMS Advanced distribution management system, distributed PV, smart inverter, voltage regula-
tion, conservative voltage regulation, optimal power flow, volt-var control, volt-watt control.

I. INTRODUCTION

W ITH increasing electricity users’ demands for higher
reliability, power quality, renewable energy use, data

security, and resilience, electric utilities are investing a variety
of grid modernization technologies. Advanced distribution
management system (ADMS) is a software platform that
integrates numerous utility systems [1], including traditional
distribution management system (DMS), supervisory con-
trol and data acquisition (SCADA), geographic information
system, outage management system, meter data manage-
ment system, etc., and provides a suite of different func-
tionalities such as voltage optimization, state estimation,
fault location, isolation, and service restoration. ADMS is
expected to provide the full suite of distribution management
and optimizations, and thus has been deploying at many
utility territories to support these utilities to achieve their
grid modernization objectives. Meantime, distributed energy
resources, especially distributed photovoltaic (DPV) systems,
are being widely integrated into distribution grids due to

regulatory incentives and decreased costs [2], [3]. Although
traditional DMS only manages legacy voltage regulating
devices such as capacitor banks, transformer taps, and voltage
regulators, it is widely accepted by vendors and utilities that
ADMS should be aware of DPVs in the distribution system
and be able to control them either directly or integrate with
separate distributed energy resource management systems.
In the past, due to the lack of enough situational awareness,
DPVs are not commonly considered as the controllable
assets by ADMS, and thus the optimal capability of DPVs
for supporting distribution grid operations hasn’t been well
addressed. But technology maturity in solar forecasting and
load forecasting has actually provided unique opportunity to
develop advanced ADMS applications that can proactively
dispatch the energy from DPVs in order to optimize grid
operations.

Traditionally, DPVs are installed with standard invert-
ers that only output real power. But today’s inverters have
improved dramatically into ‘‘smart inverters’’, which may
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also be called ‘‘advanced inverters’’. Smart inverters can
affect distribution grid voltages, currents and transformer
loading significantly [4]–[7], and their existence in the dis-
tribution grid provides an alternative solution to improve grid
operation without additional investment. Meantime, with the
release of the updated distributed energy resource intercon-
nection standard IEEE 1547-2018 [8], DPVs in the United
States, either utility-owned or behind-the-meter assets incen-
tivized by grid service signals [9], are expected to become
part of utilities’ operation strategies in helping regulate both
distribution voltage and frequency by altering their active and
reactive power outputs.

At present, most of existing PV inverters in the field are
using autonomous volt-var control and volt-watt control. The
pre-defined voltage-reactive power and voltage-active power
piecewise functions are provided for each inverter, and the
inverter detects its local voltage and determines its reac-
tive power (or active power) output based on the piecewise
function. This method doesn’t require advanced communi-
cations or optimizations, and the inverter can respond to
voltage changes instantaneously. Both simulation results and
field tests have proved the effectiveness of local autonomous
inverter control on improving distribution feeder voltage pro-
files and power quality [10]–[15]. Besides, some literatures
have also proposed different optimization methods to opti-
mize the parameters used in the piecewise function. The work
in [16] leverages an extremum seeking approach to develop
local rules for the update of reactive setpoints. The paper [17]
focuses on proportional control strategies where the active
and reactive output-powers of DERs are adjusted in response
to (and proportionally to) local changes in voltage levels.
In [18], a centralized parameter tuning model of control
curves is built, in which Q-V and Pcurtailment-V curves of
PV inverters are formulated using piecewise linearization,
and the optimal curves are determined by solving a mixed-
integer second-order cone programming optimization model.
However, given the local response nature, a system-wide
coordination is lacked, and it is impossible to guarantee the
satisfaction of global objectives when providing utility grid
services.

On the other hand, network-wide optimal power flow
(OPF) approaches were developed to optimally control PV
reactive power output and active power curtailment [19].
Recently a unified real-timeOPFmodel was proposed in [20],
and it leverages massive system measurements as feedback
and can solve the optimization problem in a distributed and
online manner. However, considering currently most utilities
do not have enough sensing and communication devices to
support such heavy data exchange in real time, we inherited
the OPF model proposed in [20], but revised it to solve
the offline optimization problem without relying on real-
time measurements as feedback. Besides, realistic models
and constraints for both DPVs and utility distribution grids
are included in the paper to solve different voltage opti-
mization objectives. In addition, under a U.S. Department of
Energy Grid Modernization Laboratory Consortium effort,

