

The Regional Energy
Deployment System (ReEDS):
An Open-Access Model for the
North American Electricity
System

Kelly Eurek, Maxwell Brown, Wesley Cole, Jonathan Ho, Daniel Steinberg + the NREL ReEDS Team INFORMS Annual Meeting October 21, 2019

North America Is Diverse in Energy Resources and Load

The availability of natural resources varies widely across regions.

So does how and when energy is used on the grid.

A modern power system can take advantage of this diversity to provide reliable, affordable, sustainable power.

Preliminary Findings, Not for Quotation or Distribution

- 1. History and Overview of ReEDS
- 2. North American Modeling using ReEDS
- 3. Brief Introduction to Open Access ReEDS

In 2003, NREL identified a need for advanced tools for modeling emerging wind technologies.

"The large scope and focus on today's dominant conventional energy forms [in existing models] do not allow a detailed treatment of the more important issues for wind energy technologies."

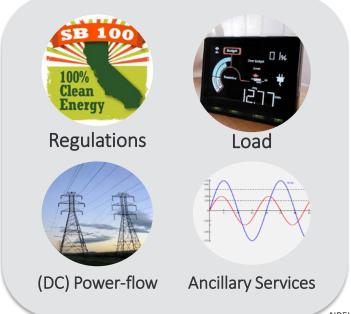
WinDS (2001) \rightarrow ReEDS (2008) \rightarrow ReEDS 2.0 (2019)

- 1999 Spreadsheet model leveraging GIS data
- 2001 Built an optimization model for wind called WinDS
- 2008 Recast as ReEDS (expanded to more technologies)
- 2016 Incorporation of Canada and Mexico
- 2017 ReEDS 2.0 development began (rewrite; new features)
- 2018 North American Renewable Integration Study began
- 2019 Open Access ReEDS (2.0) released

What does ReEDS 2.0 do?

Given a set of input assumptions, ReEDS optimizes the evolution and operation of generation, transmission, and end-use demand and associated technologies.

ReEDS 2.0 Features


- Uniform architecture—highly generalized and flexible implementation
- Flexibility in:
 - Capacity detail—maintain high plant-level detail or aggregate; track vintages
 - Modeled years and time-horizon user-defined resolution
 - Regionality quickly shrink or expand model
 - Foresight sequential (myopic), intertemporal (perfect), or sliding-window
 - Retirements endogenous, exogenous, or mixed
- **Demand-side module:** includes a representation of consumer decision-making around energy service consumption, device adoption, and electricity consumption
- Endogenous calculation of VRE integration challenges: capacity credit and curtailment
- Endogenous calculation of non-energy electricity service requirements: e.g. frequency regulation, contingency, forecast-error

ReEDS Module Structure Input Data Module Linkages with Other Models Supply Module Output VRR Module: Curtailment Module VRR Module: Capacity Resource Credit Data Module

How the supply-side module work?

The ReEDS supply-module identifies the *least cost mix and operation* of resources that simultaneously meets load, all other electricity service requirements (planning reserves, operating reserves), and physical and environmental constraints.

User-specified model years

Foresight: Myopic (Sequential Solves)

Modeling the North American Power Systems with ReEDS

ReEDS US + Canada (2013, 2015, 2017)

Figure 21. Net exported contracted firm capacity from Canada for the reference scenario

Goals:

- Demonstrate the Canada-US modeling capability
- Analyze international transfers of grid services
- Quantify the potential value of cross-border transmission

ReEDS Mexico (2017)

Figure 16. Transmission investments up to 2050 under Reference scenario

Goals:

- Demonstrate the ReEDS Mexico modeling capability
- Final step in preparation for North American analysis

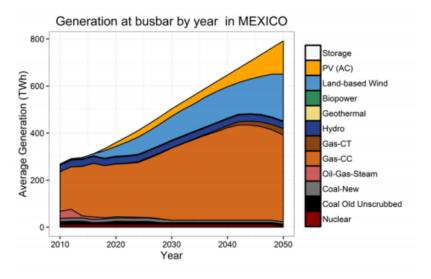


Figure 15. Mexican power system generation mix from 2010-2050 under Reference scenario.

Figure 18. 2050 Wind capacity per region under Reference Scenario

Preliminary Findings, Not for Quotation or Distribution

The North American Renewable Integration Study

State-of-the-art analysis of the U.S., Canada, and Mexico power systems, from planning through operations

WHAT WE'RE STUDYING

- Long-term pathways to a modern power system in North America
- Operational feasibility of very high-penetration scenarios
- Weather variability and uncertainty
- Value of enabling technologies: flexible hydro, thermal generation, demand response, storage, transmission
- Value of operating practices: interchange, enhanced scheduling, local generation, reserve provisions

How it Works: Modeling Flow

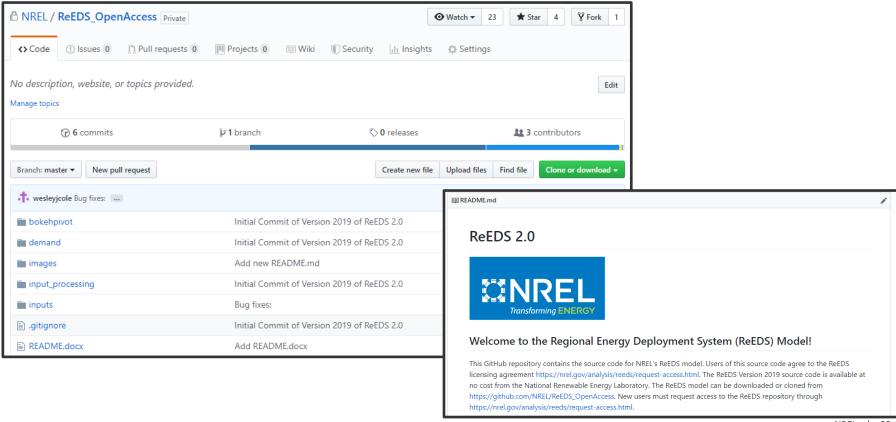
Open Access ReEDS

Requesting Access

U.S.-Only ReEDS Model Available

The U.S.-only version of the ReEDS model is now publicly available.

To use, you must request access to NREL's Github repository.


REQUEST ACCESS

https://www.nrel.gov/analysis/reeds/

Home About v Request Access Staff Publications Contact Us
NREL GitHub Repository Access Request
Complete and submit this form to request access to NREL's GitHub repository that contains the Regional Energy Deployment System (ReEDS) model and inputs.
Note: A GAMS (General Algebraic Modeling System) license and appropriate solver will be required to run the model. Learn more about the model.
First Name (Required)
Last Name (Required)
Email Address (Required)
GitHub Username (Required)
Please read the terms of user agreement
I accept the terms of the user agreement (Required) Yes

https://github.com/NREL/ReEDS OpenAccess

Get a ReEDS 101 on Oct. 31

 On Thursday, Oct. 31, at 11 a.m. Mountain Time, NREL will host a free webinar explaining the ReEDS model and its uses, as well as opening the floor for Q&As.

 Please join us to learn more about how ReEDS can lead to better-informed energy decisions, policies, and infrastructure planning.

Thank you! Kelly.Eurek@nrel.gov

www.nrel.gov

NREL/PR-6A20-75170

