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Abstract—Increasing number of power outage events due to
extreme weather condition is hampering us socioeconomically.
Preparing in advance for the extreme weather event is critical
and can help utility operators to reduce grid damages, restore
grid service quickly, allocate energy resources and repair crews
strategically, and hence dramatically increase grid resilience. In
this paper, we propose a method to identify the sequence of worst
impact zones in the power grid caused by extreme weather events
based on Q-learning (a reinforcement learning algorithm). To
quantify weather severity and it’s effect on the grid, we model
the impact of extreme weather on the grid as a function of
intensity, vulnerability and exposure. A modified IEEE 123-node
distribution feeder is presented in a mesh grid and experimented
for sequences of zones identification. Finally, simulation results
present the identified sequences and their associated impacts on
the grid caused by the extreme weather events.

Index Terms—Q-learning, impact analysis, grid vulnerability,
grid resilience, extreme weather, distribution system.

I. INTRODUCTION

In recent years, the necessity of research in the area of
grid vulnerability and resilience has increased due to the high
frequency and intensity of power outage. A majority of power
outage incidents are caused by the extreme weather, leading to
significant infrastructure losses and service failures. According
to EATON, the United States is unprepared for catastrophic
power outage. Two back-to-back winter storms caused severe
harm to the residents of east cost of the United States in
early March of 2018. In New Jersey, almost 600 poles were
broken, 1, 700 spans of wire needed replacement. The number
of residents affected in New Jersey, New York, Massachusetts,
and Connecticut was more than a million. Hurricane Florence
made around 1.4 million customers suffer without power
across the Carolinas [1]. To prevent from such significant
damages for future extreme weather, it is indispensable for grid
operators to possess certain knowledge of grid vulnerability,
and identify the critical but vulnerable zones which are liable
to suffer the worst impact caused by the event.

Some research activities have been attempted to assess
the vulnerability of power grid utilizing machine learning
approaches. The authors of [2] analyzed the resiliency of
a microgrid during extreme weather event representing it
in a mesh grid approach. The authors of [3] analyzed the
resilience of the grid under natural disaster including the
impact forecast of the event leading to system hardening.

The impact of extreme weather events on the power grid
was studied in [4], where impact is modeled as a multipli-
cation of exposure, vulnerability, and intensity. In [5], the
authors conducted vulnerability assessment of a power grid
considering malicious attacks on the grid adopting Q-learning
and game theory. Although the impact of extreme natural
events on the power grid has been widely studied, most of
the existing literature overlooked the sequential propagation of
the event and its corresponding dynamic impact on the grid.
Moreover, a scalable modeling of the event impact is necessary
to consider multiple/several weather parameters which affects
the quantification of impact caused by extreme weather events.

To overcome the identified limitations, this paper proposes a
Q-learning based impact assessment approach, which is able
to identify the geographic zones that suffer from the worst
impact caused by extreme weather with the consideration of
weather severity and propagation. The contributions of the
paper include the following:
• We propose a novel approach to identify the sequences

of vulnerable zones of a power grid adopting Q-learning
algorithm. The outcome of this research provides insight-
ful knowledge of the system’s critical component, which
in turn will help utility operators to conduct pre-event
resource allocation, and/or quick system restoration.

• While identifying the sequences of vulnerable zones, we
propose a novel method of impact modeling for the
grid due to extreme natural events considering different
weather parameters. The proposed model is a generic
one, and can be extended and scaled for including other
relevant weather parameters.

Rest of the paper is organized as follows. Section II provides
theoretical background of Q-learning algorithm, the proposed
impact model, and the calculation of generation loss and line
outage. The overall block diagram of the proposed research,
our proposed algorithm using Q-learning, and the design
parameters are explained in Section III. Section IV analyzes
the simulation results and Section V concludes the paper
summarizing the outcome of this research.

II. THEORETICAL BACKGROUND

In this section, we will provide a brief discussion on
reinforcement learning, modeling of impact, and calculation
of generation loss and line outage.
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A. Reinforcement Learning

We utilize Q-learning algorithm to conduct the proposed
research. Q-learning is a model free reinforcement learning
algorithm. The goal of Q-learning agent is to learn a pol-
icy/strategy, which informs the agent what action to execute
under certain circumstances. Q-learning is capable of han-
dling problems with stochastic transitions and rewards. In Q-
learning, a learning agent interacts with the environment to
learn the optimal policy/strategy. To interact, an agent executes
actions in the environment and in return receives a feedback
for the executed action. Q can be formulated as follows:

(1)Q(s, a) = R(s, a) + γ
∑
s′∈S

V (s′)

where R is the reward. The reward is used to find the optimal
strategy/policy at the end of learning by maximizing the
cumulative sum of future rewards. The value of the state S,
V (s) can be formulated as follows:

