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Abstract 

Background:  Pyrolysis-molecular beam mass spectrometry (py-MBMS) analysis of a pedigree of Populus trichocarpa 
was performed to study the phenotypic plasticity and heritability of lignin content and lignin monomer composition. 
Instrumental and microspatial environmental variability were observed in the spectral features and corrected to reveal 
underlying genetic variance of biomass composition.

Results:  Lignin-derived ions (including m/z 124, 154, 168, 194, 210 and others) were highly impacted by microspa‑
tial environmental variation which demonstrates phenotypic plasticity of lignin composition in Populus trichocarpa 
biomass. Broad-sense heritability of lignin composition after correcting for microspatial and instrumental variation 
was determined to be H2 = 0.56 based on py-MBMS ions known to derive from lignin. Heritability of lignin monomeric 
syringyl/guaiacyl ratio (S/G) was H2 = 0.81. Broad-sense heritability was also high (up to H2 = 0.79) for ions derived 
from other components of the biomass including phenolics (e.g., salicylates) and C5 sugars (e.g., xylose). Lignin 
and phenolic ion abundances were primarily driven by maternal effects, and paternal effects were either similar or 
stronger for the most heritable carbohydrate-derived ions.

Conclusions:  We have shown that many biopolymer-derived ions from py-MBMS show substantial phenotypic plas‑
ticity in response to microenvironmental variation in plantations. Nevertheless, broad-sense heritability for biomass 
composition can be quite high after correcting for spatial environmental variation. This work outlines the importance 
in accounting for instrumental and microspatial environmental variation in biomass composition data for applications 
in heritability measurements and genomic selection for breeding poplar for renewable fuels and materials.
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Background
Biomass cell wall composition plays an important role in 
the potential use of lignocellulosic feedstocks for renew-
able fuels and materials. In particular, total lignin con-
tent and monomer composition can impact the technical 
and economic feasibility of using lignocellulosic biomass 
such as wood as a feedstock for biofuels or other goods 
[1–3]. Modifying lignin content or composition could be 
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accomplished in several ways, including genetic engineer-
ing [4–8] or environmental priming [9, 10]. Lignin con-
tent can also be modified through breeding approaches, 
taking advantage of natural variation to obtain significant 
trait gains, using well-established protocols and experi-
mental designs [11, 12]. Moreover, recent sophisticated 
techniques such as genomic selection allow for acceler-
ated breeding with considerable reduction in costs [7, 13, 
14].

Trait heritability is the cornerstone for breeding, such 
that a trait with no heritability is by definition unrespon-
sive to selection, and therefore, not amenable for breed-
ing [15]. On the contrary, traits with high heritability 
display large selection gains with reduced effort. How-
ever, heritability is a not an absolute parameter, since it 
is codependent on the population and the experiment 
where it is measured [16, 17]. First, the degree of genetic 
control over a given trait in the population under study 
will determine the theoretical upper limit of heritability. 
Second, traits heavily affected by environmental condi-
tions (phenotypic plasticity) will display lower heritability 
when measured in trials with poorly controlled environ-
mental variation (microspatial variation) or when esti-
mated across several trials with a range of environmental 
conditions (geographical variation) [17].

Accurate and affordable measurement of a trait is cru-
cial for breeding in general and for heritability estima-
tion in particular. Although precise methods to estimate 
lignin content and composition using wet chemistry are 
available, they are time-consuming and not practical for 
large sample sets [18]. High- and moderate-through-
put methods such as near-infrared spectroscopy (NIR), 
pyrolysis–gas chromatography (py-GC/MS), and pyrol-
ysis-molecular beam mass spectrometry (py-MBMS) 
have demonstrated the ability to rapidly measure biomass 
composition for a variety of studies and applications [9, 
19, 20].

In particular, py-MBMS has been used as a high-
throughput technique to estimate relative lignin con-
tent, lignin monomeric syringyl (S) to guaiacyl (G), 
(S/G) ratios, sugar composition and terpenoid content 
of lignocellulosic biomass [9, 10, 21–25]. The source of 
ions present in mass spectra derived from the pyrolysis 
of lignocellulosic biomass has been the focus of many 
investigations and has been studied on many types of 
instruments and scales [26–29]. Typically, py-MBMS 
spectra are sum (total ion chromatogram, TIC) or mean-
normalized and are used to screen or elucidate cell 
wall composition on the basis of a small fraction of the 
ions present in the spectra. For example, lignin content 
can be estimated by regression or relative to a standard 
(response factor method using a single standard) by sum-
mation of ion intensities, particularly m/z 120 (H), 124 

(G), 137 (G), 138 (G), 150 (H, G), 152, 154 (S), 164 (G), 
167 (S), 168 (S), 178 (G), 180, 181, 182 (S), 194 (S), 208 (S) 
and 210 (S), where H denotes coumaryl (H) monomer-
derived species, G refers to species typically derived from 
coniferyl monomers and S derives from sinapyl mono-
mers [1]. Relative S/G ratios can be estimated based 
on the abundance of ions known to originate from cor-
responding monomers. Large datasets of hundreds of 
samples have been analyzed in an effort to elucidate the 
underlying spectral data structure and its relationship to 
biomass composition using basic data analytics for qual-
ity control, dimension reduction and data projection, 
modeling and prediction. For example, principle com-
ponent analysis (PCA) or discriminant analysis (DA) can 
be used to differentiate or group samples on the basis of 
py-MBMS spectra [30, 31]. Partial least squares (PLS) 
regression  models have been used to predict composi-
tion based on data collected from wet chemistry and 
other spectroscopic methods [22, 24, 32]. One study used 
features in py-MBMS spectra as phenotypes to identify 
genes related to lignin biosynthesis in poplar using a 
novel multi-omic “lines of evidence” approach [33]. Ions 
and spectral features in the context of cell wall chemistry 
have also been used as traits in conjunction with genetic 
mapping approaches and heritability studies of poplar 
and other hardwoods originating from various genetic 
backgrounds and growing conditions [1, 3, 34]. However, 
thorough data analytics approaches to comprehensively 
analyze py-MBMS spectra from large lignocellulosic sam-
ple sets with a detailed analysis of the sources of spectral 
trends are lacking. As interpretation of py-MBMS spec-
tral data in a biologically meaningful way is not trivial, 
particularly with respect to genetic and environmental 
effects, a comprehensive spectral analysis method needs 
to be employed for proper data interpretation.