an open-source, standards-based platform – GridAPPS-D
[21] has been developed to enable the development and
deployment of advanced ADMS applications considering
realistic data communication. GridAPPS-D provides an open
source development platform for distribution energy manage-
ment applications. The platform emphasizes standard based
approach to enable the applications interoperability. This
approach ensures applications developed under this plat-
form be running for variety of distribution networks and
distribution energy management systems. The platform pro-
vides futuristic data rich and control rich environment for
applications that are future facing but may not be able to
be implemented in current software systems. In addition to
algorithm development and simulation validations, we have
also implemented the proposed control architecture using the
GridAPPS-D platform, and the codes developed to support
the application will be published in GitHub in the future.

Compare with the aforementioned PV dispatch methods,
this manuscript presents a linear OPF based approach that is
unique in the follow aspects.
1. This proposed method optimizes both active and reactive

set-points implicitly in the linearization. In order to solve
the non-convexity of real and reactive power, both real
and reactive power operation point and constraints are
included in the linearization process.

2. The proposed method uses gradient projection algorithm
to solve the convex optimization after linearization effi-
ciently, and accurately avoiding the requirement of mas-
sive measurement feedbacks.

3. The proposed method is implemented in a realistic oper-
ation system framework for testing, with data bus han-
dling inputs and outputs, the algorithm’s realistic rema-
nence can be evaluated.

The remaining of the paper is organized as follows.
Section II describes the optimization model and algorithm for
solving optimal power setpoints for PV inverters. Section III
presents the proposed DPV control architecture to provide
grid services. Section IV lists the test system and all scenarios
to study. Multiple simulation studies and result analyses are
provided in Section V, and conclusions are summarized in
Section VI.

II. OPTIMAL ENERGY DISPATCH OF DPV SYSTEMS
A. OPTIMIZATION MODEL
The proposed optimal energy dispatch problem aims at solv-
ing the optimal active power and reactive power outputs for
smart PV inverters in order to satisfy different distribution
grid operation objectives while minimizing PV curtailment.
Also, reactive power output minimization is considered in the
objective function in order to avoid unnecessary reactive cur-
rent circulation in the inverter. It is worth noting that although
voltage optimization is studied solely in the paper, the pro-
posed optimization model can be used to control different
types of distributed energy resources (e.g., battery inverters,
controllable loads, etc.) to fulfill different distribution grid
operation objectives such as peak demand management and
frequency regulation.
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Two types of voltage optimization are considered in the
paper: 1) Voltage regulation can be enabled by enforcing
the constraint that requires all node voltages to satisfy ANSI
Range A limit [22], i.e. 0.95-1.05 pu, or other preferred volt-
age bounds. 2) Conservation voltage reduction is a method of
lowering utilization voltages on a circuit to conserve energy
consumptions [23]. It is achieved in the proposed optimiza-
tion model by adding minimizing voltage deviation from the
allowed minimum voltage, i.e., 0.95 pu, into the objective
function.

Then, the objective function and voltage constraint are
formulated as:

min
ptjq

t
j

f (xt) =
t0+1t∑
t=t0

NPV∑
j=1

[
cPj ·

(
pt,maxj − ptj

)2
+ cQj ·

(
qtj
)2]

+

NLD∑
k=1

cvk ·
(
vtk − 0.95

)2)
s.t.v ≤

∣∣vtk ∣∣ ≤ v, ∀k∈N (1)

where, xt =
{
ptj , q

t
j , j = 1, . . . ,NPV

}
, and ptj and qtj are

active power output and reactive power output from the jth

PV inverter at time t . t0 and t0 + 1t defines the operational
time horizon. pt,maxj is the maximum active power output that
can be generated from the jth PV inverter at time t . vtk is
node-k th voltage at time t . v and v are respectively lower and
upper voltage limits. NPV , NLD and N are the total number
of distributed PV inverters under control, total number of
load locations under CVR measurement, and total number of
nodes in the feeder respectively. cPj , c