(2)V (s) = max
a∈A

∑
a∈A

Q(s, a)

where V is the value of the state S due to action a. γ is
the discount rate which helps the learning agent to focus on
long term/short term reward. γ ranges from zero to one. The
value of γ close to zero helps the learning agent to focus
on short term reward, whereas the value of γ close to one
helps the learning agent to emphasis on long term reward.
Another hyper-parameter that helps the learning agent learn
faster is ε. ε is the exploration probability. A reinforcement
learning agent learns from trial and error process which is
known as exploration and exploitation, respectively. The value
of ε helps to trade between exploration and exploitation, and
ranges from 0 to 1. Initially, the value of ε starts with a
very high value close to 1 which reflects higher probability of
exploration (random action) and gradually reduces to a value
close to 0 ensuring maximum probability of executing greedy
action selection. A reinforcement learning agent optimize
the cumulative sum of future rewards to find the optimal
policy/strategy.

B. Impact Modeling

To model the impact, IM of the extreme weather (EW )
events on the grid, we formulate the following:

(3)IMEW = w1 × VEW + w2 × InEW + w3 × EEW

where IMEW represents impact on the grid caused by ex-
treme weather events, VEW , InEW , and EEW represent the
vulnerability of the grid due to extreme weather, intensity of
the extreme weather event, and exposure of the grid to the
extreme weather event, respectively. w represents the weights.
Hence, w1, w2, and w3 are the weight factor of these three
components of the impact.

The definition of vulnerability is dependent on domains.
For critical infrastructures like cyber-physical power system
(CPPS), the understanding of vulnerability is more focused
and specified. Vulnerability of a cyber-physical power grid can

be defined as the measure of the system’s weakness to failures,
threats, disasters, or attacks. The weakness is with respect to
a sequence of cascading events that may include line outage
(LO) or generation loss (GL), malfunctions or undesirable
operations of protection relays, information or communication
failures, etc [6], [7]. In this paper, vulnerability of the grid
caused by extreme weather events is defined as follows:

(4)VEW = w4 ×
GLEW

GCT
+ w5 ×

LOEW

LT

where, VEW , GLEW , GCT , LOEW , and LT represent vulner-
ability of the grid due to extreme weather event, generation
loss caused by the extreme weather event, total generation
capacity of the grid, line outage caused by the extreme weather
event, and total number of lines in the grid.

Intensity of the extreme weather can be defined in several
ways. Mostly, intensity of the extreme weather is a function
of different weather parameters. To quantify the intensity of
the extreme weather, we are considering five different weather
parameters. The generic equation to quantify the intensity of
the extreme weather is proposed as follows:

(5)InEW =
N∑

n=1

wn ×WpnEW

where InEW stands for the intensity of the extreme weather
event, WpnEW stands for the weather parameter associated
with that extreme weather, n is index of the weather parameter,
and n = 1, 2, 3, . . . , N . In this paper, intensity of the extreme
weather event is defined as follows:

(6)
InEW = w6 ×

WsEW

Wsworst
+ w7

TEW

Tworst
+ w8 ×

PEW

Pworst

+ w9 ×
PrEW

Prworst
+ w10 ×

HEW

Hworst

where w6, w7, w8, w9, and w10 are the weight factors and
considered equal for all the parameters. WsEW , TEW , PEW ,
PrEW , and HEW stand for the wind speed, temperature, pres-
sure, precipitation, and humidity of the specific location/zone
during the extreme weather event, respectively. Wsworst,
Tworst, Pworst, Prworst, and Hworst stand for the worst wind
speed, temperature, pressure, precipitation, and humidity out
of all the weather impacted zones.

The exposure of the grid to the extreme weather event can
be defined as a percentage of the grid exposed to the event.
The exposure, EEW caused by the extreme weather event can
be formulated as:

(7)EEW =
NH

NT

where NH stands for number of buses affected in the event
horizon, and NT stands for the total number of buses in the
grid.
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C. Calculation of generation loss and line outage

In order to calculate the vulnerability, we calculate the
generation loss and line outage during an extreme weather
event. During calculation of line outage and generation loss,
we consider the consequence of the cascading outages. To
calculate generation loss and line outage, we use the follow-
ing algorithm which is adopted from [5], [8]. Time-delayed
overcurrent relay is used to measure the overloads in the
branches. The threshold for the overload is considered as 150%
of the regular line limit. Based on these generation loss and
line outage, the vulnerability and the impact is calculated.
Algorithm 1: Generation loss and line outage cal-
culation
Input : Test case, bus coordinates
Output: Cascaded outages, total generation loss

1 Initialize and load the test case;
2 Represent the grid in a mesh view and place the buses

based on their coordinates;
3 for A specific zone do
4 Determine the buses and branches involved;
5 Run the pre-contingency power Flow ;
6 Remove the buses connected to the impact zone;
7 Divide into sub-grids according to the overloads;
8 Re-dispatch the power flow;
9 Update the relay settings;

10 if There is overloads then
11 Trip the branches according to updated settings;
12 Check for the overloads again;
13 else
14 Calculate total generation loss;
15 Calculate total number of line outages;
16 end
17 Store and display the loss and line outages ;
18 end

III. PROPOSED RESEARCH

In this section, we explain the overall block diagram that
we propose in this research. Then, we discuss the mesh repre-
sentation of the revised IEEE 123-node test feeder, proposed
algorithm, and the design parameters.