Typically, focus has been placed on the relative abun-
dance of a small fraction of py-MBMS ions with many 
assumptions in place and lack of detail outlining the 
variation observed in the rest of the spectra and corre-
sponding variance attributed to instrumental drift and 
from metadata associated with field trials. With proper 
experimental design, large data sets of py-MBMS spec-
tra within a single species consisting of various genetic 
or environmentally impacted traits could potentially be 
efficiently analyzed to incorporate quality control, pre-
dictions of composition and properties but to also enable 
the generation of new hypotheses regarding the structure 
of the spectra as it relates to biomass properties and phe-
notypic plasticity.

In this study, we have analyzed the wood cell wall com-
position of a large full factorial 7 × 7 pedigree of Populus 
trichocarpa with a high level of technical and biological 
replication (n = 2721 ramets). The goal of the study was 
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to partition the variance of the py-MBMS output given 
the instrumental error, the microspatial environmental 
heterogeneity throughout a field trial and the genotype 
and familial identities of the samples. We address both 
the ion intensities produced by py-MBMS analysis and 
the compound estimations of lignin content and S/G 
ratio derived from appropriate ions in the spectra. This 
work also elucidates common trends among the ions due 
to microspatial environments and genotypic identity.

Results
Assessment of instrumental error and correction 
of py‑MBMS data
Due to the unprecedented size of the of the analysis set, 
quality control (QC) assessment was needed during anal-
ysis, particularly since the condition of the instrument 
changed between replicate analyses. Analysis of spectra 
from 6 types of standards monitored individually indi-
cated no particular time-dependent trend, indicating dif-
ferences were likely based on changes in instrument noise 
attributed to fluctuations in ion energy and the condi-
tions of the path of pyrolysis vapors (Additional file  1 
Table  S1; Figs. S1–2). The estimated uncorrected lignin 
content was also reproducible between measurement 
replicates (Pearson correlation = 0.87; R2 = 0.75; Addi-
tional file  1 Table  S2). The standard deviation of lignin 
content between replicates ranged from 0.0 to 1.7 wt% 
lignin, all being less than 10% of the mean determined 
value. However, since there was minor spectral drift 
over the replicates of the population that was consist-
ent among standards based on PCA and variance analy-
sis (Additional file  1: Fig. S3), ions were subsequently 
corrected for “tray effect.” Most ions with high variance 
attributed to tray effects were not used in calculations 
for lignin composition or S/G ratio (the exceptions being 
m/z 167 and 181) and otherwise attributed to “noise” as 
outlined in the “Discussion” section.
Effect of microspatial environmental variation on py‑MBMS 
spectra
We used a thin plate spline (TPS) procedure to model 
spatial variation  of py-MBMS ions in the field trial. 
Because of the randomized block design, genotypic 
effects should be randomly distributed throughout the 
field, so fitted values from this analysis represent envi-
ronmental variation, while residuals represent genotypic 
effects plus error. The fitted values of the TPS models for 
the 421 ions displayed two distinctive patterns: simple 
(Fig. 1a) vs. complex surfaces (Fig. 1b). The surface com-
plexity (SC) parameter was able to discriminate between 
these patterns, with values for simple surfaces close to 
0 and values above 1 for complex surfaces. Among the 
421 ions, 198 ions with null SC were free of microspatial 
influence (only corrected for “tray effects”), while the rest 

(n = 223 ions) were impacted to varying degrees (Fig. 1c). 
The correlation between the total ion chromatogram 
(TIC)-normalized ion intensities and the TPS residuals 
serves as another indication of the degree to which an ion 
is affected by microspatial variation (Fig. 1d). Fifteen out 
of the 17 ions used to quantify lignin in the spectra and 
all ions deriving from cell wall sugars and free phenolics 
had SC values in excess of 1, indicating that these cell 
wall components were affected by microenvironmental 
variation.

PCA of the ions based on their predicted TPS surface 
(Fig. 2), used here as a proxy for fine-scale environmental 
effects, yielded a PC-1 explaining 95% of the variation and 
PC-2 explaining 1%. The loadings for the first principal 
component were generally sugar-derived ions negatively 
correlated with lignin-derived ions with the exception of 
m/z 168 (primarily deriving from 4 to methylsyringol) 
and m/z 194. When ions of TPS-predicted surfaces were 
clustered in seven groups (Additional file 1: Fig. S5), the 
largest group (containing m/z 97) was related to pheno-
lics and lignin-derived species, and the second largest 
(with m/z 82) mostly consisted of sugar-derived ions and 
lignin dimers, again showing that these cell wall compo-
nents vary spatially with the microenvironment. The rest 
of the clusters were small and were mostly composed of 
irrelevant or otherwise unannotated peaks. Peaks that are 
termed here as irrelevant may include noise, fragments 
associated with more abundant species (i.e., loss of a pro-
ton) or ions that may have many or unknown sources.

Inter‑ramet variation captured in py‑MBMS spectra
After TIC normalization and controlling for instrument 
and environmental variation, the peaks derived from 
cell wall components had high loadings values in PCA 
(Fig. 3) and were also among the most abundant and had 
high variance relative to the mean intensities measured 
across the population as shown in Fig. 4a, b (Additional 
file  1: Fig.  S6 shows PCA scores that are color coded 
corresponding to different field locations comparing 
before and after instrumental and environmental cor-
rections). Approximately, 120 ions were annotated based 
on comparisons with standards, libraries and literature 
where unannotated ions are either representative of an 
unknown component or have many sources such that 
their presence or source is not included or discussed (see 
Additional file 2). The variance was highest for ions m/z 
60 (C), 73 (C), 114 (C), 124 (G), 137 (G), 154 (S), 167 (S), 
180 (L), 182 (S), 194 (S), and 210 (S) (where C denotes 
carbohydrate sugars, L for lignin, P for phenolics, G for 
G-lignin, S for S-lignin). These ions were also generally 
abundant in the spectra. However, other abundant ions 
such as m/z 57 (C), and 85 (C) did not exhibit as high var-
iances relative to the mean intensity values as the former. 
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Conversely, some ions were not particularly abundant 
but had high variance such as m/z 66 (P, L), 94 (P, L), 121 
(P, L), and 138 (P, L).

