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Abstract. Due to the interaction between the wake of an upstream turbine on a
downstream turbine, power losses and increased fatigue loads occur. By yawing the
upstream turbine with regard to the wind direction, one can potentially reduce the
power losses of the downstream turbine and reduce the fatigue loads. The evolution
of the wake depends on the pressure gradient within the near-wake region and the
turbulent kinetic energy and must be incorporated in existing wake steering algorithms
to provide an accurate estimation of the wake flow. This paper will show a first
approach to implement a near-wake model and a turbulence model in the curled wake
model within the controls-oriented framework FLORIS. The near-wake model is based
on an analytical expression of the velocity profile to model the pressure gradient.
Furthermore, two turbulence models are incorporated within the curled wake model
based on a Gaussian-distribution and a mixing length formulation. The adapted
curled wake model is then assessed with the measurement data acquired in the wind
tunnel at ForWind – University of Oldenburg. The evaluation of the models show
good agreement for the velocity deficit and representation of the near-wake region.
Furthermore, the turbulent kinetic energy behaved as expected in comparison to other
work, showing a ring of high turbulent kinetic energy at non-yawed condition which is
deflected to a curled shape at large yaw angles with the turbulence model based on a
mixing length formulation.

1. Introduction
Wind turbines operating in the wake of upstream turbines experience power losses within
a wind farm. Currently, one of the techniques used to reduce the wake interaction
between turbines within a wind farm is to yaw an upstream turbine with regard to
the incident wind direction. The objective is to deflect the wake such that downstream
turbines can produce more power. This can potentially increase the overall power output
and the annual energy production of the wind farm [1, 2]. The spacing between the
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turbines can be as low as 3 rotor diameters (D) [3, 4], indicating that wind turbines
can operate in the near-wake region of upstream turbines, depending on plant design
and atmospheric conditions. The development of downstream wakes is related to the
turbulence kinetic energy (TKE) within the wake, defining the dissipation and the mixing
of the wake with the ambient air. This underpins the importance of modeling near-wake
aerodynamics and the TKE while redirecting the wake in order to implement wake
steering algorithms at existing wind farms. In this work, we implement a near-wake
model and a model for the TKE within the curled wake model to provide a better
prediction of the velocity deficit and the turbulence intensity (TI) in the near wake.
Realistic representation of the near-wake will also inherently produce a better assessment
of the power production.

The first analytical model for the velocity deficit in a wind turbine wake was developed
by [5] and subsequently advanced by [6] and [7]. These models are based on the
conservation of mass and momentum and have either a top-hat distribution or a Gaussian
distribution of velocity. Another approach to model the wake profile is by using the
Prandtl turbulent boundary equations [8, 9], or other simplified forms of the Navier-
Stokes equations [10] and more recently in the curled wake model [11]. These models
give a good approximation of the far wake as the velocity deficit is well represented
by a single-Gaussian distribution. However, in the near-wake the velocity follows a
double-Gaussian distribution [12, 13]. The wake profile within the near-wake is modeled
using a Gaussian near-wake approach to model the wake profile by [14] and using the
momentum theory and the blade element theory by [15]. More recently, the near wake
was modeled by [16] based on the conservation of mass and momentum assuming a
double-Gaussian distribution of the wake. The turbulent kinetic energy quantifies the
magnitude and importance of stochastic fluctuations of the velocity field and is commonly
used to analyze the evolution and decay of wakes [17, 18]. Schottler [17] showed that
a ring of high turbulence kinetic energy, slightly larger than the rotor area, is formed
directly behind the turbine, where it was observed that the turbulence level decreased
and is deflected for large yaw angles with respect to the incoming flow. Given these
observations, TKE must be taken into account in engineering models in order to improve
the prediction of wake development [18] and provide a prediction of the loads on the
downstream turbine and thus their lifetimes [19].

