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Motivation and Objectives

• Lignocellulosic biomass (such as forest and agricultural crop residues) is 
widely available (annually >0.5 bil tons) for conversion to energy sources 
(fuel/electricity) 

• Compression-screw feeders are used in biorefineries to transport biomass 
feedstock from hopper to biomass-conversion reactors 
(pretreatment/pyrolysis reactors)

• Mechanical failure and feed plugging is one of the main challenges in the 
operation of screw feeder

• Our goal is to use simulation techniques to analyze the challenging 
operating conditions and predict the mechanical failure. 

• Develop a more reliable design to avoid these operating failures



Experimental Setup
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NREL Screw Feeder
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NREL Screw Feeder
• Forest residue feedstock milled 

to pass 3/8 inch screen
• ~ 30% moisture
• 16.6 Kg/h flow rate
• 10.3 and 6.9 rpm rotation speed
• Screw inlet diameter: 4 in
• Screw outlet diameter: 3 in
• Screw pitch: 2 inch
• Length: 12.5 inch

COMPRESSION 
SCREW SECTION & 
STATOR

CONVEYANCE 
SCREW SECTION

HOPPER

GEARBOX (MOTOR 
NOT SHOWN)

SQUEEZATE DRAIN 
HOLES

PLUG THROAT



Numerical Model
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Compressible Bingham Fluid

• Concentrated biomass is a complex 
multiphase fluid (solid/liquid/gas)

1. Compressible behavior
2. Non-Newtonian rheology

• Duncan el al. recently studied biomass 
behavior in a pressure driven flow.

• They developed a density dependent 
yield stress model for compressible 
biomass

Duncan et al. Journal of Rheology 62 (2018) 801-815
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Governing equations

Continuity

• The biomass feedstock is treated as a single compressible non-Newtonian fluid. 

Conservation of momentum

Stress tensor for Bingham fluid

Rate of strain tensor

equations
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Transport/rheology models

Collaborators (Akbari et al.) from University of Toledo 
measured yield stress parameters for the feedstock

Density-dependent yield stress (Duncan et al.)

equations
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Parameter Value Unit

𝜌ref 395 kg/m3

𝜏y,ref 3E+5 Pa

𝜇max 1E+5 Pa.s

𝜇p 1E+3 Pa.s

b 6.2 -

Bingham fluid viscosity is capped to avoid infinity 
values at regions with very small strain rate 
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Equation of State

Subtask 2: Complete simulation of pilot-scale screw feeder

ible non-newtonian fluid. Physical phenonmena such as density changes
with pressure and shear-induced motion of biomass particles are encapsu-
lated into an equation-of-state and a generalized non-newtonian viscosity,
respectively. We follow the formulation by Duncan et al. [3] to develop a full
three-dimensional model that simulates the feeding of biomass by a pilot-
scale screw feeder. The governing equations are continuity,

@⇢

@t
+r · ⇢u = 0, (1)

and conservation of momentum,

@
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(⇢u) +r · ⇢uu = �rP +r · �. (2)

Here, ⇢ represents the overall biomass density, u is the velocity field, P is the
pressure, and � is the stress tensor.

The stress tensor is computed using a generalized non-Newtonian viscos-
ity formulation that follows the Bingham model, given by,
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Here, ⌘pl is the plastic viscosity, ⌘y is the viscosity due to yield stress and D is
the strain-rate tensor. The yield viscosity term, ⌘y is capped by a maximum
viscosity, ⌘y,max, to prevent divergent values due to vanishingly small strain-
rates that may occur in the computational domain. The yield stress, �y, is a
function of local biomass density:
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Here �y,ref and ⇢ref are reference yield stress and biomass density, respectively.
The overall density of biomass feedstock changes with pressure as the air

within the biomass is compressed. We model this e↵ect by incorporating an
equation-of-state as part of our compressible governing equations. We follow
the formulation by Duncan et al. [3], given by:

⇢(P ) = ⇢ref
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Here, ⇢ref is the reference density at reference pressure Pref , ⇢max is the max-
imum density that corresponds to the biomass skeletal density, and � is a
feedstock-specific coe�cient that is computed from experiments.