Q
j , and c

v
j are constant

coefficients, and their values could be inputs from PV owners
or determined depending on applications. Specifically, when
CVR is not implemented, cvj is enforced to be 0.
PV inverter operation should follow the industry practice,

which is limiting the amount of reactive power to be 44% of
the inverter capacity in order to restrict inverter power factor
higher than 0.9. It is common in the industry to oversize the
PV array by using a DC-to-AC (kW) ratio of around 1.15 in
order to utilize the system components to their full capac-
ity [24]. Legacy PV inverters do not oversize the inverter, but
it becomes common to oversize smart inverters in order to
retain reactive power support capability during the peak PV
generation time. Since PV inverters are expected to provide
reactive power support for satisfying the emerging grid ser-
vice request from utilities, it is reasonable to assume that PV
systems adopt night mode operation, i.e. inverters can still
provide reactive power support at night when there is no PV
array power generation. Thus, the feasible solution set for ptj
and qtj is defined as

χ t =



0 ≤ ptj ≤ p
t,max
j(

ptj
)2
+

(
qtj
)2
≤ S2j(

qtj
)2
≤ 0.442 · S2j

Sj = PDCj /1.15 · αinv

(2)

where, Sj and PDCj are respectively the inverter size and DC
panel size for the jth PV system. αinv is the inverter AC kW to
kVA ratio.

Voltages in distribution systems are inherently nonlin-
ear function of loads and generations, and the nonlinear-
ity of three-phase unbalanced power flow equations poses
significant challenges for the development of computation-
ally affordable optimization solutions. Approximated lin-
ear power flow models have been widely used to facilitate
the development of computationally efficient optimization
approaches. Similarly, this paper leverages the linear power
flow model proposed in [25] to solve voltages for the three-
phase unbalanced distribution network. Complex voltages
(V) and voltage magnitudes (|V| ) for all the nodes excluding
slack buses can be modeled as the linear functions of node
power injections, as

V = 8P·Pbus+8Q·Qbus + ϕ (3)

|V| = 9P·Pbus +9Q ·Qbus + ω (4)

where, Pbus and Qbus are respectively active power injection
vector and reactive power injection vector at feeder nodes.
8P, 8Q, 9P and 9Q are power coefficient matrices for the
linear power flow model, and ϕ and ω are constant vectors.
According to the fixed-point linearization proposed in [22],
the values of8P,8Q,9P,9Q, ϕ and ω can be calculated as

8P = Y−111 ·diag
(
V̂∗
)−1

(6.a)

8Q = −jY−111 ·diag
(
V̂∗
)−1

(6.b)

9P = |diag (ϕ)| ·<
{
diag (ϕ)−1·Y−111 ·diag

(
V̂∗
)−1}

(6.c)

9Q = |diag (ϕ)| ·<
{
−j·diag (ϕ)−1·Y−111 ·diag

(
V̂∗
)−1}

(6.d)

ϕ = −Y−111 · Y10·V0 (6.e)

ω = |ϕ| (6.f)

where, 8P, 8Q, 9P and 9Q are all N × N matrices, and ϕ
and ω are both N×1 vectors. V̂ is the given solution to linear
voltage and (·)∗ is the conjugate of the complex value. V0 is
the voltage vector for slack buses, and the bus that connects
to the substation is considered as slack bus. R·} is the real
part of a complex value. Y11 and Y10 are matrix elements
of the node admittance matrix (Ybus) that correlates current
injections and voltages at feeder nodes as:[

I0
I

]
=

[
Y00 Y01
Y10 Y11

]
·
[
V0
V

]
(7)

As a result, we can covert (2) into the following two linear
constraints:

gk
(
xt
)
=

N∑
j=1

ψ
kj
P · p

t
j +

N∑
j=1

ψ
kj
Q · q

t
j + ωk − v ≤ 0

hk
(
xt
)
= v−

N∑
j=1

ψ
kj
P · p

t
j +

N∑
j=1

ψ
kj
Q · q

t
j + ωk ≤ 0

(8)
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where, ψkj
P , ψ

kj
Q and ωk are the matrix elements for 9P, 9Q,

ω respectively.
Finally, the optimal energy dispatch of DPVs can be for-

mulated as the following convex optimization problem.

min
ptjq

t
j∈χ

t
f (xt)

s.t. gk
(
xt
)
≤ 0, k = 1, . . . ,N

hk
(
xt
)
≤ 0, k = 1, . . . ,N (9)

B. ALGORITHM
The gradient projection algorithm [26], [27] can be used to
solve the proposed convex optimization problem defined by
(9). Define the Lagrangian of the optimization problem at
time t as

L
(
xt, µ̄t,µt

)
= f

(
xt
)
+

N∑
k=1

µ̄tk · gk
(
xt
)
+

N∑
k=1

µt
k
· hk

(
xt
)
(10)