A. Overall Block Diagram

The identification of the sequence of the worst impact
zones during a propagating extreme weather involves learning
process, action execution process, and evaluation process.
Figure 1 represents the overall block diagram for process flow
of this research. The process starts with initializing the power
system parameters. We provide weather data and coordinates
of the test system as input. Based on the coordinates, the power
system is represented as a mesh grid. Initially, we assume the
weather hasn’t landed/stroked yet. We divide the whole event
propagation into five time steps. We consider the weathers
for those five time steps of a day and assume the weather
event is going to propagate to different zones during these
time steps. For every time step, we select a zone from the

mesh grid and following the generation loss and line outages
calculated using Algorithm-1. After calculating the generation
loss and line outages, we calculate the impact of that event
using equation (3). After that, we assign reward/feedback.
In the next time step, the event propagate to the next time
step and we select next impact zone. Similar to the previous
process, we calculate the impact of the event to that selected
zone. If the event is done with propagation, we check if the
learning is complete or not. After enough trial and error,
evaluating the rewards/feedback the learning agent converges
to the optimal policy. After the learning is complete, we
terminate the process.

B. Test system and mesh representation

In order to validate the proposed approach, the IEEE 123-
node system is selected to conduct simulation analysis. The
IEEE 123-node distribution feeder is modified and converted
to equivalent single phase test case. Then we represent the
revised IEEE 123-node system as a mesh grid by using
geographic information system (GIS) information of the buses.

Figure 2: Mesh representation of the revised IEEE 123-node test
system.

The GIS information or the coordinates of the grids are
normalized and presented in the mesh grid as a 10× 10 grid.
The lower left box is representing zone number 1, the lower
right box represents zone 10, the upper left box represents zone
91, and the upper right box represents zone 100. Based on the
normalized coordinates, the nodes are placed. The connection
between the nodes represents the lines between them. The red
colored zone in Figure 2 represents the zone having the worst
weather parameter of all time steps. The yellow colored zone
represents the zones where the event is currently happening.

C. Proposed Algorithm

In this sub-section, we will discuss our proposed re-
search algorithm based on Q-learning to identify the se-
quences of worst impact zones caused by extreme weather
event. Algorithm 2 represents the pseudo code for the Q-
learning based sequence identification of worst possible impact
zones caused by extreme weather event. The algorithm starts
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Figure 1: Overall block diagram of the proposed research to identify the worst impact zones for extreme weather event.

with initializing the learning and power system parameters.
Given the test case information, number of total episodes,
maximum iterations in each episode, discount factor, and
weather data as input. This algorithm terminates with pro-
viding the information of the sequences of impact zones.
Algorithm 2: Proposed Q-Learning for Sequence
Identification of Weather Impact Zones
Input : Power system case information, Number of

total episodes, maximum iteration for each
episode, learning parameters, weather
parameters.

Output: Sequence of weather impact zones.
1 Initialization;
2 for Maximum number of rounds do
3 Reset the learning and power system parameters;
4 for Maximum number of run do
5 Initialize the current state;
6 for Maximum number of iterations do
7 if Prob > ε then
8 Select a random zone from the grid;
9 else

10 Select an impact zone from Q-table
following greedy policy ;

11 end
12 Calculate intensity, vulnerability, and

exposure following eqs. (6), (4), and (7);
13 Calculate impact of the extreme weather

using (3) ;
14 Assign the impact as the reward ;
15 Update the Q-value using eqn. (1);
16 end
17 end
18 end

D. Design Parameters
The design parameters of this research includes states (S),

actions (a), rewards (R), etc. The states are the conditions of
the power grid during different time steps. When a state tran-
sits to another state in the next time step, it carries the infor-
mation from the previous time step. This information includes
the topological information of the power system. The system