The aim of this research is to model and assess the near-wake region of a wake from a
yawed wind turbine with existing control-oriented wake models. The implementation will
be conducted by incorporating the near-wake model based on [16] into the curled wake
model within FLORIS (FLOw Redirection and Induction in Steady State). FLORIS
is a controls-oriented framework used to test engineering wake models [20], which at
the time of this study did not include a near wake model. Subsequent development in
the FLORIS framework has introduced near-wake modeling capability. In addition, a
simplified model to estimate the turbulence kinetic energy is introduced and implemented
within the curled wake model. The method to incorporate the near-wake model is
detailed in Section 2.1, followed by the implementation of the model for the TKE in
Section 2.2. The setup of the measurement campaign is described in Section 2.3. The
data acquired from the measurement campaign are then used to assess the behaviour of
the new wake model in Section 3.
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2. Methodology
2.1. Incorporating the near-wake model
Computationally-efficient modelling of the wake is a challenging problem due to the
complex nature of the flow. The main aim of most engineering wake models is to predict
the velocity deficit and the level of TI. In order to solve for these physical quantities,
most wake models are based on a simplified version of the Reynolds-averaged Navier-
Stokes equation, shown in Equation 1, as it is computationally expensive to solve it
directly. Here u is the time-averaged streamwise velocity component, v is the time-
averaged spanwise velocity component and w is the time-averaged wall-normal velocity
component. Furthermore, p is the time-averaged pressure, ρ is the density and νeff is
the effective viscosity. The first part of the equation (I) accounts for the transport of
momentum due to convection. The second part of the equation (II) takes into account
the pressure gradient and is significant in the near-wake but negligible in the far-wake.
The third term (III) represents the combination of turbulent and molecular diffusion.

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z︸ ︷︷ ︸
I

= −1
ρ

∂p

∂x︸ ︷︷ ︸
II

+ νeff

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
︸ ︷︷ ︸

III

(1)

The curled wake model, developed by [11], solves the linearized version of the
Reynolds-averaged Navier–Stokes momentum equation for an incompressible flow, with
the assumption that the pressure gradient can be neglected. As already mentioned, this
is valid for the far-wake but not for the near-wake, since the wake deficit within the near-
wake is heavily influenced by the pressure gradient. Furthermore, within the curled wake
model the Reynolds-averaged Navier–Stokes momentum equation is solved as a marching
problem starting from an initial condition at the rotor and moving downstream [11]. An
analytical expression for the velocity profile within the near-wake region from the model
proposed by Keant et al. [16] is used to make a first order approximation of the pressure
gradient

∂p

∂x
= 1

2(U(xn)2 − U(xn−1)2)/dx (2)

within the marching problem in order to improve the original formulation of the curled
wake model. The equation for the velocity within the wake (U) is shown below, with U∞
for the free-stream velocity σ for the cross-section width of a single Gaussian distribution,
c is a pre-defined function, f , a tuning coefficient κ, and r0 is the radial location of the
Gaussian minimum [16].

U(x) = U∞ (1 − κ c(x)f(r, σ(x)) (3)

2.2. Simplified wake turbulence model
Two methods are used to incorporate the TKE within the curled wake model. The
first approach is using the turbulence model introduced by [21], which estimates the
local TI within the wake. The model will be used to estimate the effective viscosity
(νeff = νT + ν), shown in Equation (4) [22]. The effective viscosity is the summation
of the turbulent viscosity (νT) and the kinematic viscosity (ν). Here Cµ = 0.09 is a
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constant, k is the turbulent kinetic energy and ε is the energy dissipation rate. The
TKE is defined as the trace of the Reynolds stress tensor, represented as the matrix of
covariance of velocity fluctuations. It is calculated from the averaged perturbations of
the three velocity components (u, v, w) at a certain point in space with the following
formulation: k = 1

2(u′2 + v′2 + w′2). Here, u is the stream-wise velocity component and
u′(t) is the fluctuation of the flow, defined as u′(t) = u(t) − u(t). Furthermore, [23]
showed a degree of isotropy of the standard deviation in the wake, u′2 = v′2 = w′2,
which simplifies the relationship between the TKE and the TI (here I) to k = 3

2(u′2)
with u′2 = (UhI)2. This assumption is not fully valid in a wind turbine wake [24, 25, 26],
but is used to give a first-order of approximation of the turbulence. Because ε cannot
be easily computed, a transfer function is used to estimate the energy dissipation rate
from the TI fitted with the measurement data obtained from [27].