PCA of the spatially corrected ions also revealed nega-
tive correlations in lignin-derived ions (e.g., m/z 124, 137, 
154, 210) and carbohydrate-derived ions (e.g., m/z 73, 85, 
114, 126) (Fig.  3). PC-1 accounted for 41% of the spec-
tral variation, where carbohydrate-derived ions gener-
ally were negatively correlated with lignin-derived ions. 
PC-2 accounted for 24% of the spectral variation, with 

carbohydrate and syringyl (derived from sinapyl mono-
mers, S) ions were negatively correlated with guaiacyl 
(derived from coniferyl monomers, G)-derived ions 
(Fig. 3). Additionally, m/z 66, 94, 121 and 138 were nega-
tively correlated with other lignin-derived species, likely 
indicating these ions were primarily derived from phe-
nolics (such as phenols occurring as secondary metabo-
lites in the case of salicylates or other lignin-like, but 
not true-lignin phenolics such as ferulate, coumarate, 
etc.) as opposed to the fragmentation of lignin-derived 

Fig. 1  (a) Simple surface from thin plate spline (TPS) analysis for null surface complexity (SC) parameters (ion, such as m/z 38 shown here, or 
phenotype not impacted by microspatial environment) where environment corresponds to row position and column position (m) in the field and 
(b) complex surface for SC parameters > 1 indicative of microspatial impacts on the ions (m/z 32 shown here) or phenotype, (c) histogram showing 
distribution of SC > 1 for ions in MBMS spectra where [ is inclusive of the value and ( is exclusive of the value for the bins in the x-axis as defined in 
standard mathematical notation, (d) surface complexity and correlation of ion intensities with TPS residuals for corresponding ions



Page 5 of 15Harman‑Ware et al. Biotechnol Biofuels           (2021) 14:59 	

pyrolysates (although a positive contribution from lignin-
derived analytes cannot be ruled out).

Heritability of py‑MBMS spectral features
Gains in broad-sense heritability of the ions due to tray 
correction were marginal in most cases, though herit-
ability of a few ions did improve noticeably with the 
correction (Additional file 1: Fig. S7). Values of broad-
sense heritability for the TPS-corrected ion intensities 
ranged from 0 to 0.79, with annotated ions of highest 
heritability and noteworthiness summarized in Table 1. 

Permutation tests displayed thresholds of significance 
in heritabilities ranging from 0.028 to 0.037 for the 
combined tray-corrected and the TPS-corrected data-
sets. Although the ions with higher heritabilities were 
usually associated with complex surfaces for the TPS-
fitted values, some ions with high heritability had sim-
ple TPS surfaces and SC values near 0 (e.g., m/z 55, 95, 
167, 179, 181, 193, 195, 272, 312, and 302; Additional 
file 3).

The most heritable ions (Table 1) also exhibited high 
variance in the population. However, several ions, 
including m/z 126 (C6 carbohydrates), 150 (G and 
H-lignin), 164 (G), 168 (S) 109 (P, L), 286 (G dimer) and 
98 (C6 carbohydrates) were amongst the most heritable 
but exhibited relatively low variance. Maternal influ-
ence was almost always stronger for the most heritable 
ions, particularly lignin and phenolic-derived species. 
However, paternal effects were either more dominant 
or similarly influential as maternal effects for ions 
derived from carbohydrate sugars such as m/z 73, 97, 
114 (see Additional file 3 for full comparison of pater-
nal and maternal variance associated with each ion and 
Additional file 1: Fig. S8 for the % variance explained by 
mother vs father annotated by ion origin in biomass).

Hierarchical clustering (HC) using Spearman’s rank 
correlation distance metric with the complete link-
age criterion was used to analyze the clustering of ions 
in combined tray–TPS-corrected spectra to elucidate 
spectral associations based mostly on genetic informa-
tion. Eight groups were elucidated in the spectra based 
on K-means clustering (Additional file  1: Fig.  S9), sum-
marized in Table 2 (full spectral groups outlined in Addi-
tional file 4). Groups separated based on biocomponent 
sources similarly as those in the only TPS-corrected 
ions (Additional file 1: Fig. S10), indicating the majority 
of ions impacted by microspatial environment, and not 
ions highly impacted by instrumental variation, also were 
impacted by genetic variation of the population. Ions in 
the complete tray–TPS-corrected spectra generally clus-
tered according to biopolymer source although unan-
notated and noise ions appeared in all clusters to some 
degree. Interestingly, the most heritable ions (m/z 66, 94, 
121, 138), which are produced from phenolics (possibly 
including salicylate-like metabolites known to occur in 
Populus [35–39]), were clustered together in cluster EK0 
along with some lignin-derived species, including lignin 
dimers (m/z 272, 286). The rest of the most heritable ions 
clustered according to their biocomponent source in 
clusters EK4 (G-lignin), EK5 (carbohydrate sugars), and 
EK6 (S-lignin) (Additional file 4).