Then, at each time slot t , decision variables xt and
Lagrange multipliers µ̄t and µt

are updated iteratively until
the Karush-Kuhn-Tucker (KKT) conditions are satisfied. For
each iteration i, we can obtain:

xti = Proj
{
xti−1 − αx · ∇xL(x

t
i−1, µ̄

t
i−1,µ

t
i−1

)
}

(11)
µ̄t
i= Proj

{
µ̄t
i−1 + αµ̄ · ∇µ̄L(x

t
i−1, µ̄

t
i−1,µ

t
i−1

)
}

µt
i
= Proj

{
µt
i−1
+ αµ · ∇µL(xti−1, µ̄

t
i−1,µ

t
i−1

)
}
(12)

where, αx , αµ̄,αµ are constant stepsizes, and ∇xL, ∇µ̄L and
∇µL are the projected gradients.

Notably, through the iterative updates, without the need of
using real-time systemmeasurement as feedback, we can still
solve the optimal active power and reactive power setpoints
of DPVs with appropriate values of stepsizes and enough
number of iterations. For practical applications, it might be
inevitable to get a tradeoff between the global optimality
and better computational efficiency. As a result, a small
number of iterations can be used but this can still yield a
satisfied DPV control performance on improving grid opera-
tions. This will be proved via simulation analysis later in the
paper.

From (10), we can find that the updates of individual
Lagrangian multiplier µ̄tk and µ

t
k
depends on the calculations

of gk
(
xt
)
and hk

(
xt
)
, which can be easily computed using

(8) but require system-wise topology information reflected by
linear power flow coefficient matrices9P,9Q, ω. It is noted
that these coefficient matrices should be updated if system
topology gets changed.

TABLE 1. Optimal energy dispatch Algorithm for PV inverters.

On the other hand, the calculation of gradient ∇xL for
updating decision variables xt is achieved by:

∇xL
(
xti−1, µ̄

t
i−1,µ

t
i−1

)
=∇x f

(
xti−1

)
+

N∑
k=1

µ̄tk ·∇xgk
(
xti−1

)
+

N∑
k=1

µt
k
· ∇xhk

(
xti−1

)
(13)

It is obvious that the first term at the right side of the
above equation only require local DPV information and can
be easily calculated from (1). But calculating the last two
terms require the knowledge of all Lagrangianmultipliers and
matrices9P,9Q. As a result, we can design solving the opti-
mization problem (9) as a distributed approach that consists of
two hierarchical layers. The procedure is described as Table I.

III. CONTROL ARCHITECTURE FOR ADMS
APPLICATIONS
Based on the above optimization model, we propose a control
architecture and its implementation using the GridAPPS-D
platform, depicted in Fig. 1, to coordinately optimize smart
inverter outputs of DPVs for the applications in future
ADMS products. The control architecture consists of three
components:

1) System Information Acquisition – gathers system infor-
mation including topology, locations and sizes of PV systems,
and system contingencies (such as network reconfiguration,
fault). All the information is necessary to compute linear
power flowmodel coefficients and formulate the optimization
problem.

2) Monitoring and Prediction – measures PV inverter
power output and receives AMI and SCADA measurements
in a regular frequency. These measurements are used as
the initialization inputs xt0 and vt0 for the optimal control.
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FIGURE 1. The proposed control architecture using DPV systems
to improve distribution grid operation.

Besides, voltagemeasurements are always evaluated to moni-
tor whether voltage violations exist, and if so, the ‘‘Optimiza-
tion’’ will be activated automatically to adjust the outputs
of controlled DPVs to mitigate voltage issues. On the other
hand, the predicted solar irradiance is acquired to compute
pt,maxj and the predicted load power is also obtained, and all
the prediction information are used to proactively solve the
optimal active power and reactive power outputs of DPVs.

3) Optimization – solves the optimal power setpoints for
PV inverters based on the process described in Table I, and
sends the optimal setpoints to the controlled DPVs in the grid.
It is noted that the computations involved are simple and do
not rely on any commercial solvers, and the solutions can be
solved fast. Thus, the proposed optimization model can be
well applied in the real-time ADMS operations.