νT = Cµ
k2

ε
(4)

The second approach uses a mixing length formulation introduced by [28], which
relates the local turbulence on the length scale and the local strain rate tensor [29].
The mixing length model uses a single characteristic length scale at each downstream
location, shown in Equation (5). Here F1 is a filter function to model the reduction
of wake dissipation due to the entrainment and F2 is a filter function to account for
non-equilibrium between the averaged velocity field and the turbulent flow due to the
large velocity gradients over the rotor area. camb and c2 are constants of the model and
δu
δr is the axial velocity gradient in radial direction. Iamb and Uh are the ambient TI and
the free stream velocity at hub height. The turbulence length scale (l2∗) is assumed to
be half of the wake width [28]. TKE is calculated from the turbulent viscosity using the
approximation from [30] for the length scale resulting in k = ( νT

0.16R)2

νT = F1cambIamb + F2c2l
2
∗
δu

δr
( 1
0.5DUh

) (5)

2.3. Wind tunnel measurements
Measurement data from [27] and [31] are used to evaluate the implementation of the
near wake model and the turbulence model. Both measurement campaigns had the same
layout and inflow condition but used different measurement systems to capture the flow
behaviour. The measurements performed in [31] used a short-range Lidar WindScanner
to obtain high spatial and temporal resolution observations of a model turbine from 1D
to 5D. An array of hot-wires is used in [27] to measure the flow structures of an non-
yawed turbine. Both measurement campaigns were conducted using the MoWiTO 0.6
(Model Wind Turbine Oldenburg), with a hub height of 0.77 m and a rotor diameter
of D = 0.58m, in the large wind tunnel at ForWind – University of Oldenburg, which
has the dimensions of 3 m by 3 m for the nozzle and is not fitted with a grid at the
test section entrance to further alter the inflow condition. This resulted in a uniform
inflow of 7.5ms with a TI of 0.3 %. Furthermore, the turbine is yawed at ψ = −30◦,
0◦, 30◦ during the measurement campaign with the Lidar WindScanner [31], with a
clockwise rotation viewed from above defined as a negative yaw angle. The WindScanner
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performed multiple vertical scans (3D by 3D) at multiple downstream distances behind
the wind turbine model providing a three dimensional representation of the evolution of
the streamwise velocity component behind the wind turbine. The streamwise velocity
component is extracted from the line-of-sight velocity with the assumption that the
lateral and vertical velocity components are negligible, after which it is collocated onto
a grid of 7 cm by 7 cm. The measurements conducted with the hot-wire [27] will be used
to evaluate the near wake model and tune the near-wake model and the turbulence
model. The data acquired with the WindScanner [31] will be used to analyze the wake
characteristics of the yawed turbine.

3. Results
3.1. Near-wake region
The initial result of the implementation of the near-wake model, including the modelling
of the effective viscosity, is shown in Figure 1. The figure indicates the comparison
between the mean flow at the center line of the experimental hot-wire data [27] and
the curled wake model with and without the implementation of the near-wake model
and the turbulence model at ψ = 0◦. The shortcomings of the current version of the
curled wake model is clearly visible as it can not predict the velocity deficit within the
near wake region, thus leading to an over-prediction of the velocity component until it
corresponds at 10D. Incorporating the near-wake model leads to a better estimate of
the velocity deficit, indicating a speed-up region between 1D to 5D. The turbulence
model introduced by [28] provides a more accurate result for the velocity deficit within
the near-wake region due to the filter function F1, which accounts for the deceleration
and expansion due to the pressure field and avoids nonphysical turbulence diffusion.