Fig. 2  PCA loadings of thin plate spline (TPS)-predicted ion 
intensities from py-MBMS spectra of 7 × 7 population of Populus 
trichocarpa with sources of ions indicated

Fig. 3  PCA loadings of TPS-corrected ions from py-MBMS spectra of 
7 × 7 population of P. trichocarpa 



Page 6 of 15Harman‑Ware et al. Biotechnol Biofuels           (2021) 14:59 

Familial patterns of ramets
Clustering of the samples based on the genotypic pre-
dicted values for py-MBMS spectra revealed some of 
the underlying family structure present in this popula-
tion. PCA shows some differentiation of maternal half-
sib families (Fig.  5a). The half-sib family from female/
maternal ID 1950 (See Additional file  1: Table  S6 for 
additional identifier information for each parent) in the 
lower right quadrant of the PCA scores plot had lower 
S/G and lower lignin composition in comparison to the 
half-sib family from female 4593 in the upper left quad-
rant of the plot (also see Additional file  1: Fig.  S11). 
Clustering by Ward’s method using Euclidean distance 
revealed 7 clusters (Additional file  1: Fig.  S12), where 
samples were previously classified into these groups 
based on K-means clustering meant to elucidate at least 
7 different families (Additional file  1: Fig.  S13). These 
groups largely corresponded to the maternal half-sib 
families (clusters colored in Fig. 5) as opposed to pater-
nal half-sib families. Interestingly, one group of siblings 
(from female/maternal ID 1950) also produced the 
highest abundance of ion m/z 94 (PCA color coded in 

Additional file 1: Fig. S14), which can come from lignin 
but is otherwise attributed to the presence of pheno-
lics such as salicylates (and in this case is otherwise 
not correlated positively with other lignin ion abun-
dances such as m/z 210 as described previously (Addi-
tional file 1: Fig. S15 for example). The clustering of the 
samples in conjunction with PCA of the spectra shows 
that compositional relationships of several families can 
be elucidated, particularly based on the abundance of 
lignin and phenolic species. In some cases, several fam-
ilies generally produced similar or overlapping spectral 
features and, hence, appeared to have similar biomass 
composition, thus differences were not noted. Addi-
tionally, clustering methods differentiating PCA projec-
tions or scores based on MBMS spectra may identify 
spectral groups that consist of many family types and 
members, and do not necessarily separate families 
based on spectra. Either way, the use of clustering 
methods in combination with PCA of the py-MBMS 
spectra enables the visualization and validation of the 
compositional relationships within or across families 
that are able to be captured in the spectra.

a

b

Fig. 4  (a) Average spectrum of entire Populus trichocarpa 7 × 7 population after TPS and tray corrections and (b) variance (% of the average) of each 
ion based on TIC-normalized and corrected spectra. C denotes source as carbohydrate sugar, L: lignin, P: phenolics, S: S-lignin, G: G-lignin, colors 
correspond with those indicated in Figs. 2 and 3
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Analysis and heritability of cell wall traits from corrected 
py‑MBMS spectra
The average lignin content of the entire population 
(n = 2721), after correcting for microspatial variation 
of the genotypes, was 25.5% (after taking replicate aver-
ages for each sample into account), ranging from 20.9 
to 27.9% (Table  3; Fig.  6a). The S/G ratio ranged from 
1.56 to 2.77, with an average of 2.10 (Table 3; Fig. 6b). 
These lignin metrics are typical for variants of P. 
trichocarpa as previously determined in Muchero et al. 
[1]. The broad-sense heritability of lignin composition 
based on TPS-corrected values was 0.56 and the herit-
ability of S/G was 0.81.

Discussion
Instrumental variance of py‑MBMS spectral features
Variance associated with sample heterogeneity and 
changes within the analytical equipment (instrumental 
drift) are assumed to be the source of the variance that 
was removed by correcting for “tray effects.” Ions that 

Table 1  Most heritable and informative ions with corresponding 
sources observed in  py-MBMS spectra of  7 × 7 P. trichocarpa 
pedigree

Sources obtained based on analysis of standards and from comparison to NIST 
online databases and also from [9, 18, 27]
a  Denotes surface complexity < 1

Ion (m/z) Source Heritability

94 Phenolics, lignin 0.79

138 Phenolics, G-lignin 0.76

66 Phenolics, lignin 0.74

121 Phenolics, lignin 0.74

167a S-lignin 0.72

182 S-lignin 0.70

210 S-lignin 0.68

181a S-lignin 0.65

194 S-lignin 0.64

154 S-lignin 0.59

208 S-lignin 0.58

124 G-lignin 0.56

150 G- and H-lignin, ferulate 0.55

164 G-lignin 0.53

137 G-lignin 0.53

168 S-lignin 0.48

180 Lignin 0.47

73 Carbohydrates 0.45

109 Phenolics, lignin 0.45

60 Acetyl 0.45

114 C5 carbohydrates 0.44

272a G–G lignin dimer 0.41

286 Lignin dimer 0.38

151 G-lignin 0.36

57 Carbohydrates 0.37

126 C6 carbohydrates 0.32

98 C6 carbohydrates 0.32

85 C5 carbohydrates 0.31

Table 2  Classes of  clusters of  ions (complete spectra of  thin 
plate spline and  tray-corrected ions, clustered by  Spearman’s 
rank correlation complete linkage hierarchical clustering) 
annotated for cell wall composition relevance

Cluster class 
(EK#)

Number of ions Annotations

0 79 Phenolics, lignin dimers

1 103 Lignin dimers, large mass noise

2 40 Low and moderate mass noise

3 32 Low and high mass noise

4 58 G-lignin

5 50 Carbohydrates

6 34 S-lignin

7 25 Lignin, carbohydrate, and 
phenolic fragments, moderate 
mass noise

a

b

Fig. 5  (a) PCA of clonal-averaged spectra with maternal/female 
parent genotype ID indicated (NA indicates maternal parent identity 
not available) and (b) Ward’s method cluster number indicated
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were highly affected by the “tray variable” were mostly 
fragment ions typically related to a more abundant 
parent pyrolysate and therefore suspected to be more 
affected by the conditions of the instrumentation. Tray 
corrected ions consisted primarily of ions > 200  m/z 
which are generally unannotated, low abundance ions 
with many typically considered “noise.” Also, a signifi-
cant amount of the ions, particularly those < 200  m/z, 
with high instrumental variance were also odd-num-
bered (as opposed to even), indicating their primary 
source as a fragment ion. For example, m/z 194 is 
known to originate from 2,6-dimethoxy-4-(2-pro-
penyl) phenol, an abundant pyrolysate derived from 
a sinapyl moiety in the lignin polymer [9, 27] did not 
need correction based on “tray effects” but had signifi-
cant effects from microspatial environment. Ion 193, 