states can be represented as, S = {s1, s2, . . . , sn} where n
represents the total number of zones visited in the time steps.
The actions are the execution of line outage calculation of
impact caused by the extreme weather event. The possible
action set is represented as follows: A = {a1, a2, . . . , ap}
where a1, a2 represents the possible actions at a given state,
and p represents the number of total possible actions at that
state. In the grid, the span of the event for a specific time
step is distributed within 3× 3 zones. The center of this 3× 3
zone is the event center, and the rest 8 zones are the event
edge. In reality, the intensity of the weather and the impact
caused by it will vary from the center to the edge. But for
the ease of simulation, we are assuming the event will have
distributed and separate impacts based on the weather input.
The reward is the feedback for the executed actions performed
by a learning agent. In this research, we are assuming the
impact as the reward for executing an action at a time step. The
main target is to find the propagation sequence of the zones
where the cumulative sum of rewards (impacts) are maximum.
The value of ε is considered as 0.8 as the initial exploration
rate which ensures initially there will be 80% exploration
(random action selection) and gradually the value of ε will
be reduced to a value close to 0. At this stage, the learning
agent will follow the greedy policy to select actions which
maximizes the cumulative sum of future rewards. The value
of γ is considered as 0.9, which ensures that the agent will
focus more on the future rewards instead of short term rewards.

IV. SIMULATION AND RESULTS ANALYSIS

The simulation is conducted using MATLAB R2019a on
a standard PC with an Intel(R) Core(TM) i7-3720QM CPU
running at 2.60 GHz and with 16.0 GB RAM. To conduct
the simulation we used weather data (four types of weather
parameters) of 20 different locations and distributed randomly
among the 100 zones. We collected wind speed, temperature,
pressure, relative humidity, and precipitation to conduct this
study. We collected the weather data of Hurricane Katrina of
August 26th, 2005. Using the weather parameters shown in
those above tables, we identify the sequences of the worst
impact zones for the grid caused by extreme weather events.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Figure 3: Cumulative sum of the future rewards.

Figure 3 shows the convergence curve for the learning agent
to the optimal strategies (average of 150 rounds). Table I shows
the identified sequences of zones.

Table I: Sequences of the weather impact zones
# Sequences Impact # Sequences Impact

01. [90, 60, 30, 27, 57] 0.4953 06. [53, 83, 86, 89, 59] 0.5110
02. [98, 95, 92, 62, 32] 0.4931 07. [83, 53, 23, 26, 29] 0.5522
03. [18, 45, 45, 42, 72] 0.5327 08. [73, 76, 46, 16, 13] 0.5365
04. [32, 2, 5, 35, 65] 0.5112 09. [25, 22, 52, 55, 58] 0.5430
05. [83, 86, 89, 59, 56] 0.5154 10. [73, 43, 13, 16, 19] 0.5262

Table I shows the sequences of worst impact zones caused
by extreme weather event in IEEE 123-node distribution sys-
tem. The numbers in the sequences represent different zones in
the grid representation of IEEE-123 nodes distribution system.
For example, the first sequence from Table I consists of zone
90, 60, 30, 27, and 57. These numbers represent different area
of the IEEE - 123 nodes distribution system based on the zone
numbering from section III-B. The sequences depicts that,
the impact of the extreme weather event is going to cause
severe damage to the grid if the weather propagates in the
grid following the sequence. The impact values are normalized
and range from 0 to 1. There are multiple sequences, which
represent different propagation path of the events that can
impact the grid severely.

Table II: Intensity, exposure, and vulnerability calculated from asso-
ciated zones in the sequences from Table I

Zone Index Intensity Exposure Vulnerability

90 0.7737 0.0163 0.0154
60 0.8075 0.0325 0.0309
30 0.7224 0.0163 0.0179
27 0.6856 0.1057 0.1781
57 0.7421 0.1545 0.2044

Table II represents different intensity value of the zones
from the first sequence of Table I. These intensities are then
used to calculate the impact of the sequences.

Table III: Nodes in the associated zones
Zone Index Nodes in the Zones

90 [113, 114]
60 [71, 100, 104, 123]
30 [75, 85]
27 [56, 61, 72, 73, 74, 76, 77, 78, 79, 80, 86, 87, 88]
57 [60, 62, 63, 64, 67, 68, 69, 70, 97, 98, 99, 101, 102, 103, 105, 106, 107, 119, 120]

The nodes/lines involved in the first sequence from Table
I are given in Table III. The impacts from the sequences in
Table I are calculated based on the nodes mentioned above.

V. CONCLUSION

Power grid is vulnerable to extreme weather events. Iden-
tification of worst impact zones during an extreme weather
event in a grid can reveal the critical areas/components which
are most vulnerable to the extreme weather causing most
significant damages. In this paper, first we propose a novel
approach to quantify the impact caused by the extreme weather
events. Second, we introduce a novel approach of identifying
the worst impact zones of a grid using Q-learning algorithm.
The sequence of power grid zones is identified due to the
consideration of weather propagation. The sequence of worst
impact zones will provide guidance for utilities to harden
system ahead and prevent from catastrophic grid failures, and
it can also provide valuable information for system operators
to dispatch repair crews by prioritizing the critical zones after
the disastrous event hits the grid.
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