With the implementation of the near-wake model and the two different turbulence
models, the outcome of the curled wake model (blue line and red line) is shown in
Figure 2. The curled wake model follows a double-peak Gaussian distribution of the near-
wake at ψ = 0◦ for both turbulence models, which slowly develops into a single Gaussian
distribution in the far-wake shown in Figure 2. The difference between the experimental

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Figure 1: Comparison of the streamwise velocity component at the rotor center for each
downstream distance acquired with the original curled wake model, the adapted curled
wake model with the turbulence models and the hot-wire measurements [27]. The shaded
area indicates ±σ of the hot-wire measurements
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data from the WindScanner [31] and the hot-wire [27] is due to spatial averaging by
the lidar and the procedural differences in the measurements. The development of the
wake matches the development of the experimental data [27] (black circles). The curled
wake model without any modifications (orange line) has a good agreement with the
experimental data in the far-wake. However, within the near-wake, the curled wake
model and the experimental data differ and do not follow a double-peak Gaussian
distribution throughout the entire domain. The width of the velocity deficit profile
is slightly smaller in the case with the Gaussian-based turbulence model at 3D and at
5D, due to the difference in viscosity.

For the case with ψ = −30◦ (Figure 2a), the modified curled wake model shows a
better agreement with the WindScanner data at 1D in comparison to the original curled
wake model. However, a difference is noticeable between the position with the lowest
velocity obtained by the adapted curled wake models and the experimental data. This
is due to the fact that the shift of the center of the counter-rotating vortex pair is not
accounted for in the current version of the curled wake model. A similar behaviour is
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(b) ψ = 0◦
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Figure 2: Comparison of the mean wake flow (U∞−Uw
U∞

[ms ]) at hub height between the
experimental data and the curled wake model. The shaded area indicates the ±σ of each
measurement case. Green: Hot-wire measurements Grey: WindScanner data
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observed at ψ = 30◦ (Figure 2c). Furthermore, the velocity profiles estimated with both
turbulence models are very similar.

Due to the implementation of the near-wake model to account for the pressure
gradient, the speed-up region at the edges of the wake ( yD ≈ ±0.6) is also visible at
ψ = −30◦ (Figure 2a), ψ = 0◦ (Figure 2b) and ψ = 30◦ (Figure 2c). At ψ = 0◦ the
speed-up region regions remains visible at a downstream distance up to 7D, after which
it diminishes. As expected, the speed-up region becomes less significant moving further
downstream due to the reduction of the pressure gradient. However, this indicates that
the pressure gradient in the modified curled wake model decays slowly, until it has
recovered compared to the experimental hot-wire data [27]. This can be accounted for
by further tuning the model. At ψ = ±30◦ a similar phenomena is visible, showing the
presence of the speed-up region until 7D after which it decays.

3.2. Turbulence kinetic energy
The implementation of the turbulence model within the curled wake model is evaluated
by comparing the viscosity and the TKE with the data obtained by the hot-wire
measurements [27]. The TKE is estimated with k = 3

2(u′2) for the Gaussian-based
turbulence model [21] within the curled wake model and the measurement data. Since the
turbulence model is based on the mixing length [28] it only provides an effective viscosity,
the following approximation is used to arrive at an estimate of TKE: k = ( νT

0.16R). The
approximation is based on the characteristic length scales in wakes [30] and assumes
that the turbulent stresses are based on the local ratio of dissipation and turbulence
production. However, this approach is valid when the eddy viscosity distribution within
the wake is uniform over the rotor area which occurs at a large downstream distance [28].

Figure 3 indicates the comparison between the effective viscosity and the TKE
computed with the hot-wire measurement data [27] and with the two different turbulence
models at 7D. The distribution of the viscosity (Figure 3a) estimated by the turbulence
models are on the same order of magnitude and have a similar distribution as the
measurement data. In addition, a difference is noticeable in the viscosity between the
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Figure 3: Profile of the viscosity (a), the TKE with a characteristic length scale of
0.16R (b) and 0.13R (c) in comparison to the hot-wire measurement data [27]. Blue:
Mixing-length formulation turbulence model Red: Gaussian-based turbulence model
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(a) ψ = 30◦ (b) ψ = 0◦ (c) ψ = −30◦

(d) ψ = 30◦ (e) ψ = 0◦ (f) ψ = −30◦

Figure 4: Comparison of the TKE at 7D estimated by the Gaussian-based turbulence
model (a to c) and the mixing length formulation turbulence model (d to f), estimated
with k = ( νT

0.13R)2, at different operational conditions.