being related to 194 after loss of a proton, had large tray 
effects and low associations with the microspatial envi-
ronment (Additional files 2, 3, 4).
Genetic and environmental influences on py‑MBMS 
spectral features
Microspatial and genetic variance component analyses 
on the MBMS data separated the ions into several dis-
tinct groups, of which the following were noted: (i) ions 
not affected by microspatial environmental variation 
with no significant heritability, (ii) ions not affected by 
microspatial environmental variation with high herit-
ability, (iii) ions slightly affected by microspatial envi-
ronmental variation with high heritability and (iv) ions 
moderately affected by microspatial environmental vari-
ation with moderate heritability, where most of the ions 
present in groups i–iii were tray-corrected as described 
in the previous section. Ions present in group i could 
mostly be attributed to “noise” and are otherwise not 
important for trait analyses and breeding approaches. 
The ions with high heritability but not affected by fine-
scale environment (group ii) consisted mostly of ions that 
fragment from other highly heritable ions, including ions 
181 (being related to 180 and 182) and 167 (an ion pro-
duced from a wide variety of S-lignin-derived species [9, 
27] that are otherwise also heritable). The heritable and 
environmentally stable ions still need to be corrected for 
instrumental drift as they may be particularly sensitive to 
the conditions of the pyrolyzer impacting fragmentation 
(e.g., the “parent” ions such as 182 and 194 would have 
environmental correction and subsequent fragments 181 
and 167 (respectively) would require instrumental cor-
rection). Otherwise, some peaks that were not impacted 
by microspatial environment but were impacted by 
instrumental variance and were highly heritable are note-
worthy based on their roles in lignin structure. For exam-
ple, m/z 272 and 302, believed to originate from G–G and 
S–G dimers in lignin [27], were heritable after tray cor-
rection but did not have high impact from environmen-
tal conditions, indicating low phenotypic plasticity for 
these traits. The 223 ions that were affected by micros-
patial environment (groups iii and iv), and subsequently 
TPS-corrected, included most of the ions known to origi-
nate from cell wall polymers including cellulose (e.g. m/z 
126), hemicelluloses (e.g., m/z 114) and lignin (such as 
m/z 124, 154, 168, 208) all together primarily occurring 
between m/z 50 and 210 (see Additional file 2 for anno-
tations). Therefore, ions impacted by the environment 
originating from the cell wall components were necessar-
ily corrected for accurate heritability measurements and 
exhibited high phenotypic plasticity. After the microspa-
tial environmental and instrumental corrections for the 
ions in the spectra were made, the genotypic variation 

Table 3  Summary of  composition analysis for  Populus 
trichocarpa pedigree samples based on  thin plate spline 
corrected data, parenthesis indicate standard deviation

Populus family analysis Population (n = 2721) Heritability (H2)

Average lignin content (%) 25.5 (± 0.9) 0.56

Average S/G ratio 2.10 (± 0.17) 0.81

a

b

Fig. 6  Histograms of lignin content and S/G ratios for the Populus 
trichocarpa population for all participants after thin plate spline 
correction for microspatial variation. [ is inclusive of the value and ( is 
exclusive of the value for the bins in the x-axis as defined in standard 
mathematical notation
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associated with the fragmented ions is more likely the 
result of variation in the structure of the cell wall biopol-
ymers (i.e., lignin linkages) and presence of free phenolic 
metabolites. However, more highly resolved information 
would be necessary to derive the specific biopolymer dif-
ferences in heritable spectral features due to the compli-
cated processes associated with thermal decomposition 
and fragmentation of bio-derived species during pyroly-
sis and electron ionization.

Clustering of the ions on the TPS-predicted values 
identified groups of ions with similar responses to micro-
spatial variation in the field trial. The two largest groups 
that represented the principal components of the TPS-
predicted values primarily corresponded to lignin and 
phenolic-derived ions (FK1) and lignin dimer as well as 
sugar-derived ions (FK6). The patterns of spatial vari-
ation in predicted values (e.g., Fig.  1b) roughly corre-
sponds to areas of the field that had high water content 
and standing water during the winter (personal obser-
vation). PC-1, accounting for 95% of the variation in the 
data, may therefore reflect this variation in soil water 
content. Therefore, most ions were affected by this sin-
gle environmental factor, but in opposing directions: FK1 
ions (phenolics, G- and S-lignin) had lower values in the 
areas under excess water, whereas FK6 (sugar and lignin 
dimers) had higher values with excess water. The other 
five clusters were driven by other minor PCs, and no clear 
pattern could be inferred. Independent clustering on 
TPS-corrected values resulted in groups that were largely 
congruent with those identified by the TPS-predicted 
values. However, clustering of ions based on the TPS-
corrected values should be driven by intrinsic factors 
of each ramet, including genetics, and was hence more 
effective at resolving genotypes on the basis of lignin 
monomer composition. Thus, ions in the same cluster are 
likely to share some of the same underlying genetic con-
trol, and may be derived from related pathways. This may 
provide a valuable clue about the identities of some of the 
unknown ions in these clusters warranting further inves-
tigation on their sources.

Sources of ions that were highly heritable and impacted 
by microspatial variation
Hierarchical clustering of the ions showed groups 
of ions relating to certain cell wall components and 
Ward’s clustering of the samples was able to differen-
tiate the samples based on familial relationships that 
were related by corresponding cell wall compositional 
differences. Lignin-derived ions were highly herit-
able, particularly those originating from the sinapyl 
(S) monomer present in the lignin polymer. For exam-
ple, m/z 210, 194, 182, 167, 154 are all ions present in 
the spectra of sinapyl alcohol consisting of fragments 