It is important to note that the yield-stress and density relationships
(Eqs. 5, 6) are specific to the feedstock at a particular moisture content. At
su�ciently high pressure, liquid will be squeezed from the biomass, lowering
the moisture content. This is not expected for the forest residues at 30%
moisture that is currently being considered. If necessary, the CFD methods
will be adapted to include loss of liquid, and empirical relationships will be
developed for the reference coe�cients as functions of moisture content.

2

Pressure-dependent density equation 
(Duncan et al.)

Parameter Value Unit

𝜌ref 188 kg/m3

𝜌max 2290 kg/m3

Pref 1 atm

𝜒 1.146 -
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CFD implementation

• Used OpenFOAM framework

• Implemented a new thermophysical model for biomass equation of state

• Modified the transient compressible rhoPimpleFoam solver to include the 

new constitutive model in the momentum equation with density 

dependent yield stress

• Screw feeder geometry CAD STL files were used in snappyHexMesh to 

generate the computational domain mesh
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Model Verification

Subtask 2: Complete simulation of pilot-scale screw feeder

Figure 1: Channel flow case.

(a)

(b)

Figure 2: (a) Computational domain and (b) mesh consisiting of 680,000
cells for the screw feeder simulations.

4

Pressure–driven channel flow

• Verifying the pressure-density relation 
based on the new EOS

• Verifying the Bingham plastic motion in the 
channel flow 

• High strain rate --- low viscosity (wall)
• Low strain rate --- high viscosity (middle)



Screw Feeder 
Simulation Results
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Mesh and Boundary

• Mesh size: 1.1 mil cells
• CPU-time:  72 hours to simulate 600 s 

on 324 processors
• NREL’s Eagle HPC system (Intel Xeon 

Gold Skylake)
• Boundary

– Inlet: fixed velocity profile to capture 
the experimental mass flow rate and 
fill fraction

– Outlet: fixed pressure
– Stator: no slip wall
– Screw: rotating wall
– Used codeFixedValue to set the 

velocity BC at inlet and rotating 
surface  

Outlet boundary is moved 
further out to have a 1 atm 
uncompressed free flow 
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Flow Field Results
Subtask 2: Complete validation experiments in NREL’s 4 in screw feeder.

(a)

(b)

(c)

(d)

Figure 2: Snapshots of (a) pressure (Pa), (b) density (kg/m3), (c) velocity
magnitude (m/s), and (d) viscosity (Pa · s) in the AB screw feeder at steady-
state for condition 3 in Table 1.

6
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Low rpm 
vs. 

high rpm

(a)

(b)

(c)

Figure 1: Steady-state (a) axial velocity, (b) density and (c) viscosity distribution
for the two screw speed cases (6.9 and 10.3 rpm) studied in this work.

Technical Memorandum – FY19 Go/No-go addendum for Inte-
grated Computational Tools—Red Rock Biofules 4

• The low rotation speed 
has higher fill fraction, 
leading to a higher 
biomass compression and 
shear stress.

• Both cases have same 
mass flow rate with 
different fill fraction
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Torque Validation

Screw speed 
(rpm)

Feed rate 
(kg/h)

Fill fraction Measured 
screw torque 

(Nm)

Simulation 
torque (Nm)

10.3 16.6 53% 290 265

6.9 16.6 80% 488 464

Axial torque is calculated on the screw wall surface, from both viscous 
shear stress and pressure.
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Summary

• Conclusions:
– Developed a new compressible non-Newtonian fluid flow solver in 

OpenFOAM for biomass applications.
– The constitutive model and rheology parameters used in this model 

are derived from experimental measurements.
– The CFD simulations were able to predict NREL’s screw feeder 

measured torque data with less than 10% error.

• Future work:
– Perform modeling and comparison with high pressure experiments
– Design a better geometry for a more reliable system
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