different models; the turbulence model based on a mixing length formulation accounts for
the viscosity due to the ambient turbulence, seen in Equation (5). The TKE computed
by the turbulence models is shown in Figure 3b and in Figure 3c. The figures show a
clear correlation between the TKE modelled by the Gaussian-based turbulence model
and the measurement data. Moreover, a discrepancy is visible between the measurement
data and the turbulence model based on a mixing length formulation, which is attributed
to the use of the characteristic length scale. Figure 3c shows the profile of the TKE with
a characteristic length scale of 0.13R. However, both turbulence models indicate the
same distribution of the TKE within the wake. Since the turbulence model based on
the mixing length is computed through the velocity gradient, a lower TKE is obtained
at the wake center. This is due to the small magnitude of the velocity gradient at the
wake center.

The TKE obtained from the Gaussian-based turbulence model is shown in Figure 4a -
4c. At ψ = 0◦ (Figure 4b), a ring of high TKE is visible of the same size as the rotor
diameter [32, 18, 17], with the highest TKE visible at the edge of the wake due to the
shear layer between the ambient flow and the wake. At ψ = ±30◦ the ring is shifted
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based on the wake deflection [33], maintaining the circular shape with a reduced intensity
of the TKE. The Gaussian-based turbulence model estimates the turbulence with the
thrust coefficient. As the thrust reduces at a large yaw angle, the estimated turbulence
is reduced as well [18].

At ψ = 0◦, the TKE computed with the mixing length turbulence model shows
similar behaviour as the TKE computed with the Gaussian-Based turbulence model,
indicating a ring of high turbulence energy with the same size as the rotor diameter.
Similar behaviour is observed for the TKE obtained with the turbulence model based
on a mixing length formulation within the curled wake model, indicating a ring of high
turbulence energy with the same size as the rotor diameter. For the curled wake model,
the TKE is deflected and deformed to a curled shape accordingly at large yaw angles.
This corresponds with other studies analyzing the behaviour of the TKE at large yaw
angles [32, 18, 17]. In addition, the magnitude of the TKE is also reduced at ψ = ±30◦.

4. Conclusion
In this study the implementation of a near-wake model and a simplified turbulence model
within the curled wake model is introduced and assessed. The implementation of the
near-wake model is conducted by using the model developed by [16] and shows promising
results to determine the wake deficit and wake shape close to the turbine. The velocity
deficit acquired from the hot-wire measurement data [27] shows good agreement with
the velocity deficit estimated by the modified curled wake model. A double Gaussian
distribution is seen close to the turbine, which slowly diminishes further downstream.
The speed-up region is also introduced by the near-wake model due to the approximation
of the pressure gradient. This phenomenon was not captured by the original formulation
of the curled wake model and corresponds with the data from [31].

Two turbulence models are implemented within the curled wake model, assessed
against each other and with the measurement data. The first turbulence model is
based on a Gaussian distribution of the turbulence for the prediction of the velocity
perturbations [21]. The turbulence model calculates a ring of high turbulence at ψ = 0◦,
which shifts at ψ = ±30◦ accordingly and reduces in magnitude. The ring of high
turbulence is not deflected and deformed into a curled shape, observed in [17] as it
is based on a Gaussian distribution. The second turbulence model, based on a mixing
length formulation, shows the deformation of the ring of high turbulence at a large yaw
angle. This highlights the advantage of the second turbulence model. In addition, the
magnitude of the TKE is also reduced at ψ = ±30◦. A difference in the magnitude
of the TKE is observed between both models, which is attributed to the use of the
characteristic length scale to estimate the TKE. The distributions of viscosity and TKE
show a good agreement with the hot-wire measurement data [27].

The modified curled wake model improves the prediction of wake velocity evolution
which will be of benefit in future predictions of structural loads on downstream turbines
and, thus, estimates of their lifetimes. In order to further enhance the integration of the
near wake model and the simplified turbulence models, results need to be reevaluated for
different inflow conditions and through the use of experimental data and high-fidelity
simulations. In addition, the estimate for the pressure gradient needs to be further
expanded to account for the asymmetry of the wake.
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