corresponding to 2,6-dimethoxy-4-(2-propenyl)phe-
nol (m/z 194), 4-ethylsyringol (m/z 167), and syringol 
(m/z 154), each of which are subsequently produced 
from various syringyl monomers present in lignin [40, 
41]. The ion m/z 208 originates from sinapylaldehyde 
which can be generated upon pyrolysis of S-lignins but 
if present in native lignin, can have dramatic impli-
cations relating to genetic and recalcitrance proper-
ties [42]. Ions 182 and 181 are due to the presence of 
syringaldehyde, which can be produced upon pyroly-
sis of syringyl lignin but may also be present in native 
lignin structures [42]. Ions 124 and 137 derive from a 
great number of guaicyl moieties (from coniferyl, G, 
monomer) in the lignin polymer, whereas 164 derives 
primarily from eugenol which was likely produced 
upon pyrolysis of labile (i.e., β-O-4) guaiacyl units in 
the lignin [43]. Other guaiacyl-related ions consisted 
of m/z 151 and 152, indicating the presence of vanil-
lins which are  primarily produced from the pyrolysis 
of guaiacyl lignins  and ferulates but may also be pre-
sent in the native lignin polymers [44]. Ferulic acid 
and 4-vinylguaiacol are likely the sources of m/z 150 
and 135. There are many S- and G-derived pyrolysates 
attributing to the presence of m/z 168 and 180, hence 
their high abundance in the spectra and high variance. 
Interestingly, m/z 272 is likely derived from a guaiacyl 
stilbene dimer that has been observed from the pyroly-
sis of lignins [27, 43] but has recently been identified 
as a monomer in endocarp lignins [45]. Additionally, 
since the samples were analyzed without an extraction 
of low-molecular weight phenolics, the heritability of 
phenolic-derived ions and the relationship between 
phenolic- and lignin-derived ions was observable. One 
set of half-siblings in particular, exhibited low S/G and 
low lignin abundance with higher production of phe-
nolic/salicylate-derived ions.

The most heritable and most variable ions originating 
from sugars were generated from many sugar-derived 
species including m/z 60 (derived from hydroxyacet-
aldehyde and acetate) and 73 (3-hydroxypropionalde-
hyde), each of which are also fragments of levoglucosan 
produced upon the pyrolysis of sugars [27]. Otherwise, 
m/z 114 which is particularly produced from C5 sugars 
(i.e., xylose [24, 27]), was amongst the most heritable 
carbohydrate-derived ions. C6 sugars (i.e., glucose from 
cellulose [24, 27]) are known to produce m/z 126, which 
was also found to be heritable but to a lesser degree 
than the C5-derived m/z 114. These sugar-derived ions 
were driven similarly by both maternal and paternal 
effects, but were amongst those of highest variance 
from paternal effects.
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Maternal effects
Ions originating from phenolics and salicylate-like spe-
cies (and as fragments from lignin), including m/z 66 (P, 
L), 94 (P, L), 121 (P), and 138 (P, L), were primarily driven 
by maternal parent-of-origin effects and these were 
among the most heritable as well as the most variable 
ions produced from the population.

Parent-of-origin effects are when offspring phenotypes 
are not in line with an additive pattern of inheritance of 
the two progenitors where deviation is mostly biased 
to either the female progenitors or to the male progeni-
tors. For example, chill tolerance in cucumber (Cucumis 
sativus) displays strong maternal effects (when the phe-
notype of the mother prevails over the father [46]) and 
seems to be linked to chloroplast elements [47, 48]. Par-
ent-of-origin effects have been shown to have important 
ecological and evolutionary implications (for example, 
genomic imprinting where  the silencing or overexpres-
sion of alleles is based on the sex of parent of origin, 
review provided by [49]). Given the asymmetric dispersal 
distance between ovules (maternal) and pollen (paternal), 
maternal effects seem to play a role in local adaptation of 
offspring to environments that normally are more similar 
to that of the mother than the father [50]. Also, parent-
of-origin effects have been implicated in interspecific 
reproductive barriers [51, 52] with a high rate of diver-
sifying evolution among plant species through genomic 
imprinting [53]. However, imprinted expression is con-
served in other genes across plant lineages, suggesting 
stabilizing selection for these loci [53, 54].

Despite the apparent evolutionary and ecological 
importance of parent-of-origin effects and their common 
occurrence in quantitative genetics studies of many traits 
of diverse plants [55], further investigation of causality is 
lacking. Furthermore, most in-depth studies have focused 
on the early stage of plant life cycle (endosperm and seed 
development [46, 56, 57]) and not much is known about 
genomic-imprinting and organelle effects in later stages 
of life in plants. In this study we show how parent-of-
origin effects (mostly maternal) have an important role 
in wood chemistry profiles. This may suggest that wood 
composition could play important roles in environmental 
adaptation in plants.

Implications in breeding and genomic selection
The high level of accuracy and reproducibility of py-
MBMS instrumentation showcased by this experiment 
and the high heritability of many biologically relevant 
ions provide many possibilities for the use of this ana-
lytical technique in tree breeding. First, precise and 
rapid estimation of lignin content and S/G ratio allowed 
for large sample size (i.e., breeding population or more 
replication) and the reduction of error, that translate 

immediately to gains in selection efficiency. The broad-
sense heritability values observed in this study for total 
lignin (0.56) and S/G (0.81) were comparable to or higher 
than those observed in previous studies using similar 
methodology (range of 0.23–0.58 and 0.42–0.81 for lignin 
and S/G, respectively; Additional file 1: Table S7) [3, 58–
60]. Second, this method and data treatment also permits 
larger training populations to create models for genomic 
selection with a lower level of uncertainty. Finally, recent 
research has pointed towards the integration of phenom-
ics layers into the genomic selection process to increase 
predictive power of the models [61], making use of the 
genetic correlation between phenotypes and also being 
able to improve associations between the genome and the 
traits. This latter approach takes advantage of the nor-
mally simpler genetic architecture of some phenotypes 
(such as specific pyrolysates or metabolites) to detect true 
positive associated loci. In this sense, to select for a trait, 
other layers of phenotypes are added to help to establish 
true correlations between the genome and the phenotype 
of interest. Among the many approaches that are under 
investigation currently, the use of selection indices seems 
promising [62]. Selection index approaches could be used 
not only to select for several phenotypes simultaneously, 
but also to integrate other phenotypes in the selection 
process that are not of ultimate interest but due to high 
correlation with the phenotype of interest and high herit-
ability can improve accuracy substantially.