To demonstrate how the proposed control architecture can
be applied for ADMS applications, we have implemented the
optimal energy dispatch of DPVs using the GridAPPS-D plat-
form. GridAPPS-D is a common software platform that deliv-
ers standardized operational technology integration, enabling
accelerated development and deployment of portable appli-
cations for power system planning and operations. As shown
in Figure 1, the GridAPPS-D platform receives and integrates
data from commercial DMS, SCADA, advanced metering
infrastructure (AMI), geographic information system (GIS),
and outage management system (OMS). These data, together
with the estimated system data provided by distribution sys-
tem state estimation service inside the GridAPPS-D platform,

FIGURE 2. K1 feeder topology and the locations of PV systems.

and forecasted solar and load data provided by standard
applications, are sent to the designed control architecture and
used for solving the proposed DPV energy dispatch prob-
lem. Details about the application programming interfaces for
GridAPP-D implementation can refer to [28]. Also, it worth
noting that when outage or other contingency happens in
the grid, the OMS should inform the application and sys-
tem information acquisition component will re-extract system
topology information for solving its updated optimization
decisions.

IV. CASE STUDY
A. TEST SYSTEM
The proposed optimal energy dispatch of DPVs is validated
on theK1 feeder [29]—amoderate-size, real utility system in
southeastern of the United States. The K1 feeder models both
medium-voltage and low-voltage circuits. In total 1747 nodes
and 320 three-phase and single-phase loads are modeled, and
one controllable LTC and one non-controllable capacitor also
exist in the model. The use of K1 feeder demonstrating real-
istic distribution feeder size can provide convincing results
for validating both control convergency and scalability of the
proposed approach. In this paper, 150 DPVs are added into
the K1 feeder, reaching to 90% of peak load penetration. The
locations of PV systems and feeder topology are depicted
in Fig. 2.

Besides, Fig. 3 shows one-day normalized load and PV
profiles, which represent a moderate-to-high loading condi-
tion and an intermittent solar irradiance. The data resolution
is 1 minute.

B. AUTONOMOUS SMART INVERTER CONTROLS
Autonomous Volt/VAR and Volt/Watt controls are two
default control modes for smart inverters required by IEEE
1547-2018. The former regulates the reactive power output
of the smart inverter based on its local voltage by follow-
ing a voltage-reactive power piecewise linear characteristic
(e.g. Volt/VAR curve), while the latter regulates (curtails)
the active power output of the smart inverter by following
a volt/Watt curve. The proposed optimal energy dispatch of
DPVswill be comparedwith the autonomous inverter control,
and the approved Volt/VAR curve and proposed Volt/Watt
curve by Hawaiian Electric Company [12] are used in the
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FIGURE 3. One-day load profile and PV profile.

FIGURE 4. Autonomous smart inverter control.

following section to model the autonomous inverter control.
As depicted in Fig. 4, the maximum reactive power (e.g. 44%
of inverter size) will be injected into the grid when voltage is
below 0.94 pu, while consumed when voltage is over 1.06 pu.
No reactive power is producing when voltage is between
0.97 and 1.03 pu. The smart inverter starts curtailing active
powerwhen voltage exceeds 1.06 pu andwill shut downwhen
voltage reaches to 1.1 pu.

C. SCENARIOS
Table 2 summarizes the scenarios that are studied in the
paper. Note that although the proposed optimal energy dis-
patch solves its problem using the linear power flow model,
the solutions are sent and applied in the OpenDSS feeder
model [26] running under quasi-static time-series (QSTS)
simulations, and the results generated below are all obtained
from the real power flow results provided by the OpenDSS
simulation, which thus represents real responses of the grid.

D. RESULTS
Simulation results of the above scenarios will be presented
based onQSTS simulations, and theywill be used to prove the
effectiveness of the proposed DPV energy dispatch approach
on improving distribution grid voltages. In addition, the con-
vergency performance of the proposed optimization algo-
rithm is first demonstrated by using a snapshot simulation.

1) ALGORITHM PERFORMANCE
Fig. 5 and Fig. 6 respectively shows the result of system
voltages and optimal DPV power setpoints obtained during

TABLE 2. Simulation scenarios.

FIGURE 5. The convergency of system voltage at one time
snapshot after 500 iterations.

FIGURE 6. The convergency of DPV power setpoints (active
power – left, reactive power – right) at one time snapshot after
500 iterations.

one time snapshot study with 500 iterations. It can be found
that the proposed algorithm can converge very fast, generally
less than 200 iterations – taking only around 5 seconds using
a computer with 3.5 GHz Intel Core i7. This proves that
the proposed DPV energy dispatch approach fits well for
the real-time ADMS implementations that typically operate
every 5-15mins.

2) GRID PERFORMANCE IMPACT
a: Impact of DPVs on providing distribution grid service
Fig. 7 shows one-day load bus voltage ranges, defined by
the maximum, minimum and median values, respectively
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FIGURE 7. One-day voltage range for scenarios 0-3.