Conclusions
Comprehensive analysis of a large pedigree of Populus 
trichocarpa was streamlined in a high-throughput py-
MBMS analysis and data analytics framework that eluci-
dated variation and heritability of biomass composition 
on the basis of spectral features. Ions that were sensitive 
to microspatial variation originated from phenolics and 
cell wall biopolymers such as lignin and hemicelluloses 
and cellulose; whereas, ions that were primarily impacted 
by instrumental variance were primarily attributed to 
noise, fragments and unannotated ions. The most vari-
able and heritable ions originated from phenolics and 
S-derived lignin monomers with fewer highly heritable 
ions originating from G-derived monomers and carbo-
hydrates within the cell wall. Maternal effects were gen-
erally higher for most heritable ions, particularly those 
derived from phenolics and lignin; whereas, paternal 
effects were similar to maternal or more impactful for 
carbohydrate-derived ions.

Methods
Progeny trial design and sample collection
Seven females and seven males of black cottonwood 
(Populus trichocarpa) were collected from naturally 
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occurring stands in Oregon and Washington, USA and 
were selected based on extremes and intermediate values 
in lignin content and S/G ratio phenotypes. These trees 
were grown in a common garden in Westport, OR on the 
lower Columbia River. These trees were crossed to gener-
ate 49 full-sib families in a full factorial design (i.e., full 
factorial; 7 × 7), parent identifier information is provided 
in Additional file  1: Table  S6. Additionally, seven open-
pollinated families were created from the seven moth-
ers. In total, 986 offspring were obtained and propagated. 
Three clonal replicates of these progeny plus the 14 par-
ents (n = 1000) were planted in April of 2015 in three 
complete, randomized blocks in Westport, OR. The trial 
consisted of 30 rows with 100 trees per row and the trial 
was surrounded by a double border consisting of extra 
ramets from the same crosses (Additional file 1: Fig. S16). 
Spacing was 3 m between rows and 1 m within rows. The 
location of the trial (46.130742°N, 123.370276°W) falls 
within the core of the natural black cottonwood distribu-
tion, with favorable climatic and edaphic conditions for 
this species.

In January 2018, wood cores were collected at breast 
height (1.3 m) from the southern face of the trunks of all 
live ramets (n = 2721). The cores were stored in envelopes 
and dried at 50 °C for 72 h. They were then ground in a 
Wiley Mini Cutting Mill (Thomas Scientific) and filtered 
through a 20 mesh sieve to 1 mm for py-MBMS analysis.
Py‑MBMS experiments
Py-MBMS was performed according to the previ-
ously described methods [9, 18, 23, 63]. Briefly, 4 mg of 
debarked, dried and ground material (1  mm mesh) was 
pyrolyzed in a Frontier PY2020 at 500 °C for 30 s. Pyrol-
ysis vapors were analyzed using an Extrel Super Sonic 
MBMS Model Max 1000 and spectra were collected at 
17  eV from m/z 30–450. MBMS data were processed 
using Merlin 3.0 software to produce average spectrum 
acquired during sample pyrolysis (a total ion chromato-
gram (TIC) peak over ~ 0.5 min at 0.5  s/scan rate) and 
spectral analysis was performed on (TIC) sum-normal-
ized data as described in the following sections. Almost 
all samples of ground wood were run twice (n = 5440). 
Additionally, six standards were run throughout (n = 509) 
for quality control monitoring. Runs were carried out in a 
total of 125 forty-eight-vial trays. Samples were analyzed 
in one replicate prior to instrument cleaning and retun-
ing and the second replicate (both sets in random order) 
was collected after cleaning to validate the reproducibility 
of the spectra. Lignin content was estimated by summing 
m/z 120 (H, coumarate), 124 (G), 137 (G), 138 (G), 150 
(H, G, ferulate), 152, 154 (S), 164 (G), 167 (S), 168 (S), 178 
(G), 180, 181, 182 (S), 194 (S), 208 (S) and 210 (S), where 
H denotes coumaryl (H) monomer-derived species, G 
refers to species derived from coniferyl monomers and 

S derived from sinapyl monomers. S/G was determined 
by dividing sum of S-derived ions (154, 167, 168, 182, 
194, 208, 210) by the sum of G-derived ions (124, 137, 
138, 150, 164, 178). Coumaryl (H) content was not deter-
mined based on known overlaps with coumarate-derived 
ions. Ion annotations were made based on [9, 18, 24, 27], 
comparisons to NIST databases (online as there is not 
one available for MBMS software) and by comparisons to 
standards analyzed in-house (spectral information avail-
able upon request).

Correction of py‑MBMS instrumental drift (tray effect)
This uniquely large sample set from a population devel-
oped for quantitative genetic analyses required the devel-
opment of a data analysis workflow that encompassed 
QC and comprehensive spectral analysis. To assess and 
correct for the batch effect due to tray, the following lin-
ear mixed model was run for every single ion for the six 
replicated standards:

where, yi,s,t is the TIC-normalized intensity of the ion i in 
the tray t for the standard s, μ is the overall mean, Trayt 
is the tray, Standards is the identity of the standard and 
Ɛi,t,s is the error. Both tray and standards were treated as 
random effects. The effect of each tray was used to cor-
rect the spectrum reads of each ion in the whole dataset 
(henceforth tray-corrected dataset). For one tray that 
lacked standards, a model was run on the whole data-
set just having tray as random effect. These models were 
solved with R package lme4.

Thin plate spline model for microspatial variation analysis 
and correction of py‑MBMS spectra
The means of each ramet of the spectral values for each 
ion were regressed to their spatial position in the field 
trial using a Thin plate spline model (TPS). This model 
estimates a smoothed surface, in our case matching 
with the two-dimensional spatial layout of the trial, but 
minimizing the variance of the residuals. Therefore, the 
predicted values of the model serve as an estimation of 
how the fine-scale environmental variation affects the 
ion intensity value, and the residuals quantify the varia-
tion that is attributed to other factors, such as genotype. 
Thus, we used the model to: (i) pinpoint which ions were 
not affected by fine-scale environment; those ions could 
be putative noise (i.e., no biological significance), metab-
olites under very strong genetic control, or stochastic or 
hyper-responsive metabolites, (ii) cluster ions based on 
their response to the environment and (iii) correct for 
the effects of fine-scale environmental variation. When 
the TPS model of an ion predicts a simple surface, it 

yi,t,s = µ+ Trayt + Standards + εi,t,s,
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implies that the ion is not affected by fine-scale environ-
mental variation (Fig.  1a). Complete lack of association 
between environment and phenotype is unlikely. There-
fore, this criterion could be used as a line of evidence to 
identify noise. However, linkage between environment 
and phenotype could be obscured for metabolites that 
are hyper-responsive to the environment, or which vary 
stochastically. Finally, metabolites under strong genetic 
control would not be expected to vary spatially. The 
complexity of the TPS-fitted values was assessed with a 
ad hoc parameter, dubbed as Surface complexity (SC), 
employing the following formula:

where, i is the i-th row, I is the total number of rows, ŷi 
is the vector of the fitted values for this row t is the vec-
tor of the tree position in the row, and cor is the Pear-
son correlation coefficient. Predicted values in simple 
surfaces vary linearly within row, so the absolute value of 
the correlation between the predicted value and the tree 
position within row is almost one. The product of this 
correlation across all the rows should therefore be close 
to one, and the log of this value should approach zero. 
Conversely, the higher complexity the predicted surface 
has, the lower the correlations will be and the higher the 
parameter SC will be. The R package fields [64] was used 
to fit the TPS models.

To group the ions based on response to the environ-
ment, the predicted values from the TPS model were sub-
mitted to a principal component analysis (PCA) and to 
hierarchical clustering (HC) as described below. Finally, 
the residuals of the models were used as estimators of the 
variation of the ions due to factors not spatially driven 
(e.g., genotype). The residuals for each were added to 
the ion mean value to project them to the original scale 
(henceforth TPS-corrected dataset). To study common 
non-environmental trends among ions, PCA on stand-
ardized values and HC were carried out as described 
below.

Broad‑sense heritability
Broad-sense heritabilities were calculated on the TIC-
normalized, combined tray-corrected and the TPS-cor-
rected full spectra and TPS-corrected values of lignin 
and S/G ratios determined prior to any spectral correc-
tions. These variance components were estimated using 
a linear mixed model having ion intensities as response 
variable and genotype as a random effect by means of 
the R package lme4. Heritability was calculated from the 
variance explained by genotype divided by the total vari-
ance (i.e., the sum of the variance explained by genotype 

SC = −log10

I∏

i

∣∣cor(ŷi, t)
∣∣,

plus the variance due to residuals of the model). To assess 
significant departures from null values, we performed 
permutation tests on the heritability of each ion. We 
ran 1000 permutations for each ion setting significance 
threshold α ≤ 0.05. Maternal and paternal effects were 
estimated in a similar way, adding mother and father as 
random effects to the aforementioned model. For exam-
ple, maternal effects were estimated by the proportion of 
the variance explained by the mother relative to the total 
variance (sum of variance explained by genotype, mother, 
father and residuals).

Multivariate analytical procedures
Descriptive statistical analysis (i.e., mean, variance, 
standard deviation), principal component analysis (PCA) 
and clustering were used to explore spectral data with the 
software R [65] and Unscrambler X V.10.5 (Camo Soft-
ware). PCA was performed using 100 iterations of the 
NIPALS algorithm, with 6 or 7 principal components 
depending on convergence of data, 20 random cross vali-
dation segments, and mean-centered data. Hierarchical 
clustering by complete linkage using Spearman’s rank 
correlation distance was performed for clustering of ions 
in spectra and Ward’s method using Euclidean distance 
for clustering of biomass samples. K-means clustering of 
ions and samples (ramets) was performed in R using the 
packages cluster and factoextra.
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ars; HC: Hierarchical clustering; PCA: Principle component analysis; py-MBMS: 
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Syringyl/guaiacyl ratio; TPS: Thin plate spline.
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E) scores of Poplar 93968, F) corresponding loadings of spectra from 
standards only plotted in spectral format for PC-1 and G) loadings for PC-2 
of the standard spectra only. “Pop” corresponds to poplar and “Lob” cor‑
responds to Loblolly pine. Figure S2. Aspen Control analysis throughout 
course of experiment. A) average spectrum B) variance of each ion. Figure 
S3. PC-1 as a function of time using Control Aspen spectra (TICnormalized) 
over the course of analysis by py-MBMS. X-axis values correspond to tray 
number (chronological sequence) in which the aspen sample was ana‑
lyzed. >120 trays were analyzed over the course of 6 weeks. Figure S4. PCA 
analyses of replicate 7x7 poplar sample analyses. Colors show replicates 
prior to tray and TPS correction. Figure S5. TPS-predicted spectra hierarchi‑
cal clustering dendrogram where colors show separation of 7 clusters 
corresponding to K-means clusters (Figure S9). Figure S6. PCA of entire 
population with spatial location of sample highlighted prior to TPS-tray 
correction of spectra and after TPS-tray corrections. Figure S7. Broad-sense 
heritability of ions in py-MBMS spectra with and without tray (A) and TPS 
(B) correction. Figure S8. Variance of ions in py-MBMS spectra explained 
from maternal and paternal effects. Figure S9. K-means cluster analysis 
of ions in spectra from 7x7 pedigree. Figure S10. Hierarchical Clustering 
(complete linkage, Spearman’s rank correlation distance method) of ions 
from spectra of entire population after tray and TPS correction. EK# shown 
corresponding to different colors of ions in dendrogram corresponding 
with Additional file 4 . Figure S11. Lignin content and composition differ‑
ences based on maternal and paternal relationships. Figure S12. Clusters 
of samples after tray and TPS correction (Ward’s Euclidean, 7 clusters). 
Figure S13. K-means clustering of samples based on spectra after clonal 
averaging from 7x7 P. trichocarpa pedigree. Figure S14. PCA projection of 
corrected spectra from population after clonal averaging showing cluster‑
ing associated with m/z 94 abundance (blue square being lowest, red 
circle is moderate and green triangle is highest intensity of m/z 94). Figure 
S15. Comparison of phenolic (m/z 94) and S lignin (m/z 210) derived ions 
across half-sib families, error shows standard deviation within each family. 
Figure S16. Block diagram of the progeny field design.
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