FIGURE 8. The distribution of all load voltages during one day
for scenarios 0-3.

obtained for scenarios S-0, S-1, S-2 and S-3. Compared with
S-0, S-1 result shows that all load bus voltages can be regu-
lated to be always within Range A limit, and S-2 result shows
that load bus voltages can be further restricted to be below
1.04 pu. S-3 result shows that when CVR is implemented,
the maximum load voltage is always around 1.03 pu and the
minimum voltage is around 0.95 pu. Moreover, Fig. 8 com-
pares the distribution of all load voltages during one day
for the four scenarios. The results show that the voltage
profile obtained in S-3 is shifted to be closer to 0.95 pu com-
pared with S-0 voltage due to the voltage reduction objective
included in the optimization model, and S-2 voltage becomes
tighter than S-1.

Accordingly, Fig. 9 shows the results of inverter power
outputs for the four scenarios. Compared with S-0, active
power outputs of DPVs in S-1 do not curtail at all, and voltage
regulation is achieved only by adjusting the reactive power
output. In S-2, active power outputs get slightly curtailed at
some moments, and more reactive power is consumed than
S-1 in order to further reduce voltage to 1.03 pu. In S-3, a lot
of active power from DPVs is curtailed during the daytime,

FIGURE 9. DPV inverter power outputs for scenarios 0-3.

FIGURE 10. Three-phase voltage profiles at 12:10 pm compared
between S-0 (top) and S-1 (bottom).

and reactive power is always consumed significantly in order
to reduce load voltages.

In addition, all node voltages along with the distances from
the substation at 12:10 pm are compared between S-0 and
S-1, shown as Fig. 10. With the proposed DPV energy dis-
patch, system voltages become much tighter and always lie
in the desired range.

b: Controlling subset of DPV inverters
Because the proposed control architecture relies on DPVs to
regulate distribution voltage and implement advanced grid
support, the geographic locations and quantities of DPVs
directly affect the controllability and thus alter the control
effectiveness. As a result, the voltage results and PV power
outputs are compared between scenarios S-1, S-5 and S-6.
Fig. 11 shows that the voltage ranges obtained in S-5 and
S-6. Compared with the S-1 result shown in Fig. 5, the volt-
ages are still exceeding 1.05 pu during 9 am and 2 pm.

Besides, Fig. 12 shows the active power and reactive power
outputs from the controlled DPVs, and both S-5 and S-6 have
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FIGURE 11. One-day voltage range for scenarios S-5 and S-6.

FIGURE 12. DPV inverter power outputs for scenarios S-0, S-1,
S-5 and S-6.

FIGURE 13. One-day voltage range for scenario S-4.

active power curtailment because the reactive power support
from the limited controllable DPVs doesn’t have enough
capability to reduce voltages to be below 1.05 pu.

c: Coordinated DPV control v.s. autonomous inverter control
Fig. 13 shows the voltage range obtained in S-4. Compared
with the S-0 result shown in Fig. 7, the use of autonomous
inverter control can mitigate overvoltage, however, differ-
ent from S-4 result, it couldn’t eliminate all overvoltages.
Fig. 14 compares inverter power outputs between S-1 and S-4.
Active power from DPVs doesn’t need to be curtailed based

FIGURE 14. DPV inverter power outputs for scenarios S-1
and S-4.

on the autonomous volt-watt curve design. And, reactive
power consumed by smart inverters is much less than S-1,
which explains why overvoltage still exists in S-4. This is
because autonomous inverter control only monitors local
inverter voltages, and the inverters that do not see overvoltage
will not provide much reactive power or even provides zero
reactive power support if their local voltages are inside the
Volt/VAR curve deadband.

V. CONCLUSION
This paper proposes an optimal energy dispatch strategy
for distributed PV systems in order to optimize distribution
voltages and provide grid services. A convex optimization
model is proposed with the use of linearized power flow,
and the gradient projection algorithm is used to solve the
optimal active power and reactive power of smart inverters.
The proposed optimization model can coordinately control
both utility-scale PVs and distributed residential PVs, and use
these resources to regulate distribution voltages and conserve
energy consumptions. Besides, the proposed optimal energy
dispatch of DPVs aligns with the open-source GridAPPS-D
framework and is expected to be an advanced ADMS appli-
cation for emerging distribution grids with high penetration
of PVs.
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